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Abstract: This paper proposes a new designed trajectory tracking method for a hydraulic manipulator,
which is the terminal sliding mode control with sliding perturbation observer (TSMCSPO). The
dynamics of the hydraulic system are complex and uncertain, it also generates a large reaction force
when working as an excavator or a dismantling robot. In this paper, the new control law is designed
to force the trajectory of the hydraulic system to follow the reference despite complex dynamics,
modeling error, the huge reaction force, and dynamic uncertainties. The sliding perturbation observer
(SPO) in TSMCSPO estimates all disturbances from the outside environment, dynamic uncertainties,
and modeling errors in real time. We included a simulation and an experiment to verify the approach,
and to demonstrate the performance compared with other controllers (SMCSPO, SMC, and TSMC).
Stabilities of SPO and TSMCSPO were analyzed based on the Lyapunov stability theory.

Keywords: sliding perturbation observer; hydraulic cylinder; terminal sliding mode control with
sliding perturbation observer; robust controller; trajectory tracking

1. Introduction

Hydraulic actuators have more advantages than electric motors such as a large force output at
high speed, high stiffness and durability, and rapid response [1,2]. Due to these advantages, hydraulic
systems are widely used in many applications including construction, mining, and nuclear industries,
where semi-automatic control systems are being adopted as means of improving the efficiency, quality,
and safety of operations. Taylor et al. [3] designed a manipulator using hydraulic actuators for
nuclear decommissioning.

However, hydraulic systems are more complex than electrical systems due to their highly nonlinear
dynamics caused by phenomena such as fluid compressibility, nonlinear servo valve flow pressure
characteristics, and dead band due to the internal leakage and hysteresis [4]. Besides its nonlinear
dynamics, the main challenge of developing a control system for a hydraulic manipulator is the reaction
force generated from the environment when it works as an excavator or dismantling manipulator.
To obtain outstanding trajectory tracking performance, much of the research uses nonlinear control
methods to compensate for the nonlinear features of an electro-hydraulic system. Furthermore,
torque/force sensors are always used to measure the payload or reaction force from the environment.
Sliding mode control is the most widely used nonlinear control algorithm for a hydraulic system
with bounded disturbances, nonlinear terms, and system uncertainties. For example, in Reference [5],
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a sliding mode control with varying boundary layers is used for an electro-hydraulic position servo
system. Rath et al. [6] used a non-singular higher order terminal sliding mode approach for vehicle
suspension control with a hydraulic actuator. Adaptive control is also widely used for hydraulic
actuators in combination with sliding mode control for varying dynamics and disturbances. Many
researchers apply adaptive control to overcome system parameter variations, and sliding mode control
is used as an effective way for controlling nonlinear systems with uncertainties. However, precise and
detailed modeling of the system is needed to adopt the update law to compensate for the variable
dynamic parameters. For instance, a sliding mode control with adaptive update law for a hydraulic
system with unknown nonlinear parameters is proposed in [7]. In [8], a sliding mode control with
adaptive update law of uncertain load disturbances is used to control a hydraulic parallel robot. The
adaptive update law is used to update the system’s dynamic parameters with a detailed and precise
dynamic model which contains the bulk modulus of the fluid, the coefficient of internal leakage, etc.
In [9], an adaptive control scheme based friction disturbance compensator structure was proposed
for motion control, which approximates the friction term with RBF-type neural network. However,
in adaptive control, the dynamic modeling should be built complicatedly or precisely for adapting
the adaptation law, which is difficult to design and implement in a real system [10]. In recent years,
much research also applies the adaptive algorithm on the sliding mode control named as adaptive
SMC (sliding mode control). Some adaptive-gain-based sliding mode control are mentioned for more
robustness, which selects the adaptive gain of the switching surface [11,12]. Some improved versions
for an adaptive-robust controller with a time-delayed approach are shown in [13,14], which do not
require any knowledge of system dynamic information. Initially, however, the no model based adaptive
SMC showed a lot of tracking error in their results.

In this paper, we applied terminal mode control with a sliding perturbation observer (TSMCSPO)
for a hydraulic system whose dynamics are only modeled as a simple second order system. The
uncertainties, nonlinear terms, dynamic modeling errors of the system and disturbances are included
by the definition of perturbation, which is estimated by the SPO (Sliding Perturbation Observer).
Design for a real hydraulic system is more suitable than the adaptive updating law caused by simple
dynamic modeling. The dynamic model of this hydraulic system is simplified as a 2nd order system.
The identified system parameters are obtained by the signal compression method [15], which generates
an equivalent impulse signal as the trajectory reference.

SPO is a combination of a sliding observer with a perturbation observer. Perturbation consists
of disturbances, nonlinear terms, modeling errors, and system uncertainties. That is also effective at
reducing the chattering in conventional SMC’s caused by its robustness against the disturbance [16,17],
and improving the system’s robustness by estimating and compensating for the perturbation [18,19].
SPO has been proven to be an accurate estimation within an interest designed for a low-frequency range
through simulation [20,21]. Meanwhile, the estimated perturbation can be used to reduce chattering
and tracking errors through SMC. SMCSPO (Sliding Mode Control with Sliding Perturbation Observer)
is a combination of the controller SMC with SPO, which has an excellent performance in trajectory
tracking. It only utilizes the partial state feedback to estimate the other states and perturbation
including non-linear control terms. It has been proven to have a high tracking performance in some
electrical motor applications (e.g., in [22,23] for a surgical robot). However, the convergence time of
SMCSPO is slower than only an SMC with full states feed-back, and some undershoot occurs. This
phenomenon is caused by the existing time delay of the sliding perturbation observer.

In order to reduce the disadvantage of time delay brought by SPO and have a robust tracking
performance, TSMCSPO was designed and used in our current study. TSMCSPO combines TSMC
(Terminal Sliding Mode Control) and SPO. TSMC uses the terminal sliding surface instead of the
traditional linear sliding surface [24,25], resulting in the tracking error being lead to zero in a finite
time fast. TSMC has been used and examined in control of robot and manipulators [26,27]. This fast
controller is useful to speed up the convergence velocity around an equilibrium point. Due to the
introduction of a non-linear sliding surface, preliminary TSMC may have a singularity problem, which
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makes it difficult to act on the actual mechanical application. In order to avoid the singularity problem,
some methods have been developed and applied [28–30]. We use the method mentioned in [30] to
avoid the singularity point in the TSMCSPO design.

In this research, the main point is the new TSMCSPO controller, which uses the terminal sliding
mode to improve the slow convergence time and reduce the effect of time delay that occurs in the
SPO. Application on the hydraulic system is novel using TMCSPO, though the SMC technical and
perturbation observer is well known and not new for electric motors. The new designed controller
is proposed for the first time in this paper. Then, the implementation using a hydraulic system is
introduced with its dynamical analysis. Finally, the performance of this new controller TSMCSPO is
demonstrated by MATLAB simulations compared with the conventional SMC, SMCSPO, and TSMC,
as well as in real applications for the hydraulic servo system.

The remaining part of this paper is organized as follows. The controller design for a general
robot manipulator system is described in Section 2. Section 3 introduces the hydraulic system and the
application with TSMCSPO. A simulation carried out in MATLAB and the experimental result from
the real hydraulic system are present in Sections 4 and 5, respectively. Section 6 concludes this work.

2. Controller Design

2.1. System Description for a General Robot Manipulator

The governing equation for a general second-order dynamic of the j-th link of a robot manipulator
with n-degree-of-freedom (DOF) is described by the following differential equation:

..
x j = f j(x) + ∆ f j(x) +

n∑
i=1

[(b ji(x) + ∆b ji(x))ui] + d j(t)

j = 1, . . . , n.
(1)

where x ∆
= [X1 . . .Xn]

T is the state vector and Xj
∆
= [x j,

.
x j]

T. In practice, x j is the real trajectory for
the j-th link. The terms f j(x) correspond to the nonlinear driving terms, while ∆ f j(x) corresponds
to their uncertainties. The components b ji and ∆b ji represent the elements of the control gain matrix
and their uncertainties, while d j is the external disturbance and u j is the control input. The terms
f j and b ji are assumed as well known continuous functions of state in literature [21]. Perturbation
Ψ j(x, t) is defined as the combination of all the uncertainties in Equation (1): the physical meaning of
perturbation includes the unidentified dynamic terms, the dynamic modeling error and the external
disturbances of perturbation

Ψ j(x, t) = ∆ f j(x) +
n∑

i=1

[∆b ji(x)ui] + d j(t). (2)

In practice, the main component of the perturbation Ψ j(x, t) is the external disturbance from the
environment for a general motor driven robot. However, for a hydraulic system, the dynamic
uncertainties also have a big impact. The control goal is to drive state x toward a desired state

xd
∆
= [X1d . . .Xnd]

T despite these perturbations.

Assumption 1. The perturbations have an upper bound by a known continuous function of the state:

Γ j(x, t) = F j(x) +
n∑

i=1

∣∣∣Φ ji(x)ui
∣∣∣+ D j(t) >

∣∣∣Ψ j(t)
∣∣∣. (3)

where F j >
∣∣∣∆ f j

∣∣∣, Φ ji >
∣∣∣∆b ji

∣∣∣ and D j >
∣∣∣d j

∣∣∣ represent the expected upper bounds of the uncertainties.
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The combination of a controller (TSMC) and an observer (SPO) results in a new form called
terminal sliding mode control with sliding perturbation observer (TSMCSPO). The flow chart of
TSMCSPO is shown in Figure 1.Appl. Sci. 2019, 9, 1455 4 of 17 
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Figure 1. Flow chart of TSMCSPO (Terminal Sliding Mode Control with Sliding Perturbation Observer).

2.2. Sliding Perturbation Observer (SPO)

The state space with a new state variable x3 j can be represented as:

.
x1 j = x2 j

.
x2 j = a3 ju j + Ψ j
.
x3 j = α3 j

.
x2 j −

.
Ψ j
α3 j

y j = x1 j.

(4)

The new state variable x3 j is defined as:

x3 j = α3 jx2 j −
Ψ j

α3 j
. (5)

The sliding perturbation observer (SPO) equations for a j-th link can be described as follows:

.
x̂1 j = x̂2 j − k1 jsat(x̃1 j),.

x̂2 j = α3u j − k2 jsat(x̃1 j) + Ψ̂ j.
x̂3 j = α2

3 j

(
u j + α3 jx̂2 j − x̂3 j

)
ψ̂ j = α3 j

(
α3 jx̂2 j − x̂3 j

)
.

(6)

In this equation, sat(x̃1 j) =


x̃1 j∣∣∣̃x1 j

∣∣∣ , i f
∣∣∣̃x1 j

∣∣∣ ≥ ε0 j

x̃1 j
ε cj, i f

∣∣∣̃x1 j
∣∣∣ ≤ ε0 j

. ε0 j stands for the boundary layer of the SPO. The

resulting error estimation dynamics becomes:

.
x̃1 j = x̃2 j − k1 jsat(x̃1 j).

x̃2 j = −k2 jsat(x̃1 j) + Ψ̃ j.
x̃3 j = α2

3 j

(
α3 jx̃2 j − x̃3 j

)
+

.
Ψ
α3 j

.

(7)
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The existence condition of the sliding mode to be satisfied is derived as:

x̃2 j ≤ k1 j( if x̃1 j > ε0 j)

x̃2 j ≥ −k1 j ( if x̃1 j < −ε0 j).
(8)

where k1 j is a constant and larger than the maximum of x̃2 j, i.e., k1 j >
∣∣∣max(x̃2 j)

∣∣∣ . After the observer
sliding mode begins (x̃1 j = 0), x̃2 j dynamics becomes:

.
x̃2 j + (

k2 j

k1 j
)x̃2 j = Ψ̃ j. (9)

It is desirable to place the breakpoint
k2 j
k1 j

as high as possible in order to increase the attenuation

from Ψ̃ j to x̃2 j, and improve the estimation accuracy of x2 j at the same time. If we select that k2 j is

larger than the maximum of Ψ̃ j, i.e., k2 j ≥
∣∣∣max(Ψ̃ j)

∣∣∣ , it can assure the steady state
∣∣∣∣̃x2 j

∣∣∣∣ ≤ k1 j from

Equation (9), will force the states to stay in the sliding region. When
∣∣∣̃x1 j

∣∣∣ ≤ ε0 j, the error estimation
dynamics becomes:

.
x̃1 j = x̃2 j − k1 j

x̃1 j
ε0 j.

x̃2 j = −k2 j
x̃1 j
ε0 j

+ Ψ̃ j.
(10)

Remark 1. If the gain α3 j is selected high enough, the term
.

Ψ j
α3 j

gives very little influence on the changes of x̃3 j

in Equation (7). x̃3 j also converges to 0 after x̃2 j reaches its equilibrium point (i.e., x̃2 j = 0) when
.

Ψ j
α3 j

is small
and can be neglected with a large selected value of α3 j. This can be proven using Lyapunov stability theory when
both sides of Equation (7) are multiplied with x̃3 j.

Using Equations (4) and (5), the relation between Ψ̃ j and Ψ j in the Laplace domain is (see the
Appendix A):

Ψ̃ j(p) =
p[p2 + (k1 j/ε0 j)p + k2 j/ε0 j]

p3 + (k1 j/ε0 j)p2 + (k2 j/ε0 j)p + α2
3 j(k2 j/ε0 j)

(−Ψ j(p)). (11)

This relation in Equation (11), between the real perturbation and the error of perturbation
estimation, is a high pass filter. It means if the perturbation is in the low-frequency area the observer
will estimate accurately. Using Equations (10) and (11), a relation between x̃2 j and Ψ j in the Laplace
domain is derived as:

x̃2 j =
p(p +

k1 j
ε0 j

)

p3 + (
k1 j
ε0 j

)p2 + (
k2 j
ε0 j

)p + α3 j2(
k2 j
ε0 j

)

(
−Ψ j(p)

)
. (12)

Only utilizing the partial state feedback, the estimated perturbation by the SPO can be used to
reduce the effect of real perturbation for a more accurate estimation [21]. Moreover, the more accurate
estimation can be used in the sliding mode control to follow the desired state.

When
∣∣∣̃x1 j

∣∣∣ < ε0 j, the saturation function sat(x̃1 j) is reduced to
x̃1 j
ε0 j

as shown in Equation (10). The
dynamics of the error state estimation shown in matrix form is:

.
x̃1 j.
x̃2 j.
x̃3 j

 =

−

k1 j
ε0 j

1 0

−
k2 j
ε0 j

α2
3 j −α3 j

0 α3
3 j −α

2
3 j

×


x̃1 j
x̃2 j
x̃3 j

+


0
0
1


.
ψ j

α3 j
. (13)
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It shows that SPO is similar to a conventional Luenberger observer. The pole placement method is
used to satisfy the stability and design the convergence time. The associated characteristic equation is:

[λ3 + (
k1 j

ε0 j
)λ2 + (

k2 j

ε0 j
)λ+ α2

3 j(
k2 j

ε0 j
)] = 0. (14)

Let p(λd) = (λ+ λd)
3 be the desired characteristic polynomial; this brings out the following

design solutions:
k1 j

ε0 j=3λd
k2 j

k1 j=λd

α3 j =

√
λd
3 .

(15)

The transfer function of Equation (11) turns out to be as follows:

Ψ̃ j(p) =
p[p2+3λdp+3λ2

d]
(p+λd)

3

(
−Ψ j(p)

)
Ψ̂ j
Ψ j

= 1 +
Ψ̃ j
Ψ j

=
λ3

d

(p+λd)
3 .

(16)

Remark 2. It shows the λd is a design parameter, which determines the bandwidth of the high filter between
the perturbation estimation error and real perturbation while a low pass filter relation is between estimated
perturbation and real perturbation. The precision of estimated perturbation is restrained to only the slow
motion mode.

An example of the effect of λd on Equation (16) is shown by the bode diagram in Figure 2 where
we give a different value to λd. The red dash line presents λd = 10, and the solid blue line is λd = 20.
The results of Figure 2 show that when λd increased, the estimated perturbation was much closer to
the real perturbation. Although in terms of reducing errors and observing accuracy, a large gain λd is
required. The breaking point of the sliding observer dynamics inside a manifold cannot exceed 1

5τhw as
shown by Moura et al. [21]. Where τhw is considered the dominant time delay depending on sampling
time in the hardware. A similar proposition is also presented by Slotine and Li [16]. When reaching

the sliding phase, the dynamics of the observer becomes
.
x̃1 j = x̃2 j −

k1 j
ε0 j

x̃1 j. The breaking point from

the dynamics of the observer becomes
k1 j
ε0 j

. Therefore, the best selection of λd in Equation (16) is

λd =
1

15τhw
. (17)

This simple entity defines the necessary SPO parameters based on the limitation of the hardware.

Assumption 2. Rmax represents the maximum ratio between perturbation Ψ j(p) and x̃2 j on some frequency as:

Rmax j = MAX(
p(p + 3λd)

p3 + 3λdp2 + 3λd
2p + 3λd

2α3 j2
). (18)
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2.3. Terminal Sliding Mode Control with Sliding Perturbation Observer (TSMCSPO)

The new dynamics of ŝ j for TSMCSPO is defined as follows:

ŝ j =
.
ê j + β j

∣∣∣ê j
∣∣∣rsign(ê). (19)

where ê j = x̂1 j − x1dj is the estimated tracking error, and β j is positive constant.
.
ŝ j can be computed as:

.
ŝ j = α3 ju j − [

k2 j

ε0 j
− (

k1 j

ε0 j
)2]x̃1 j − (

k1 j

ε0 j
)x̃2 j −

..
x1 jd + β j

d
dt
(
∣∣∣ê j

∣∣∣rsign(ê)) + Ψ̂ j. (20)

The control input u j of TSMCSPO is defined as:

u j =
1
α3 j

 −Γ jRmax j(
k1 j
ε0 j

)sign (ŝ j) − η j
∣∣∣ŝ j

∣∣∣rsign
(
ŝ j
)

+[
k2 j
ε0 j
− (

k1 j
ε0 j

)2]x̃1 j +
..
x1dj − Ψ̂ j − β j

d
dt (

∣∣∣ê j
∣∣∣rsign(ê))

. (21)

where
.
ê = x̂2 j − (

k1 j
ε0 j

)x̃1 j −
.
x1dj is used in practical applications, η j is constant and positive, Rmax j and Γ j

are defined in Assumptions 1 and 2. After reaching the sliding surface ŝ j = 0, the above function will
be a non-singular function. However, if s j , 0,

.
e j , 0, and e = 0, a singularity will occur [30]. To avoid

the singularity problem, the following condition can be given as:

d
dt

(∣∣∣ê j
∣∣∣rsign(ê

)
) =


r|ê|r−1 .

ê, i f
.
ê , 0, ê , 0

r|∆|r−1 .
ê, i f

.
ê , 0, ê = 0

0 , i f
.
ê = 0, ê = 0

(22)

where ∆ > 0 is a small constant. Substituting u j into (20),
.
ŝ is computed as:

.
ŝ j = −Γ jRmax j(

k1 j

ε0 j
)sign(ŝ j) − η3 j

∣∣∣ŝ j
∣∣∣rsign(ŝ j) − (

k1 j

ε0 j
)x̃2 j. (23)

The Lyapunov description of TSMCSPO can be shown as:

.
V =

.
ŝŝ = ŝ(−Γ jRmax j(

k1 j

ε0 j
)sign(ŝ j) − η3 j

∣∣∣ŝ j
∣∣∣rsign(ŝ j) − (

k1 j

ε0 j
)x̃2 j) ≤ −η3 j2(r+1)/2V(r+1)/2. (24)
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3. TSMCSPO for the Hydraulic System

3.1. Hydraulic Servo System and Dynamics

The hydraulic manipulator is shown in Figure 3 with its 3 dimensional file. It consists of three
arms, two single-rod hydraulic actuated cylinders, and one AC servo motor. In this paper, only a 1st
link hydraulic system is applied to evaluate the control performance by the simulation and experiment.
The constitution of the 1st link is shown in Figure 4. It consists of an asymmetric piston, servo valve,
an aluminum link, and an encoder. The rotation of link 1 is derived from the movement of the piston.Appl. Sci. 2019, 9, 1455 8 of 17 
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The rotation of link 1 was derived by the movement of the piston. The relation between the 
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link 1′s rotation (Figure 5). 
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The rotation of link 1 was derived by the movement of the piston. The relation between the
displacement of the piston and rotation angle of link1 are obtained as follows:

∆xL ≈ R∆θ1 (25)

where xL is the displacement of the piston, θ1 is the rotation angle of link 1, and R is the radius of link
1′s rotation (Figure 5).Appl. Sci. 2019, 9, 1455 9 of 17 
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For a second order system in Equation (32), 𝐽  is considered as the inertia of the system, 𝐷  
contains the damping term, and 𝛹 is defined as the perturbation which contains modeling errors, 
nonlinear terms, some simplified calculation error, and main disturbances from the environment. The 
perturbation 𝛹 is estimated using SPO. The details of SPO are shown in the next section. 
Remark 3. The whole system in Equation (32) contains a hydraulic pump, a control valve, and a hydraulic 
cylinder. Control input is given by an MMC PCI board which outputs a voltage to the servo valve, and system 
output is the rotation angle of the link forced by the placement of a hydraulic actuator piston. The sampling 
time is set as 2 ms, which is fast enough to apply the control algorithm directly without analyzing by digital 
control theory.  
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The dynamics of a single–rod hydraulic servo system was obtained as a state-space form in the
following [8,31]:

x =
[
x1, x2]

T ,[xL,
.
xL]

T (26)

.
x1 = x2

.
x2 = 1

m (A1P1 −A2P2 − bx2 − Fd)
(27)

.
P1 =

βe
V1
([−A1x2 + kakq

√
∆P1u−Ct(P1 − P2)

]
.
P2 =

βe
V2
([−A2x2 − kakq

√
∆P2u−Ct(P1 − P2)

] (28)

where m is the mass of the piston, P1 and P2 are the pressures inside the two chambers of the cylinder,
b is the coefficient of viscous friction, Fd contains the payload and the gravitational effects, βe is the
bulk modulus of the fluid, Ct is the internal leakage coefficient, V1 and V2 are the total fluid volumes
of the two sides of the cylinder, A1 and A2 are the areas of the two sides of the piston, kq is the
flow gain coefficient of the servo valve, u is the servo valve control input signal, and ka is the servo
amplifier gain [8].

When the leakage is negligible P1 and P2 can be obtained as:

P1(t1) = u
∫ t1

t0

βe
V1

kakq
√

∆P1dt−
∫ t1

t0

βe
V1

A1x2dt + P1(t0)

P2(t1) = u
∫ t1

t0

βe
V2

kakq
√

∆P2dt−
∫ t1

t0

βe
V2

A2x2dt + P2(t0)
(29)

where t0 is starting time, P1(t0) and P2(t0) are the initial pressures of each cylinder.
Substituting Equation (29) into Equation (27), we get:

.
x2 = 1

m (A1P1 −A2P2 − bx2 − Fd) = u[A1
m

βe
V1

kakq
∫ t1

t0

√
∆P1dt− A2

m

∫ t1
t0

βe
V2

kakq
√

∆P2dt]

−
βe
V1

A1
m A1

∫ t1
t0

x2dt + A2
m

βe
V2

A2
∫ t1

t0
x2dt− b

m x2 +
A1
m P1(t0) −

A2
m P2(t0) −

Fd
m

(30)

Assumption 3. The two sides cylinders have the same volume Veq and the same area Aeq. Equation (30) can be
simplified as follows:

.
x2 = u

Aeq

m
βe

Veq
kakq(P∗) −

b
m

x2 +
Aeq

m
[P1(t0) − P2(t0)] −

Fd
m

(31)

where P∗ is a constant which is assumed as an average value of (
∫ t1

t0

√
∆P1dt−

∫ t1
t0

√
∆P2dt). Hence, the

dynamics of the entire system can be considered as a SISO (Single-Input and Single-Output) second order system
with the control input u and the rotation output θ1 of link 1 as follows:

..
θ1 =

1
J1

u−
1
J1

D1
.
θ1 −Ψ. (32)

where Ψ, D1 and J1 is defined as follows:

1
J1
=

Aeq
m

βe
Veq

kakqP∗
D1
J1

= b
m

Ψ = −
Aeq
m [P1(t0) − P2(t0)] +

Fd
m + Model Assumption Errors

(33)

For a second order system in Equation (32), J1 is considered as the inertia of the system, D1

contains the damping term, and Ψ is defined as the perturbation which contains modeling errors,
nonlinear terms, some simplified calculation error, and main disturbances from the environment. The
perturbation Ψ is estimated using SPO. The details of SPO are shown in the next section.
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Remark 3. The whole system in Equation (32) contains a hydraulic pump, a control valve, and a hydraulic
cylinder. Control input is given by an MMC PCI board which outputs a voltage to the servo valve, and system
output is the rotation angle of the link forced by the placement of a hydraulic actuator piston. The sampling
time is set as 2 ms, which is fast enough to apply the control algorithm directly without analyzing by digital
control theory.

3.2. TSMCSPO for Hydraulic System

Applying the proposed controller in Equation (21), the control input of TSMCSPO for the
end-effector of a hydraulic cylinder is shown as:

utsmcspo = J1α3u + D1θ̂12,

utsmcspo =
1
α3
{−Γ1Rmax 1(

k1

εo1
)sign(ŝ1) − η1|ŝ1|

rsign (ŝ1) + [
k2

εo1
− (

k1

εo1
)2]θ̃1 +

..
θ1d

−β1r|ê|r−1
(
θ̂12 −

(
k1

εo

)
θ̃1 −

.
θ1d

)
− Ψ̂}.

(34)

when |ê| = 0,
utsmcspo =

1
α3
{−Γ1Rmax 1(

k1
εo1

)sign(ŝ1) − η1|ŝ1|
rsign (ŝ1)+

[ k2
εo1
− ( k1

εo1
)2]θ̃1 +

..
θ1d − β1r|∆|r−1

(
θ̂12 −

( k1
εo

)
θ̃1 −

.
θ1d

)
− Ψ̂}.

where θ12 is the rotation velocity of link 1, ê = θ̂1 −θ1d, θ̃1 = θ̂1 −θ1.
.
θ1d and

..
θ1d are the desired velocity

and acceleration of link 1, respectively. After reaching the sliding surface,
.
ê = θ̂12 −

( k1
ε0

)
θ̃1 −

.
θ1d.

The term |e|r−1 in TSMCSPO creates a singularity problem and can be solved by the condition in
Equation (22).

4. Simulations

This section introduces a trajectory tracking simulation in MATLAB to verify the performance
of TSMCSPO.

The desired trajectory used in this simulation is shown in Figure 6. The desired trajectory includes
all possible response inputs (i.e., ramp, sinusoidal, and step). It increased until it reached 45 degrees at
19.7 s. At the start, the trajectory gradually increased by the ramp input until 5 s. Then, it increased by
a mix of sinusoidal input (3 rad/s, 0.477 Hz) and ramp input until it reached its maximum value (i.e.,
45 degrees). It then dropped until it reached 15 degrees at 25 s. From 25 s, the reference input was
designed as a step input. During all the movement, the external force is set as:

Ψ = h · x1. (35)

where x1 is the real trajectory, h is a positive number, and the maximum frequency of perturbation is
considered as 3 rad/s, which is assumed as the real operation frequency. Table 1 reports the parameters
used in the simulations. α3, k1

ε01
and k2 j can be determined by λd shown in Equation (15).
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Table 1. Parameter selections of simulation and experiment.

Parameters Values

β1, λd, η1 10

εc, h 1

r 0.7

∆ 0.01

The fractional power term
.
ê|ê|r−1 in the control law of TSMCSPO can be seen as the term that

bridges between linear control ( r→ 1) and nonlinear control ( r→ 0). If we increase the ratio ( r→ 0),
the convergence time is reduced. Otherwise, the chattering will be much more severe. Moreover, in the
simulation, the parameter η1 is selected to be larger than the boundary of the expected perturbation,
which is proposed in the previous section. Because the maximum frequency of the disturbance is given
as 3 rad/s (oscillation part in the desired trajectory) λd can be selected as 10 when the bandwidth is
near 5 rad/s in the sliding perturbation observer.

Figure 7 shows the simulation result of the error trajectory comparison between the proposed
control scheme and other three controllers. The other three controllers were: (a) SMC designed as
usmc = −J1K1sat(s) + D1θ12 + J1

..
θ1d − J1c

.
e with parameters K1 = 10 and c = 10; (b) SMCSPO used in

Equation A6 from Reference [32] with same parameters in SPO and K1 = 10; and (c) conventional TSMC
described in [28] utsmc = −η2 J1sign(s) − η3 J1|s|rsign(s) + D1θ12 + J

..
θ1d − J1βr|e|r−1

( .
e
)

with parameters
η2 = 0.6 and η3 = 10.
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Figure 7. Trajectory Tracking Error Comparisons.

Figure 8 gives the control input result of SMCSPO and TSMCSPO. The blue line presents the
control input of TSMCSPO, and the line shows that of SMCSPO. An enlarged part of the interval from
11.5 to 11.6 s result shows that the control input of TSMCSPO had more chattering than SMCSPO, but
not too great. TSMC also had more chattering than SMC; their results almost overlapped—similar to
the result of TSMCSPO and SMCSPO. The overlapping phenomenon was caused by the huge control
input needed for moving the hydraulic system. The chattering resulted from the nonlinear terminal
sliding surface.



Appl. Sci. 2019, 9, 1455 12 of 17Appl. Sci. 2019, 9, 1455 12 of 17 

 

Figure 8. Comparison between error trajectories of SMC. 

Comparing the error trajectories of SMC, TSMC, TSMCSPO, and SMCSPO is discussed in Table 
2 which includes the maximum error, steady-state error, undershoot, and settling time. TSMC has a 
faster convergence time with less steady state error in the final step input section. This means TSMC 
has more attenuation than SMC. However, the results of both SMCSPO and TSMCSPO showed less 
error and 0 steady state error, which benefited from the SPO. In both SMCSPO and TSMCSPO, an 
undershoot error existed, which was caused by the time delay. This time delay can be explained by 
Equation (11). The different phases between 𝛹  and 𝛹  (shown in Figure 2) resulted in time delay 
and undershoot errors. This also made the settling time of SMCSPO slower than that of SMC. 
Comparing the settling time and rising time, we found that the terminal mode made the convergence 
time faster, which is certified in both TSMC and TSMCSPO. Altogether, the TSMCSPO exhibited less 
error than others, a 0 steady state error that is better than that of TSMC and a faster response than 
SMCSPO. 

Table 2. Performance parameters. 

Controllers SMCa SMCSPOb TSMCc TSMCSPOd 

Maximum error (degree) 0.134 0.0372 0.133 0.0042 
Steady state error (degree) 0.0432 0 0.0021 0 

Undershoot max. error (degree) - 0.0466 - 0.0053 
Settling time (s) 25.28 33.59 24.18 29.75 

a SMC: Sliding Mode Control; b SMCSPO: Sliding Mode Control with Sliding Perturbation Observer; 
c TSMC: Terminal Sliding Mode Control; d TSMCSPO: Terminal Sliding Mode Control with Sliding 
Perturbation Observer. 

5. Experiment 

The real hydraulic system was used to demonstrate the trajectory tracking performance of 
TSMCSPO. The experiment was implemented on link 1 of the hydraulic system using TSMCSPO and 
SMCSPO. We expected the hydraulic system had many nonlinearities and uncertainties, resulting in 
the controller without the perturbation observer having a bad performance. Assuming the boundary 
of perturbation in the real system is less than 𝛤 = 1𝑉 shown as the unit of voltage. It can be shown 
in the unit of torque as 𝛤 ⋅ 𝑟𝑎𝑡𝑖𝑜 ( ) 2500𝑁. Hence, the maximum of perturbation was 
assumed as 2500 N. With the purpose of how the gain 𝜆  affects the controller, the experiments were 
carried out twice with different 𝜆  values. The design parameters of TSMCSPO and SMCSPO were 
the same as the previous simulation, only with different 𝜆  values (i.e., 10 and 20). In the real 
experiment, chattering was reduced by using the saturation function 𝑠𝑎𝑡( �̂� ) instead of the term 𝑠𝑖𝑔𝑛( �̂� ) in Equation (34), which is defined as 𝑖𝑓 �̂� ≥ 𝜀 𝑠𝑎𝑡( �̂� ) = ̂̂  and 𝑖𝑓 �̂� ≤ 𝜀 ̂

, 𝜀  is 

Figure 8. Comparison between error trajectories of SMC.

Comparing the error trajectories of SMC, TSMC, TSMCSPO, and SMCSPO is discussed in Table 2
which includes the maximum error, steady-state error, undershoot, and settling time. TSMC has a
faster convergence time with less steady state error in the final step input section. This means TSMC
has more attenuation than SMC. However, the results of both SMCSPO and TSMCSPO showed less
error and 0 steady state error, which benefited from the SPO. In both SMCSPO and TSMCSPO, an
undershoot error existed, which was caused by the time delay. This time delay can be explained by
Equation (11). The different phases between Ψ̂ j and Ψ j (shown in Figure 2) resulted in time delay and
undershoot errors. This also made the settling time of SMCSPO slower than that of SMC. Comparing
the settling time and rising time, we found that the terminal mode made the convergence time faster,
which is certified in both TSMC and TSMCSPO. Altogether, the TSMCSPO exhibited less error than
others, a 0 steady state error that is better than that of TSMC and a faster response than SMCSPO.

Table 2. Performance parameters.

Controllers SMC a SMCSPO b TSMC c TSMCSPO d

Maximum error (degree) 0.134 0.0372 0.133 0.0042
Steady state error (degree) 0.0432 0 0.0021 0

Undershoot max. error (degree) - 0.0466 - 0.0053
Settling time (s) 25.28 33.59 24.18 29.75

a SMC: Sliding Mode Control; b SMCSPO: Sliding Mode Control with Sliding Perturbation Observer; c TSMC:
Terminal Sliding Mode Control; d TSMCSPO: Terminal Sliding Mode Control with Sliding Perturbation Observer.

5. Experiment

The real hydraulic system was used to demonstrate the trajectory tracking performance of
TSMCSPO. The experiment was implemented on link 1 of the hydraulic system using TSMCSPO and
SMCSPO. We expected the hydraulic system had many nonlinearities and uncertainties, resulting in
the controller without the perturbation observer having a bad performance. Assuming the boundary of
perturbation in the real system is less than Γ1 = 1V shown as the unit of voltage. It can be shown in the
unit of torque as Γ1 · ratioservo−valve(

N
V ) ≈ 2500 N. Hence, the maximum of perturbation was assumed

as 2500 N. With the purpose of how the gain λd affects the controller, the experiments were carried out
twice with different λd values. The design parameters of TSMCSPO and SMCSPO were the same as the
previous simulation, only with different λd values (i.e., 10 and 20). In the real experiment, chattering
was reduced by using the saturation function sat(ŝ1) instead of the term sign(ŝ1) in Equation (34),

which is defined as i f
∣∣∣ŝ j

∣∣∣ ≥ εcjsat(ŝ j) =
ŝ j∣∣∣ŝ j
∣∣∣ and i f

∣∣∣ŝ j
∣∣∣ ≤ εcj

ŝ j
ε cj, εcj is positive constant, and εc1 was

selected as 0.2 to balance the steady state error and the chattering. Detailed analysis is shown in the
Appendix A.
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The experimental result of the comparison between error trajectories of TSMCSPO and SMCSPO at
the value of λd was 10, as shown in Figure 9. The red line shows the tracking error result of TSMCSPO,
and the blue dotted line shows the result of the tracking error using SMCSP. The maximum error of
TSMCSPO was 0.292 degrees at 6 s. The maximum error of SMCSPO was 0.985 degrees at 6.5 s. In the
step response area, the small chattering was caused by the revolution of the encoder.
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Figure 10 shows the experimental result of comparing the error trajectories of TSMCSPO and
SMCSPO, where the value of λd was 20. The red line shows the experimental result of TSMCSPO error,
and the blue dotted line shows the experimental result for the error of SMCSPO. The maximum error
of TSMCSPO was 0.2285 degrees at 17.15 s, and the maximum error of SMCSPO was 0.6864 degrees at
17.4 s.
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Figure 10. Comparison between error trajectories of TSMCSPO and SMCSPO (λd = 20).

Both SMCSPO and TSMCSPO had a 0 steady state error (the continuous oscillation is caused by
the resolution of the encoder whose least measurable unit is 0.018 degree.). The trajectory tracking
error of TSMCSPO was significantly less compared to that of SMCSPO in both experiments. The error
of the trajectory also decreased when the value of λd increased, with a small increase in chattering.
The reason for this was that the phenomenon was affected by the increased switching of control input
gain (i.e., k1 in Equation (34)). These data indicate that TSMCSPO has a fast convergence time and less
undershoot compared with SMCSPO.
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6. Conclusions

This research addresses the trajectory tracking control of a hydraulic actuated manipulator with a
new designed controller, TSMCSPO. The modeling error, dynamics, nonlinear terms, and disturbances
are defined as a variable state perturbation. SPO is used to estimate the perturbation. The main
contribution of this research is the design of TSMCSPO and its implementation on a hydraulic system.
In the simulation, TSMCSPO shows outstanding performance in trajectory tracking, with 0 state error
compared to SMC and TSMC. TSMCSPO also has a faster convergence speed than SMCSPO, which
improves on the convergence speed in spite of the bad effect from the time delay phenomenon that
exists in SPO. The new approach to TSMCSPO also verified that it possesses faster convergence time
and less undershoot compared to SMCSPO from the hydraulic system experiment.
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Appendix A

Proof of Equation (11):
First, using Equation (7), we can get:

x̃2 j = α−3
3 j (α3 j

2x̃3 j +
.
x̃3 j) −

.
Ψ
α4

3 j
(A1)

Because the estimated perturbation is defined in Equation (6) as:

ψ̂ j = α3 j
(
α3x̂2 j − x̂3 j

)
(A2)

x̃3 j is simplified as:

x̃3 j = x̂3 j − α3 jx2 j +
Ψ j
α3 j

= x̂3 j − α3 jx2 j + (
Ψ̂ j−Ψ̃ j
α3 j

)

= −α3 jψ̃+ α3 jx̃2 j

(A3)

Since SMCSPO is discussed in the manifold
∣∣∣ŝ j

∣∣∣ ≤ εcj, from Equation (7) we can get:

.
x̃1 j = x̃2 j −

k1 j

ε0 j
x̃1 j (A4)

x̃1 j =
(−

.
x̃2 j + Ψ̃ j)

k2 j
ε0 j

(A5)

.
x̃2 j +

k2 j

ε0 j
x̃1 j = Ψ̃ j (A6)
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The derivative of time in Equation (A6) is:

..
x̃2 j +

k2 j

ε0 j

.
x̃1 j =

.

Ψ̃ j (A7)

Substituting Equation (A5) in Equation (A7), we can get:

..
x̃2 j +

k2 j

ε0 j
{x̃2 j −

k1 j

k2 j
(−

.
x̃2 j + Ψ̃ j)} =

.

Ψ̃ j (A8)

Using Equations (A1) and (A2), Equation (A6) is rewritten as:

−

..

Ψ̃ j − Ψ̃ j −
k2 j

ε0 j

.

Ψ̃ j −
k2 j

ε0 j

.
Ψ j −

k1 j

ε0 j

..

Ψ̃ j −
k1 j

ε0 j

..
Ψ j − α

4
3 j

k1 j

ε0 j
Ψ̃ j = α4

3 j

.
Ψ j (A9)

After s the Laplace transform, using Equation (A8) to substitute
.
x̃2 j in Equation (15) for Ψ̃ j, then

Equation (16) can be derived.
Proof of Equation (24):

.
V =

.
ŝ jŝ j = ŝ j(−Γ jRmax j(

k1 j
ε0 j

)sign(ŝ j) − η3 j
∣∣∣ŝ j

∣∣∣rsign(ŝ j) − (
k1 j
ε0 j

)x̃2 j)

= ŝ j

(
−Γ jRmax j

(
k1 j
ε0 j

) ∣∣∣ŝ j
∣∣∣

ŝ j
− η3 j

∣∣∣ŝ j
∣∣∣r ∣∣∣ŝ j

∣∣∣
ŝ j
−

(
k1 j
ε0 j

)
x̃2 j

)
.(

∵ sign(ŝ j
)
=

∣∣∣ŝ j
∣∣∣

ŝ j
or

ŝ j∣∣∣ŝ j
∣∣∣ ) ≤ −η3 j

∣∣∣ŝ j
∣∣∣r+1

(∵ Γ jRmax j > x̃2 j).⇒
.

V ≤ −η2 j2(r+1)/2V(r+1)/2.

(A10)

Stability analysis in the case of using a saturation function instead of sign function:

.
V =

.
ŝ jŝ j = ŝ j

(
−Γ jRmax j

(
k1 j
ε0 j

)
sat

(
ŝ j
)
− η3 j

∣∣∣ŝ j
∣∣∣rsat

(
ŝ j
)
−

(
k1 j
ε0 j

)
x̃2 j

)
= ŝ j

(
−Γ jRmax j

(
k1 j
ε0 j

)
ŝ j
εcj
− η3 j

∣∣∣ŝ j
∣∣∣r ŝ j
εcj
−

(
k1 j
ε0 j

)
x̃2 j

)
.

(∵
∣∣∣ŝ j

∣∣∣ < εcj,
∣∣∣∣ ŝ j
εcj

∣∣∣∣ < 1)

(A11)

The requirement for the Lyapunov asymptotic stability is that
Γ jRmax j

∣∣∣ŝ j
∣∣∣

εcj
> x̃2 j. If we increase εcj,

chattering is reduced due to the less scope of sign switching. However, the steady state error will
have an increment caused by its instability when

∣∣∣ŝ j
∣∣∣ is much less than εcj. In the real experiment, the

steady state was discussed in an extremely low frequency. The value of
Γ jRmax j

x̃2 j
was much larger than

10, which was computed by using Equations (18) and (12). When we selected the value εcj = 0.2,
it guaranteed that

∣∣∣ŝ j
∣∣∣ was less than 0.02, which was assumed to be the hydraulic system’s accuracy.
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