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Abstract: The planar induction heating possesses more difficulties in industry application compared
with traditional spiral induction coils in mostly heat treatment processes. Numerical approaches are
adopted in the power distribution and temperature prediction during the induction heating process,
which has a relatively low computational efficiency. In this work, an analytical calculation model of
the planar induction heating with magnetic flux concentrator is investigated based on the uniform
moving heating source. In this model, the power density in the surface of the workpiece induced by
coils is calculated and applied into the analytical model of the temperature calculation using a uniform
moving heat source. Planar induction heating tests are conducted under various induction coil
parameters and the corresponding temperature evolution is obtained by the infrared imaging device
NEC R300W2-NNU and the thermocouples. The final surface temperature prediction is compared to
the finite element simulation results and experimental data. The analytical results show a good match
with the finite element simulation and the experimental results, and the errors are in reasonable
range and acceptable. The analytical model can compute the temperature distribution directly and
the computational time is much less than the finite element method. Therefore, the temperature
prediction method in this work has the advantage of less experimental and computational complexity,
which can extend the analytical modeling methodology in induction heating to a broader application.

Keywords: planar induction heating; magnetic flux concentrator; analytical modeling; uniform
moving heat source; simulation

1. Introduction

Induction heating usually is applied as the main heating means in various heat treatment
processes [1,2], for example, induction hardening, tempering, stress relieving. Besides, induction
heating technology also can be used to assistant some other industrial processes, such as crack
detection, depth determination [3], induction heating-assisted compaction [4], etc. In these traditional
induction heating processes, the shapes of the induction coils are mostly spiral, that is, the parts to
be heated are cylindrical parts. Since the electromagnetic field distribution inside the spiral coil is
relatively uniform, the induction heating has the characteristics of fast heating and high efficiency [2].
However, the coil required for the planar induction heating is significantly different from the traditional
spiral coils, in which the magnetic field distribution is difficult to effectively concentrated, the air
impedance of the system loop is too large and the heating temperature is not uniform and difficult
to control accurately [5–7]. The efficiency of the planar induction heating extensively depends on
the effective conversion of the electromagnetic field of the coil and the reasonable matching of the
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induction heating system. As shown in Figure 1, the emergence of special magnetic flux concentrators
has effectively increased the efficiency of the planar induction heating, thus expanding the application
of this heating process [8–10].
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In recent years, in order to apply the induction heating process more effectively, many scholars
have conducted more research on induction heating [11–19], including numerical modeling of
induction heating process and electromagnetic field conversion mechanism analysis. Numerical
approaches are adopted in the power distribution and temperature prediction during induction
heating process [11–15]. Barka N. [11] analyzes the machine parameters on the hardness profile
heated by induction heating through simulation coupling electromagnetic and heat transfer with
finite element methods. Luozzo N.D. [12] uses the finite element method to investigate the heating
stage of a bonding process, especially the temperature evolution in the inner and outer surface
of the steel tubes. Choi J.K. [13] conducts the study on the induction hardening based on the
electromagnetic-thermal finite element simulation, and verifies the hardening depth and hardening
pattern. Khazaal M.H. [14] focuses on the modeling and design of the induction coils in a brazing
process by finite element method. Li F. [10,15] mainly focus on a planar induction heating process with
magnetic flux concentrator, and analyzes the factors influencing the temperature profile and the heating
efficiency during the coupled electro-magnetic-thermal field through the finite element simulation and
experiments. Numerical simulation based on the finite element method made considerable progress
in the induction heating process. However, due to the complexity of the reality physic model, it is
inevitable to require the large computational cost, which will cause inconvenience and difficulty in the
temperature prediction of the whole computational filed during the induction heating.

In addition, analytical approaches are also adapted in the research of various fields. The analytical
approaches have less computational time than finite element simulation and thus have a relatively
high efficiency [16,17]. Computational efficiency also depends on the mathematical complexity of the
analytical model. Ning J. uses the analytical model to investigate the temperature and the cutting force
during the orthogonal cutting process. The analytical modeling of induction heating is rather different
from other manufacturing processes. Some researchers also try to introduce analytical modeling to
analyze the induction heating process. Jankowski T.A. [18] presents a multiple-scale perturbation
method to solve the multi-physics mathematical model of induction heating process in a cylindrical
coil. Streblau M. [19] uses a multi-physics mathematical model to analysis the electromagnetic and
thermal fields in axial symmetric inductor system. However, the computational efficiency and the
precision in the analytical modeling of the induction heating process should be made more progress,
especially in the planar inductor system.

In order to verify the temperature profile, experimental methods usually are used during the
finite element modeling and analytical modeling. Generally, the temperature evolution was acquired
by the infrared imaging device and the thermocouples [10,13]. Although the temperature can be
investigated directly by experimental measurement, the measuring errors still are inevitable, due to
the different methods of thermocouples embedding, the accuracy of the measurement equipment and
other uncontrollable factors.

In this work, authors present an analytical model to calculate the temperature profile during
the planar induction heating process with magnetic flux concentrator. The moving heating source
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in the analytical model is treated as a uniform moving heat source. The power density of induced
eddy current in the heated workpiece can be obtained based on Maxwell equations, which govern
the general induction heating. Then the transient temperature evolution will be calculated using
the mathematical equations defined as a rectangle moving heating source with the uniform power.
The final temperature obtained from the analytical computation is compared with the finite element
simulation and the experimental results. Compared with the finite element simulation methods
and the former experimental results, the proposed analytical model of temperature calculation in
this work has the advantage of less mathematical complexity, experimental complexity and high
computational efficiency.

2. Methodology and Validation

2.1. Analytical Modeling of the Temperature Calculation

The schematic flow of the variables in temperature evolution is shown in Figure 2. The induction
heating process is governed by the Maxwell equations, as shown in Equations (1)–(4) [2]. I and f are
the current intensity and frequency of the induction coil. The induced power density of eddy current
in the surface qv is calculated by the Maxwell equations and then the power PL applied as input
parameters in the temperature calculation can be obtained. The calculation model of the temperature
is used as a uniform moving heating source, which will be illustrated as follow.
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∇× H(I, f , µMFC) = J +
∂D
∂t

, (1)

∇× E = −∂B
∂t

, (2)

∇ · D = ρ, (3)

∇ · B = 0, (4)

where, J is the source current density generated by the current intensity I of the induction coil. H is the
magnetic field strength, E is the electric field strength, D and B are the electric flux density and the
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magnetic flux density, respectively. µMFC is the magnetic permeability of the heated material, ρ is the
charge density.

Through the further derivation, the electro-magnetic equations in the isotropic dielectric material
in this planar moving induction heating are governed by the Equations (5) and (6) [2,10].

∇2 A− µε
∂2 A
∂t2 = −µJ, (5)

∇2 ϕ− µε
∂2 ϕ

∂t2 = −ρ

ε
, (6)

where, A is the magnetic vector potential and ϕ is the electric scalar potential, which are related with
the magnetic flux density B (B = ∇× A) and the electrical field strength E (E = −∇φ− ∂A

∂t ). µ is the
relative permeability and ε is the relative dielectric of the heated material.

The heat source power induced in the surface of the workpiece PL can be calculated from the
Equation (7) [2].

PL = qV ·V =
i2

σ
V =

1
2

ω2σA2V, (7)

where, σ is the electrical conductivity of the heated material, ω is the angular frequency of the current
of the induction coil related with the f. V is the volume of the computational field.

The uniform heating source is usually defined as a rectangle shape, and the heat source flux
density at the point (x, y, z) is given by the Equation (8) [20]. PL is the induced eddy power in the
surface of the workpiece and can be calculated by Equation (7).

•
q(x, y, z) =

PL
4ahbhch

, (8)

where, ah, bh, ch are the length along the axis x, y, z, respectively.
The transient temperature increase dTt′ at the time t, and the heat source flux density at time t

′

can be calculated by Equation (9) [20].

dTt′ =
•
qdt′

ρc(4πκ(t−t′))
3
2
× exp

(
− (x−x′)2+(y−y′)2+(z−z′)2

4κ(t−t′)

)
=
∫ ah
−ah

∫ bh
−bh

∫ ch
−ch

PL
4ahbhch

· dt′

ρc(4πκ(t−t′))
3
2
× exp

(
− (x−x′)2+(y−y′)2+(z−z′)2

4κ(t−t′)

)
dz′dy′dx′

(9)

Where, ρ is the density and c is the capacity of the heated material. κ is the thermal diffusivity,
κ = λ/ρc, λ is the conductivity.

In Equation (9), the integrals can be derived as follows:

∫ ah
−ah

exp
(
− (x−x′)2

4κ(t−t′)

)
dx′

= −
√

4κπ(t−t′)
2

(
Er f

(
x−ah√
4κ(t−t′)

)
− Er f

(
x+ah√
4κ(t−t′)

))
,

(10)

where, the function Erf(x) is error function defined as follow [21]:

Er f (x) =
2√
π

∫ x

0
e−ξ2

dξ (11)

The function Erfh(x) is defined as equation (12) [20].

Er f h
(

x, ah, t′
)
= Erfh

(
x
ah

, Fos

)
=

(
Er f

(
x− ah√
4κ(t− t′)

)
− Er f

(
x + ah√
4κ(t− t′)

))
, (12)
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where, Fos is the Fourier number which is related with the length ah and the time t-t′.
By substituting the Equations (10)–(12) in Equation (9), the final temperature formula can be

derived as follow:

dTt′ = T − T0

= − PL
25ρcahbhch

∫ t
0 Er f h(x + v(t− t′), ah, t′)

×Er f h(y, bh, t′)Er f h(z, ch, t′)dt′

= − 1′
25η

∫ t
0 Er f h

(
x+v(t−t′)

ah
, Foah

)
Er f h

(
y
bh

, Fobh

)
Er f h

(
z
ch

, Foch

)
dt′
t ,

(13)

where, v is the moving velocity of the heated material, η is the heating efficiency and is defined as [20]:

η =
ρcahbhch(Tm − T0)

PLt
, (14)

where, T0 is the ambient temperature, Tm is the melt temperature of the heated material Inconel 718.

2.2. Finite Element Model

In former research works, the numerical analysis of the stationary [10] and the moving [15]
induction heating process is respectively conducted. The distribution of the coupled electric-magnetic
field variables and the generation of the eddy power density are calculated by the finite element
methods. The induction coils are made of a rectangular copper tube with low electrical resistivity and
designed as planar shapes with the section of a hollow rectangle, as shown in Figure 3. The magnetic
flux concentrator (MFC) is machined with the same groove shape as the coil and cover it for gathering
the magnetic flux into the surface of the workpiece and improve the heating efficiency [10,15]. Figure 4
is the schematic system of the planar moving induction heating. Figure 5 is the corresponding finite
element simulation model. The surrounding air and the compressed air is also magnetic computation
field. Due to the large temperature gradient in the calculation, the surface and the sub-surface field in
the workpiece should be meshed more finer, in which the structured grids with 0.1 mm thickness are
adopted and there are 15 rectangle elements within 3 mm depth below the surface.
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2.3. Material Parameters of the Heated Material

The heated material in this work is Nickel-based super-alloy Inconel 718, which is machined into
square blocks with smooth surfaces Ra 3.2 µm and the residual stress relief is conducted.

The magnetic permeability of Inconel 718 is linearly and approximately equal to 1 when the
heating temperature is below its Curie temperature. Figures 6–8 show the measured resistivity, specific
heat capacity and thermal conductivity as a function of temperature for the material being heated.
It can be seen that the conductivity and the specific heat of the heated material are nearly linear,
while the electrical resistivity has a nonlinearity change with temperature. In addition, the convective
heat transfer coefficient in the surface is set as α = 20 W/(m2·K) [22]. The radiation coefficient in the
surface is set as Cs = 0.5 W/(m2·K4) [10].
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2.4. Experimental Measurement

The planar moving induction heating experimental platform is established, as shown in Figure 9.
The workpiece Inconel 718 is fixed on a moving platform apparatus and the velocity can be precisely
controlled. The experimental system mainly includes induction heating power supply, frequency
conversion voltage regulator, strengthening sensor (including concentrator MPB-MFC) and cooling
device. The cooling device can circulate water inside the coil to prevent overheating of the coil and
reduce energy consumption during heating. The validation experimental parameters are presented
in Table 1, which mainly contains the MFC model, heating distance d, current intensity I, current
frequency f and the moving velocity v. The heating distance d is set as 1 mm because the distance
between the induction coil and the workpiece should be no more than 2 mm in order to concentrate the
magnetic flux more efficiently. The frequency conversion regulator can realize the frequency regulation
range from 10 kHz to 50 kHz, and the intensity of the induction coil current is controlled from 0 to
1200 A. The levels of I and f are listed in Table 1 according to the former induction heating experimental
analysis [10,15]. As to the velocity of the workpiece, it is verified that the velocity should be controlled
at a low level, due to its negative effect on the induction heating [10].

In addition, the experimental system includes a temperature acquisition and analysis device.
The surface temperature of the workpiece is obtained by infrared thermal imager (NEC R300W2-NNU).
At the same time, the temperature history of the workpiece surface and internal points is measured
by the semi-natural artificial thermocouple, as shown in Figure 9. By simultaneously measuring the
surface temperature with a thermocouple and an infrared camera, the thermal imager can be calibrated,
and the accuracy of the temperature measurement can be improved.
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Table 1. Experimental parameters of the planar moving induction heating.

Parameters Value

MFC model Fluxtrol A
Heating Distance d/mm 1

I/A 430, 485, 767, 890
f /kHz 26.7, 37.6

v/mms−1 3, 5, 8, 10

3. Results and Discussion

The power density profile in the surface during the planar stationary induction heating process is
shown in Figure 10 while the input coil parameters are set as I = 430 A, f = 37.6 kHz [10]. Figures 11
and 12 are the power density evolutions with the various current intensity and current frequency,
respectively. It is obvious and verified that the power density in the workpiece extremely depends on
the current intensity and the frequency. Then the moving velocity is applied in the simulation model,
the workpiece will be heated continuously.
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The power density then is extracted and used to calculate the final temperature distribution.
Figure 13 presents the temperature profile obtained from the analytical model in this paper, in which
the input parameters are respectively set as I = 430 A, f = 37.6 kHz, v = 5 mm/s. Under these input
parameters, the power density in the surface is 14e10 W/m3 and the corresponding power applied
into the analytical model is 70 W. Figure 14 is the temperature profile calculated by the finite element
simulation model. It is shown that in the analytical calculation the most of heat is concentrated on
the surface of the workpiece and the maximum temperature is in the surface, due to the skin effect in
the induction heating, which is similar with the finite element simulation result. The temperature is
mainly distributed in the surface and sub-surface region of the workpiece, due to the skin effect in
the induction heating process, which is commonly realized and validated [2,10]. In order to verify the
analytical computational results, several finite element simulations and the corresponding validation
experiments are conducted under various input parameters of the planar moving induction heating
process. The experimental parameters and the corresponding results are listed in Table 2. Figure 15
shows the maximum temperature in the workpiece while the velocity is 5 mm/s, while Figure 16
shows the Maximum temperature in the workpiece while the velocity is 8 mm/s. Figure 17 shows
the Maximum temperature in the workpiece at four different velocity levels. It is observed that
the maximum temperature by analytical calculation is higher than the simulation results and the
experimental results. The main reason causing this situation is that the simulation model has taken
into consideration of the surface heat transfer effect while the analytical model ignores it, which varies
with the temperature [10,22]. Moreover, the experimental data has a measurement error, due to the
emissivity parameter of the infrared thermal imager, which is only set as a constant and in fact varies
with the temperature.

In addition, it is investigated that the higher input current intensity I of the coil, the higher
temperature is acquired (Test 1 vs. Test 3, Test 2 vs. Test 4), which has a good agreement with the
finite element simulation results and the experiment results [10]. Similarly, the heated temperature
rises as the frequency f increases at the same level as the current intensity I (Test 1 vs. Test 2, Test 3 vs.
Test 4). The same conclusion can be drawn when the moving velocity becomes 8 mm/s, as shown in
Figure 17. By compared with Figures 15 and 16, it is found that temperature obtained will experience
a drop while the moving velocity changes from 5 mm/s to 8 mm/s. It is proved in Figure 17 that
the moving velocity also plays a vital rule in the temperature control in the planar induction heating
process, besides the current intensity I and the current frequency f [15].

The relative errors of the analytical calculation and the finite element simulation are listed in
Table 2. It is clear shown that the relative errors between the analytical maximum temperature and the
corresponding experimental data are lower than 25%, especially there is a low error level when the
temperature is higher than 200 ◦C. This result is matched with the fact that the convective heat transfer
coefficient decreases with the temperature rises in reality and the difference in the analytical model will
drop when the heated temperature rises than 200 ◦C [22]. It is also true in Table 2 that the finite element
simulation possesses a lower relative error than the analytical calculation in this work. However,
the computation efficiency of the analytical model is much higher than the finite element simulation
model. The calculation time of the analytical model in this work just needs several seconds while the
finite element simulation model requires much more time, which is verified in other applications [17].
Thus considering the indispensable simplification during the analytical modeling and the difficult
precise calculation and control of the induction coil during the planar moving induction experiment
system, it is believable that the relative errors of these validation experiments listed in Table 2 are
considered to be in an acceptable level. Thus it is believed that the established analytical model in this
work can be used to predict the temperature evolution in the heated workpiece by the planar moving
induction heating. Moreover, in order to obtain more accurate results, the next research work needs to
consider the heat exchange coefficient in the analytical modeling.



Appl. Sci. 2019, 9, 1445 10 of 13

Appl. Sci. 2018, 8, x FOR PEER REVIEW  10 of 13 

work just needs several seconds while the finite element simulation model requires much more 
time, which is verified in other applications [17]. Thus considering the indispensable simplification 
during the analytical modeling and the difficult precise calculation and control of the induction coil 
during the planar moving induction experiment system, it is believable that the relative errors of 
these validation experiments listed in Table 2 are considered to be in an acceptable level. Thus it is 
believed that the established analytical model in this work can be used to predict the temperature 
evolution in the heated workpiece by the planar moving induction heating. Moreover, in order to 
obtain more accurate results, the next research work needs to consider the heat exchange coefficient 
in the analytical modeling. 

 
Figure 13. Temperature profile calculated by the analytical method. 

 

Figure 14. Temperature profile calculated by finite element simulation. 

 
Figure 15. Maximum temperature validation in the surface of the workpiece (v = 5 mm/s). 

Figure 13. Temperature profile calculated by the analytical method.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  10 of 13 

work just needs several seconds while the finite element simulation model requires much more 
time, which is verified in other applications [17]. Thus considering the indispensable simplification 
during the analytical modeling and the difficult precise calculation and control of the induction coil 
during the planar moving induction experiment system, it is believable that the relative errors of 
these validation experiments listed in Table 2 are considered to be in an acceptable level. Thus it is 
believed that the established analytical model in this work can be used to predict the temperature 
evolution in the heated workpiece by the planar moving induction heating. Moreover, in order to 
obtain more accurate results, the next research work needs to consider the heat exchange coefficient 
in the analytical modeling. 

 
Figure 13. Temperature profile calculated by the analytical method. 

 

Figure 14. Temperature profile calculated by finite element simulation. 

 
Figure 15. Maximum temperature validation in the surface of the workpiece (v = 5 mm/s). 

Figure 14. Temperature profile calculated by finite element simulation.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  10 of 13 

work just needs several seconds while the finite element simulation model requires much more 
time, which is verified in other applications [17]. Thus considering the indispensable simplification 
during the analytical modeling and the difficult precise calculation and control of the induction coil 
during the planar moving induction experiment system, it is believable that the relative errors of 
these validation experiments listed in Table 2 are considered to be in an acceptable level. Thus it is 
believed that the established analytical model in this work can be used to predict the temperature 
evolution in the heated workpiece by the planar moving induction heating. Moreover, in order to 
obtain more accurate results, the next research work needs to consider the heat exchange coefficient 
in the analytical modeling. 

 
Figure 13. Temperature profile calculated by the analytical method. 

 

Figure 14. Temperature profile calculated by finite element simulation. 

 
Figure 15. Maximum temperature validation in the surface of the workpiece (v = 5 mm/s). Figure 15. Maximum temperature validation in the surface of the workpiece (v = 5 mm/s).Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 13 

 
Figure 16. Maximum temperature validation in the surface of the workpiece (v = 8 mm/s). 

 

Figure 17. Maximum temperature validation in the surface of the workpiece (I = 430 A,f = 37.6 kHz, 
Test 9: v = 3 mm/s; Test 2: v = 5 mm/s; Test 6: v = 8 mm/s; Test 10: v = 10 mm/s). 

Table 2. Maximum temperature and the relative errors with experimental results. 

Test I/A f/kHz Velocity 
/mms-1 

Analytical 
Predicted 

/°C 

FE 
Simulati

on 
/°C 

Experimental 
Results 

/°C 

FE 
Simulation 

Error/% 

Analytical 
Error/% 

1 485 26.7 5 100.10 85.79 80.91 6.53 23.7 
2 430 37.6 5 227.20 213.28 195.7 8.98 16.1 
3 767 26.7 5 284.97 272.32 258.54 5.33 10.2 
4 890 37.6 5 357.18 346.43 331.27 4.58 7.82 
5 485 26.7 8 97.94 78.92 73.72 7.06 24.7 
6 430 37.6 8 221.39 201.08 189.96 5.85 16.5 
7 767 26.7 8 277.50 258.98 240.22 7.81 15.5 
8 890 37.6 8 347.64 330.34 317.23 4.13 9.59 
9 430 37.6 3 240.93 220.62 210.71 4.7 14.3 
10 430 37.6 10 187.65 169.98 155.57 9.26 20.6 

5. Conclusions 

This paper introduces an analytical model to predict the temperature profile in a planar moving 
induction heating process. The power density of induced eddy current qv in the heated workpiece 
can be obtained based on Maxwell equations, which govern the general induction heating. Then the 
transient temperature evolution will be calculated using the mathematical equations defined as a 
rectangle moving heating source with the uniform power PL. In addition, several finite element 

Figure 16. Maximum temperature validation in the surface of the workpiece (v = 8 mm/s).



Appl. Sci. 2019, 9, 1445 11 of 13

Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 13 

 
Figure 16. Maximum temperature validation in the surface of the workpiece (v = 8 mm/s). 

 

Figure 17. Maximum temperature validation in the surface of the workpiece (I = 430 A,f = 37.6 kHz, 
Test 9: v = 3 mm/s; Test 2: v = 5 mm/s; Test 6: v = 8 mm/s; Test 10: v = 10 mm/s). 

Table 2. Maximum temperature and the relative errors with experimental results. 

Test I/A f/kHz Velocity 
/mms-1 

Analytical 
Predicted 

/°C 

FE 
Simulati

on 
/°C 

Experimental 
Results 

/°C 

FE 
Simulation 

Error/% 

Analytical 
Error/% 

1 485 26.7 5 100.10 85.79 80.91 6.53 23.7 
2 430 37.6 5 227.20 213.28 195.7 8.98 16.1 
3 767 26.7 5 284.97 272.32 258.54 5.33 10.2 
4 890 37.6 5 357.18 346.43 331.27 4.58 7.82 
5 485 26.7 8 97.94 78.92 73.72 7.06 24.7 
6 430 37.6 8 221.39 201.08 189.96 5.85 16.5 
7 767 26.7 8 277.50 258.98 240.22 7.81 15.5 
8 890 37.6 8 347.64 330.34 317.23 4.13 9.59 
9 430 37.6 3 240.93 220.62 210.71 4.7 14.3 
10 430 37.6 10 187.65 169.98 155.57 9.26 20.6 

5. Conclusions 

This paper introduces an analytical model to predict the temperature profile in a planar moving 
induction heating process. The power density of induced eddy current qv in the heated workpiece 
can be obtained based on Maxwell equations, which govern the general induction heating. Then the 
transient temperature evolution will be calculated using the mathematical equations defined as a 
rectangle moving heating source with the uniform power PL. In addition, several finite element 

Figure 17. Maximum temperature validation in the surface of the workpiece (I = 430 A, f = 37.6 kHz,
Test 9: v = 3 mm/s; Test 2: v = 5 mm/s; Test 6: v = 8 mm/s; Test 10: v = 10 mm/s).

Table 2. Maximum temperature and the relative errors with experimental results.

Test I/A f /kHz Velocity/
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Error/%
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Error/%

1 485 26.7 5 100.10 85.79 80.91 6.53 23.7
2 430 37.6 5 227.20 213.28 195.7 8.98 16.1
3 767 26.7 5 284.97 272.32 258.54 5.33 10.2
4 890 37.6 5 357.18 346.43 331.27 4.58 7.82
5 485 26.7 8 97.94 78.92 73.72 7.06 24.7
6 430 37.6 8 221.39 201.08 189.96 5.85 16.5
7 767 26.7 8 277.50 258.98 240.22 7.81 15.5
8 890 37.6 8 347.64 330.34 317.23 4.13 9.59
9 430 37.6 3 240.93 220.62 210.71 4.7 14.3

10 430 37.6 10 187.65 169.98 155.57 9.26 20.6

4. Conclusions

This paper introduces an analytical model to predict the temperature profile in a planar moving
induction heating process. The power density of induced eddy current qv in the heated workpiece
can be obtained based on Maxwell equations, which govern the general induction heating. Then the
transient temperature evolution will be calculated using the mathematical equations defined as a
rectangle moving heating source with the uniform power PL. In addition, several finite element
simulations and experiments are conducted to validate the analytical calculation model, and the
following conclusions can be achieved:

(1) The temperature profile calculated by the analytical model introduced in this work is similar
to the finite element simulation results. By comparing with finite element simulation and the
corresponding validation experiments, the maximum temperature in the workpiece is verified while
the velocity is 5 mm/s and 8 mm/s, respectively. It is noticed that the maximum temperature by
analytical calculation is higher than the simulation results and the experimental results, due to the
fact that the simulation model has taken into consideration of the surface heat transfer effect while the
analytical model ignores it. It is presented that the relative errors between the analytical maximum
temperature and the corresponding experimental data are lower than 25%, and there is a low error
level when the temperature is higher than 200, which is matched with the fact that the convective heat
transfer coefficient decreases with the temperature rises in reality.

(2) The higher input current intensity I of the coil, the higher temperature is acquired, which has
a good agreement with the finite element simulation results and the experiment results. Similarly,
the heated temperature rises as the frequency f increases at the same level of I. It is also proved that
the moving velocity v influences the temperature in the planar induction heating process, thus it is
essentially to treat v as an important parameter in the temperature precisely prediction.
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(3) The computation efficiency of the analytical model in this work is higher than the finite element
simulation model. Taking into consideration of the indispensable simplification during the analytical
modeling and the difficulties in precisely calculation and controlling of the induction coil during the
planar moving induction experiment system, it is believed that the established analytical model in this
work can be used to predict the temperature evolution in the heated workpiece by the planar moving
induction heating. In addition, in order to acquire more precise temperature prediction, it is essential
that the convection heat transfer should be considered in the following research work, especially in the
lower heated temperature level.
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