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Abstract: A simple and effective approach to semiconductor laser linewidth narrowing via mutual
injection locking is proposed and demonstrated in both short and long delay regimes. A theoretical
analysis is presented to investigate the linewidth behavior of semiconductor lasers under mutual
injection locking. Experimental demonstrations in short and long delay regimes are implemented
by integrated devices and a fiber link system, respectively. Locking condition and dependence of
laser linewidth on coupling parameters in both regimes are studied, confirming mutual injection
locking as a practical method for linewidth narrowing. For the short-delayed integrated lasers, a
linewidth narrowing factor of 13 is demonstrated and sub-MHz linewidth is achieved, while for the
long-delayed lasers coupled by fiber link, the intrinsic linewidth is reduced to sub-100 Hz.
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1. Introduction

Semiconductor lasers feature small foot-prints, low power consumption, high flexibility and
compatibility with photonic integration circuits, hence they are widely used in various optical systems.
Lasers suffer from frequency noise, which results from spontaneous emission and carrier noise, and
the spectrum purity always casts a performance limit on different applications. In coherent optical
communications with high-order modulation format, laser phase noise disperses the constellation
and causes bit error [1–3]. In atomic sensing, laser frequency noise converts to amplitude noise after
interaction with atom gas, limiting the stability or sensitivity of atomic sensors [4,5]. In addition,
the spectrum width also determines the resolution of spectroscopy detection [6], sensitivity of fiber
sensing [7] and the dynamic range of lidar [8], to name just a few. Therefore, it is quite worthwhile to
devote efforts to narrowing laser linewidth for further improvement of system performance.

The linewidth of semiconductor lasers is typically in the range of a few MHz. Optical injection
provides a new degree of freedom for improving the performance of semiconductor lasers. In the case
of unidirectional injection locking, the linewidth of the slave laser follows that of the master [9], so
that a narrow linewidth master laser is required to improve the spectral purity of the slave laser [10].
As for self-injection or external cavity, a fraction of light emitted from the gain material is fed back
through a low loss external cavity, hence the laser linewidth is reduced by increased photon lifetime.
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Recent research centers on the realization techniques of self-injection, such as low loss Si [11,12] or
Si3N4 [13,14] ring resonator, fiber components based feedback circuit [15,16], assembled confocal
Fabry–Perot (FP) cavity [17] and CaF2 cavity [18]. These structures rely on high Q cavity or multiple
mode selection components.

In this work, we propose and demonstrate a simple but effective approach to linewidth narrowing
based on mutual injection locking (MIL) of semiconductor lasers. Previous research on mutual
coupling mainly focuses on the nonlinear dynamics [19,20], which can be exploited to realize random
sequences generation [20], chaos synchronization [21,22], modulation characteristics enhancement [23]
and photonic microwave generation [24]. In addition, it is also used for coherent combining [25,26]
and lasing threshold reduction [27]. However, to the best of our knowledge, there have been relatively
few reports on laser linewidth or frequency noise characteristics upon mutual injection locking.

A systemic study on the linewidth narrowing mechanism, locking condition and frequency noise
reduction is carried out in the investigation. Modified mutual coupling rate equations incorporating
Langevin noise sources are presented to analyze the mechanisms for frequency noise reduction of
mutually injection locked lasers. Previous experiments indicate that laser behaves differently for short
delay (τd < 1/f RO) and long delay (τd > 1/f RO) [19,20,28], where τd is the coupling delay time and
f RO represents the relaxation oscillation frequency. Therefore, experiments are carried out in both
regimes: monolithically integrated mutually coupled Distributed Feedback(DFB) lasers are employed
to investigate frequency noise performance in short delay regimes, while a fiber link based system is
adopted for the study of long delay regimes. Locking condition and the dependence of laser frequency
noise on system parameters are investigated in both regimes, confirming mutual injection locking as a
practical method for linewidth narrowing.

This paper is organized as follows. In Section 2, a theoretical model is presented to clarify the
frequency noise suppression in mutually injection locked lasers. In Section 3, locking conditions
and linewidth narrowing in mutually injection locked lasers with short delay are studied through
integrated devices. The behavior of mutually coupled lasers with long delay are investigated in
Section 4, with an emphasis on the differences between the two regimes. The special features of
the proposed approach are then discussed in comparison with classical techniques such as external
cavity lasers.

2. Theoretical Analysis

Figure 1 depicts a generalized mutual injection locking configuration between two semiconductor
lasers. The optical path can be realized on chip, in free-space or through fiber link. The light emitted
from one laser is injected into the other with a coupling strength κc and a coupling phase ϕp as
well as a delay τd. Hence, the optical field of each laser is distorted not only by its internal noise
sources, but by the noise of the other lasers via optical coupling as well. To investigate the linewidth
characteristics of mutually coupled lasers, coupled single mode rate equations are adopted to analyze
their frequency noise.
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Figure 1. Generalized configuration of mutually coupled semiconductor lasers.

Different from commonly used Lang–Kobayashi equations [29–31], laser field E(t) is replaced
by E(t) = S1/2exp(iϕ) to facilitate the introduction of Langevin noise. The modified equations are
given in Equation (1), where S, N and ϕ represent photon number, carrier number and optical phase,
respectively. Both lasers are assumed to share the same parameters listed in Table 1, together with the
definition of each symbol. Fn, Fs and Fp are Langevin forces driving the equations of carrier, photon
and phase. Due to carrier-photon interaction in a semiconductor laser, Fn and Fs are correlated and
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cannot be described by white Gaussian noise directly. A noise generation technique as described in [32]
is employed and the laser-parameter related noise sources are given by Equation (2).

dN1,2(t)
dt = I1,2

q − N1,2(t)
τn

− g(N1,2(t)− N0)S1,2(t) + Fn1,2(t)
dS1,2(t)

dt = g(N1,2(t)− N0)S1,2(t)−
S1,2(t)

τp
+

βN1,2(t)
τn

+ . . .

2κc
√

S2,1(t − τd)S1,2(t) cos
(

ϕ2,1(t − τd)− ϕp − ϕ1,2(t)
)
+ Fs1,2(t)

dϕ1,2(t)
dt = α

2 g
(

N1,2(t)− N1,2
)
+ κc

√
S2,1(t−τd)

S1,2(t)
sin
(

ϕ2,1(t − τd)− ϕp − ϕ1,2(t)
)
+ δ1,2(t) + Fp1,2(t),

(1)

Fn(t) =
√

2N(t)
τn∆t x1(t)−

√
2βN(t)S(t)

τn∆t x2(t)

Fs(t) =
√

2βN(t)S(t)
τn∆t x2(t)

Fp(t) =
√

βN(t)
2τnS(t)∆t x3(t).

(2)

Here x1(t), x2(t) and x3(t) are independent random sequences taken from standard normalized
distribution and ∆t is the simulation step.

Table 1. Laser parameters.

Symbol Value Meaning

I 4 Ith Injection current (Ith: threshold current)
τp 7.15 ps Photon lifetime
τn 0.33 ns Carrier lifetime
q 1.602 × 10−19 C Electronic charge
g 1.13 × 104/s Differential gain

N0 8.2 × 106 Transparent carrier number
α 4 Linewidth enhancement factor
N 2.05 × 107 Averaged carrier number at free running state
β 3.54 × 10−5 Fraction of spontaneous emission coupled into lasing mode
δ - Frequency detuning referred to free-running DFB#1

Laser frequency noise and spectrum characteristics under mutual injection locking is investigated
numerically, and three mechanisms are found for linewidth narrowing.

The first one is photon number increase due to optical injection. Figure 2a shows the variation of
photon number, carrier number and lasing frequency of both lasers when the detuning is swept from
−15 to 15 GHz. In the range of −8~7 GHz, carrier and photon number in both lasers are stable and
their lasing frequency are the same, indicating stable mutual injection locking. In our simulations, the
two coupled lasers are assumed to be identical.

The strong bidirectional optical injection leads to an increase in photon number within the laser
cavity by 1.7 dB at zero detuning. As a result, the carrier density is reduced by 17.2% via enhanced
stimulated emission. The refractive index of active region decreases due to the carrier plasma effect and
lasing frequency is redshifted by 10.9 GHz. Laser frequency noise results from spontaneous emission
and carrier fluctuation. For free-running lasers, the carrier number is clamped at the threshold level
and the laser linewidth is in reverse proportion to the photon number. Optical injection increases
coherent photon number in the laser cavity at a given current, thus improving coherence of the laser.
Nevertheless, the increase of optical power is rather limited, and is estimated to result in a linewidth
narrowing factor of only 1.48 according to our simulation.

The second mechanism is mutual phase-locking between the coupled lasers. The behavior of
mutually coupled lasers is determined by (κc,ϕp,δ), and the simulation results in Figure 2a depict the
laser state under different detuning δ. Mutual injection locking occurs when δ is around zero, with
both lasers lasing at the same frequency f MIL. It is important to notice that the variation of f MIL is small
when δ fluctuates. According to the third differential equation in Equation (1), the frequency noise
of the lasers is mathematically equivalent to the fluctuation of δ. Hence the frequency noise of the
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mutually injection locked lasers is reduced as compared with the free-running case. Figure 2b shows
that df MIL/dδ <1 around zero detuning, indicating a suppression of frequency fluctuation.
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between injection locked lasing frequency fMIL and detuning δ; (c) negative feedback diagram.

A negative feedback mechanism for frequency noise reduction exists in the mutually injection
locked system, as depicted in Figure 2c. This results from the interplay between the photon and carrier,
and their influence on the phase and frequency of the mutually coupled lasers. Supposing that the
frequency of Laser#2 f 2 is increased slightly due to frequency noise, the resulting variation in laser
phase leads to a decrease in photon number S1 and an increase in S2 through the cosine terms in
Equation (1), which corresponds to the interference between the injected and the generated optical
fields. The variation of photon number then induces an increase in N1 and a decrease in N2 through
the stimulated emission process. As a result of the carrier plasma effect, the laser refractive index
varies as described by the linewidth enhancement factor term, resulting in a decrease in f 2 and an
increase in f 1. Hence, a negative feedback is formed and the variation of mutually injection locking
frequency f MIL is suppressed.

To provide a quantitative demonstration of the above analysis, Figure 3a depicts the improvement
of power spectrum density (PSD) of frequency modulation (FM) noise and optical spectrum under
mutual injection locking. Compared with the free-running state, injection locked lasers exhibit reduced
frequency noise and narrowed linewidth. A special feature of the mutual coupling configuration
is the coupling delay. According to Figure 3b, the linewidth is narrowed from 2.25 MHz in the
free-running state to 460 and 206 kHz under injection locking state with 5 and 30 ps delay, respectively,
indicating that longer τd helps enhance frequency noise suppression. For convenience of comparison,
the simulated optical spectra in Figure 3b are shifted to the same central frequency and the same
central power of 0 dB.
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Figure 3. (a) Calculated power spectrum density (PSD) of frequency modulation (FM) noise of mutually
injection locked lasers with different delay time; (b) calculated optical spectrum of mutually injection
locked lasers with different delay time. (κc = 2 × 1010/s, δ = 0).

Next, we consider the situation that delay time is increased to τd = 5 ns, an order of magnitude
greater than 1/fRO. The frequency noise suppression is also valid for long delayed mutual coupling,
although locking is found to be attainable only for weak coupling. The frequency noise in the time
domain is calculated in Figure 4. For free-running lasers with 0.3 GHz detuning, the lasing frequency
of either laser fluctuates with a standard deviation of 1.92 × 106 Hz. When injection locking occurs,
the standard deviation reduces to 1.36 × 105 Hz, corresponding to a frequency noise suppression by a
factor of 14.1.
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Figure 4. Frequency fluctuation in the time domain of free-running and mutually injection locked
lasers with long delay. (τd = 5 ns, κc = 5 × 108/s, ϕp = 0, δ = 0.3 GHz).

Unlike the case of unidirectional injection locking, where the frequency noise of the slave laser
can be improved by adopting a low frequency noise master laser [9,10], frequency noise reduction
via mutual injection locking does not require the adoption of a low frequency noise laser, making it
attractive for practical applications.

The third mechanism is the enhanced photon lifetime due to expanded cavity length. In the
mutual coupling structure, a fraction of the photons are stored in the coupling path, which should
be taken into consideration. When stable state is obtained at strong coupling, the entire system can
be regarded as a compound resonator. Here, λ/4 shifted DFB lasers are employed to evaluate the
change of photon lifetime. We extend the methods for photon lifetime determination in standard DFB
lasers [33,34] to this compound cavity. Firstly, field distribution is derived by transfer matrix method.
Then photon lifetime is derived by calculating the energy stored in the system and energy dissipated
due to absorption and facet output. Typical field distribution of system with 8L coupling length is
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shown in Figure 5b. The equivalent mirror loss is αm = 44.6 cm−1 for a λ/4-shifted DFB with a typical
coupling coefficient of κL = 1.5 (L = 500 µm), while the typical absorption loss is αi = 10 cm−1 [35].
As the coupling path is lengthened, equivalent mirror loss is reduced due to the expanded cavity
length. Consequently, photon lifetime is increased as shown in Figure 5a. However, this trend slows
down when αm is comparable to αi. The limit of photon lifetime is 10.8 ps determined by αi, five times
longer than that of a solitary laser. Employing the low loss coupling region may reduce the laser
linewidth further.
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3. Experimental Study in Short Delay Regime

3.1. Devices

In order to investigate the linewidth characteristics of mutually locked lasers with short delay,
monolithically integrated coupled DFB lasers were fabricated on identical epitaxial layers. Details
about epitaxial structure are described in [36]. As is shown in Figure 6, the integrated device consists of
two 500 µm grating regions and a grating-less coupling ridge waveguide. Electrical isolation between
electrodes is formed by removing the top InGaAs ohmic contact layer via dry etching. Light from
the device is coupled into a lensed fiber at cleaved facet end. In order to avoid reflection from the
measurement system, an isolator is employed at the output fiber. On-chip mutually coupled lasers
with 0.5, 2, 4 and 6 mm coupling regions are fabricated. The longest delay time is 64 ps, while fRO of
the DFB laser is about 7 GHz, indicating these devices belong to the short delay regime.
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3.2. Locking Condition

Stable single-mode lasing is a prerequisite to linewidth narrowing, so the locking condition of
coupled DFB lasers is studied first. A series of dynamic behaviors emerge from the devices, including
mutual injection locking, four wave mixing, periodic oscillation and chaos. The optical spectrum
and intensity noise spectrum of these states are plotted in Figure 7a respectively. When the detuning
between the sub-DFB lasers are relatively large, four wave mixing occurs. Increasing the coupling
strength often results in chaos. Reducing the detuning towards zero will lead to periodic oscillation or
mutual injection locking state.
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Figure 7. Laser behavior in a 3 mm long integrated device. (a) Optical spectra and intensity noise
spectra of mutually injection locked state (MIL), four wave mixing (F), periodic oscillation with
relaxation oscillation frequency (R) and chaos (C); (b) left part: evolution of measured optical spectrum
with coupling current; right part: simulated lasing frequency of sub-DFB lasers with different coupling
phases ϕp.

It was found that the key parameter governing the laser behavior near zero detuning is the
coupling phase. The lasing spectrum was recorded under different coupling currents to observe the
evolution route. The corresponding map is plotted in the left part of Figure 7b. As the injection current
in the coupling region increases from 59 to 82 mA, the laser spectrum evolves from single mode
to multiple peaks spaced by relaxation oscillation frequency, corresponding to periodic oscillation.
Increasing the coupling current further, the stable state occurs periodically with about a 12 mA interval.
This phenomenon is also simulated in the right part of Figure 7b based on Equation (1). In the
simulation, the variation of laser frequency is recorded as the coupling phase is swept from 0 to 2π.
Stable lasing of both sub-DFB lasers with the same frequency occurs for the coupling phase close to
integer number of π. Since the output power is only augmented by 0.7 dB as the coupling current
varies, it is concluded that the coupling current is mainly responsible for phase adjustment and the
12 mA period recorded in our experiment may correspond to one π-shift of the coupling phase. Details
for achieving mutual injection locking state is described in Appendix A.

3.3. Linewidth Narrowing

The measured linewidth of the 3 mm device under different coupling current is shown in Figure 8a.
Injection current at the coupling region adjusts the coupling phase and compensates waveguide
absorption simultaneously. When the current is below 50 mA, the absorption loss in the coupling
region is too severe that coupling between the two sub-DFB lasers is negligible. Upon increasing the
current further, stable mutual injection locking state is established at the discrete coupling current with
appropriate coupling phase. Narrowed linewidth together with enhanced output power are obtained
with increased coupling strength. The corresponding self-heterodyne signal obtained with 20-km-long
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fiber is shown in Figure 8b, revealing that the linewidth is narrowed by a factor of 8.2 at a coupling
current of 103 mA. This technique is interesting since the linewidth performance can be improved
without changing the epitaxial structure.
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The heating effect of the coupling current induces a red shift of the gain spectrum, causing
mismatch between the gain peak and the Bragg wavelength of the grating. Consequently, as is shown
in the inset of Figure 8a, FP modes due to cleaved facets emerge at high currents, preventing an increase
of the coupling current further. However, this proves that strong coupling between the two sub-DFB
occurs. In addition, threshold reduction by 5 mA is also observed in the experiment due to optical
injection, which also indicates that lasers are upon strong coupling. Future work on heat dissipation
or optimization on epitaxial layers may improve device performance further. The linewidth-power
product is reduced from 52.9 to 8.9 MHz·mW, indicating that the linewidth narrowing is more than a
result of increased output power.

As was analyzed in Section 2, longer coupling region can lead to better noise suppression.
This prediction is confirmed in Figure 8c. More pronounced linewidth suppression tends to be achieved
in lasers with longer coupling regions except for the device with 7 mm cavity length. The reason for
the decreased linewidth narrowing factor of the 7 mm device is attributed to heat effect: It requires the
highest current to compensate the absorption in the coupling region and suffers from heat induced gain
peak shift most severely. The largest linewidth narrowing factor of ~13 is achieved in the 5 mm-long
device, and the delayed self-heterodyne signals are shown in the inset of Figure 8c. Laser linewidth is
narrowed to 0.74 MHz with 6.1 mW output power, corresponding to a linewidth-power product of
4.5 MHz·mW.

3.4. Suppression of 1/f Noise

In the measurement above, the delayed self-heterodyne signal exhibits a Lorentzian line shape,
indicating that the frequency noise is dominated by white noise. In the experiment, 1/f frequency
noise arises in some devices probably induced by fabrication process [37]. As a result, the line shape
transfers to Gaussian [38]. Nevertheless, it allows us to study the flicker noise characteristics in the
proposed device structure. Gaussian linewidth and corresponding noise coefficient were extracted
at different coupling currents, and the trend is shown in Figure 9. Flicker frequency noise is also
suppressed in coupled DFB lasers and reduces with higher coupling strength. Since 1/f frequency
noise results from surface or interface recombination [37] and is supposed to be independent of output
power [39], mutual injection locking provides a new method to suppress 1/f noise.
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3.5. Numerical Analysis of the Experiment

Since integrated coupled lasers with short delay can maintain injection locking under strong
coupling, which is beneficial to linewidth reduction, linewidth narrowing should be attributed to
the combination of the three mechanisms analyzed in Section 2. Figure 10 shows the simulation of
the device with the 4 mm coupling region which exhibits the best linewidth narrowing performance
in Figure 8c. In Section 2, the mutually coupled system is treated in two perspectives. Firstly, the
system is regarded as a compound cavity under strong coupling. The enhanced photon lifetime
estimated in Figure 5a leads to the linewidth reduction from 8.2 to 2.9 MHz in Figure 10. Secondly,
the system is regarded as two coupled oscillators governed by coupled rate equations. The linewidth
is suppressed from 8.2 MHz to 640 kHz considering the mutual phase locking and increased photon
number. The order of linewidth narrowing factor agrees with the experiment. In combination with
these effects, the integrated device should exhibit better performance. However, the injection current
at the coupling region to compensate absorption generates extra noise source. Future research by
adopting passive waveguide as the coupling region may achieve better linewidth performance.
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4. Experimental Study in Long Delay Regime

4.1. Experimental System

The experimental setup to investigate frequency noise of mutually coupled lasers with long delay
is shown in Figure 11. Two DFB lasers without internal isolators in their packages are employed to
implement mutual optical injection. They have similar characteristics and are mutually coupled through
two 1 × 2 couplers (50/50), driven by ILX Lightwave 39425 current/TEC modules with 0.01 mA and
0.1 ◦C resolution. All fibers in the link, including laser pigtails, are polarization-maintaining fiber (PMF)
to ensure polarization matching between the two lasers. Coupling strength is adjusted by an electrically
controlled Micro-Electro-Mechanical System (MEMS) variable optical attenuator (VOA). An extra fiber
cable is inserted before DFB#2 to adjust the coupling length. Frequency noise of the lasers are measured at
Ports #1 and #2, where isolators (ISOs) are employed to prevent reflection from the measurement system.
The delay time of the fiber link is on the order of ~10 ns, much longer than the time scale 1/fRO.
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4.3. Linewidth Narrowing 

Linewidth narrowing of the mutually injection locked DFB lasers is confirmed by both local 
oscillator (LO) heterodyne and delayed self-heterodyne. For LO heterodyne in Figure 13a, the 
recorded beat signal is the convolution between the LO laser (TSL-210V, Santec, Komaki, Japan) and 

Figure 11. Experimental setup for mutually coupled lasers in the long delay regime.

4.2. Locking Condition

The measured laser dynamics and locking map are plotted in Figure 12. The current of DFB#2 is
fixed at 25 mA while the current of DFB#1 is adjusted to tune the frequency detuning between the two
lasers at free running state. There are two differences between locking conditions in short and long
delay regimes. First, the locking condition is insensitive to coupling phase. Coupling phase in the fiber
link varies slowly over time since the refractive index and length changes with ambient temperature
fluctuation. However, mutual injection locking remains, and a continuous locking region is mapped.
Secondly, mutual injection locking only occurs at weak coupling in the long delay regime. In the
high attenuation region, the locking range broadens as the coupling strength increases. For coupling
strength higher than -37 dB, the locked region breaks into two narrow branches and then disappears.
The process to establish mutual injection locking state is described in Appendix A in detail.
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4.3. Linewidth Narrowing

Linewidth narrowing of the mutually injection locked DFB lasers is confirmed by both local
oscillator (LO) heterodyne and delayed self-heterodyne. For LO heterodyne in Figure 13a, the recorded
beat signal is the convolution between the LO laser (TSL-210V, Santec, Komaki, Japan) and the laser
being tested, and details in spectrum can be resolved due to better resolution than optical spectrum
analyzer. The heterodyne spectra of free-running (FR) DFB lasers exhibit a Lorentzian shape with
megahertz level linewidth. When mutual injection locking is achieved, the LO-heterodyne spectra of
both lasers are narrowed significantly.
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Figure 13. (a) Linewidth narrowing phenomenon measured by the local oscillator (LO)-heterodyne
method; (b) linewidth narrowing phenomenon measured by delayed self-heterodyne method.

The delayed self-heterodyne spectra acquired by electrical spectrum analyzer are plotted in
Figure 13b with 2 km (10 µs) fiber delay line. Compared with the free-running ones, the heterodyne
spectra of injection locked lasers transform to the correlated type and exhibit ultra-high coherence
features: (1) a delta-function-like RF carrier stands out at the central frequency; (2) notches spaced
by 100 kHz emerge on the signal wings, corresponding to the reciprocal of the fiber delay time in the
heterodyne measurement.

4.4. Frequency Noise Reduction

The PSD of FM noise of locked DFB lasers under different coupling strength and length are shown
in Figure 14, obtained by delayed self-heterodyne measurement with 2 km fiber. The peaks at multiples
of 100 kHz (reciprocal of delay time) are artefacts caused by converting the measured RF phase noise
to laser frequency noise [17,40]. A strategy in [41] was employed to partially overcome these artefacts.
The measured PSD of FM noise spectra suffer from 1/f n noise in low frequency range and white
noise dominates above 100 kHz. Increasing the coupling strength leads to reduction of both types of
frequency noises, and two lasers exhibit similar performance. Increasing the coupling length, i.e., the
coupling delay, is also helpful for frequency noise reduction. The lowest white noise achieved in the
system is about S0 = 20 Hz2/Hz, corresponding to an intrinsic linewidth of ∆νint = πS0 = 62.8 Hz.

4.5. Numerical Analysis of the Experiment

In our experiment, the coupling strength is estimated to be only −40 dB. Consequently, photon
number increase and photon lifetime enhancement do not contribute much to linewidth reduction. On the
other hand, the mutual phase-locking mechanism is believed to be responsible for such pronounced
linewidth reduction in a mutually coupled system with weak coupling and long delay. Figure 15 estimates
the linewidth narrowing performance of lasers coupled in the long delay regime by taking mutual
phase-locking mechanism into consideration. The delay time is set as 50 ns which corresponds to the
10-m-long coupling fiber adopted in Figure 14b. The intrinsic linewidth is suppressed from 2.2 MHz in
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free-running state to 103.5 Hz upon mutual injection locking. The simulation matches the improvement of
coherence indicated by self-heterodyne signals shown in Figure 13b and the intrinsic linewidth achieved
in Figure 14b.
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5. Discussion

The proposed linewidth narrowing scheme based on mutual injection locking is a different method
compared with traditional approaches such as self-injection or external cavity lasers. For narrow
linewidth operation, self-injection or external cavity increase the photon lifetime via low loss external
cavity. The lasing mode is a result of multiple mode selection components. For example, in classical
Littrow [42] or Littman [43] configuration, the mode is selected by grating and FP cavity. The Vernier
effect in multiple ring resonators [11–13,16] is also employed to realize single mode selection. However,
stable single-mode lasing state in mutual injection locking is a result of coupling between two
oscillators [30,31], which can lase independently without mutual optical injection. Hence the proposed
approach can be simply implemented by coupling lasers through an optical path. Moreover, mutual
phase-locking in mutual injection locking provides a unique mechanism for linewidth narrowing.
The intrinsic linewidth of lasers mutually coupled by fiber link is in the order of 100 Hz, narrower than
~kHz obtained in fiber-link based self-injection configuration [15,16]. In this work, frequency noise
reduction mechanisms, dependence on coupling parameters and locking conditions are investigated
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theoretically and experimentally, demonstrating mutual injection locking as a simple and practical
method to compress laser linewidth.

Although linewidth narrowing of mutually injection locked lasers is achieved in both short
and long delay regimes, laser behavior shows different rules. The laser in the short delay regime
allows strong coupling and the laser state exhibits a strong dependence on coupling phase. Linewidth
narrowing is attributed to the combined effect of the three mechanisms analyzed in Section 2. While,
stable injection locking only occurs at weak coupling in the long delay regime and it is insensitive to
coupling phase. Mutual phase-locking is considered the main factor for frequency noise suppression.

6. Conclusions

The improvement of linewidth performance of mutually injection locked semiconductor lasers is
investigated, and there have been relatively few reports on this aspect. The locking condition and the
influence of system parameters on frequency noise is studied experimentally in both short and long
delay regimes, demonstrating mutual injection locking as a practical approach for linewidth reduction.
The linewidth performance of mutually injection locked lasers is found to improve with increasing
coupling length and coupling strength. For the short-delayed integrated lasers, a linewidth narrowing
factor of 13 is demonstrated and 0.74 MHz linewidth is achieved, while the intrinsic linewidth is
reduced from megahertz to 62.8 Hz for the long-delayed lasers coupled by fiber link.

Compared with unidirectional injection, laser linewidth is narrowed without the need of a low
frequency noise master laser. In comparison with self-injection or external cavity, the proposed
approach can be realized simply by an optical coupling path. In addition, mutual phasing-locking
provides a special mechanism for linewidth narrowing of mutually coupled lasers. In combination
of advanced integration techniques, the proposed method can be employed for narrow linewidth
semiconductor lasers which have important applications in coherent optical communication, atomic
sensing and microwave photonics.
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Appendix A

In the experiment, lasers are controlled by LDC-3900 equipped with LCM-39425 modules (ILX
Lightwave, Irvine, USA) with 0.01 mA and 0.1 ◦C resolution. Mutual injection locking between DFB
lasers is achieved with near zero detuning.

The current tuning coefficient of monolithically integrated coupled DFB lasers for study of short
delay regime is about 5.1 GHz/mA. Under the weak coupling condition, the integrated device will
operate at F state shown in Figure 7a. The frequency of the beat signal in the intensity noise spectrum
corresponds to the detuning between the sub-DFB lasers. Tuning the current of one laser while
maintaining that of the other so that beat signal move towards 0 Hz will lead to near zero detuning.
Then, the coupling current is increased to adjust coupling strength and coupling phase, and the locking
state will emerge periodically as is shown in Figure 7b. Since the sub-DFB lasers are fabricated on the
same epitaxial wafer, their characteristics are similar, and the mutual injection locking is established at
similar current values.

In the long-delayed experiment based on fiber link, two DFB lasers with similar characteristics
are adopted. Under weak coupling, the laser will stay in F state shown in Figure 12a, where the
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beat signal in intensity spectrum corresponds to the detuning between the two lasers. The process
to achieve zero detuning is similar to that for integrated devices. The current tuning coefficient is
about 1.75 GHz/mA for lasers used in long-delay experiments. The coupling strength is adjusted by
a voltage-controlled MEMS variable optical attenuator. Increase the coupling strength will lead to
broader locking bandwidth and the corresponding locking map is depicted in Figure 12b.

The output light is fed into a power meter, optical spectrum analyzer, electrical spectrum analyzer
connected to photodetector, delayed self-heterodyne system to measure the output power, optical
spectrum, intensity noise spectrum, linewidth or frequency noise, respectively.
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