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Abstract: The past few decades have witnessed considerable progress of conducting polymer-based
organic thermoelectric materials due to their significant advantages over the traditional inorganic
materials. The nanostructure engineering and performance investigation of these conducting
polymers for thermoelectric applications have received considerable interest but have not been
well documented. This review gives an outline of the synthesis of various one-dimensional (1D)
structured conducting polymers as well as the strategies for hybridization with other nanomaterials
or polymers. The thermoelectric performance enhancement of these materials in association with
the unique morphologies and structures are discussed. Finally, perspectives and suggestions for
the future research based on these interesting nanostructuring methodologies for improvement of
thermoelectric materials are also presented.
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1. Introduction

Development of eco-friendly and sustainable approaches for energy generation is a major global
challenge faced by the world today. Thermoelectric materials that allow generation of electricity from
heat and vice versa to provide a green and economic way for power generation and refrigeration have
drawn tremendous interest from both industrial and scientific communities over the centuries [1–5].
The energy conversion efficiency of a thermoelectric material can be evaluated by the temperature
difference and a unitless figure of merit (ZT), which is defined as S2σT/κ, where S (V K −1) is
Seebeck coefficient, σ (S m −1) is electrical conductivity, κ (W m −1 K −1) is thermal conductivity
and T (K) is absolute temperature. The power factor (PF) is the product of S2 and σ, which is in
general used to determine the thermoelectric performance of a thermoelectric material. The traditional
high performing thermoelectric materials are mainly inorganic semiconductors or semimetals which
possess moderate electrical conductivity and high Seebeck coefficient [6,7]. However, most of these
materials are facing significant challenges in large- scale manufacturing and practical utilization due
to their heavy weight, high cost, scarcity, toxicity, poor processability, brittleness and non-flexibility,
particularly for applications in wearable sensors and electronic devices.

Given the limitations of the inorganic thermoelectric materials, the organic counterparts mainly
based on conducting polymers and their nanocomposites, have gained tremendous research interest
and clinched considerable achievements over the past two decades [8–15]. Conducting polymers have
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been considered to be the next promising thermoelectric materials owing to their unique advantages
including low cost, high mechanical flexibility, light weight, low or no toxicity, and intrinsically low
thermal conductivity. In addition, the electronic structures of these organic semiconductors are fairly
tunable via molecular chemistry and doping treatments. Polymer-based thermoelectric materials
have intrinsically low thermal conductivity (0.1–0.5 Wm−1 K−1), and therefore, enhancement in
Seebeck coefficient and electrical conductivity is more important. Currently, the-state-of-art conducting
polymers for thermoelectric applications include poly(3,4-ethylenedioxythiophene) (PEDOT),
polypyrrole (PPy), polyaniline (PANI), polythiophene (PTh) derivatives etc. The thermoelectric
performance of these conducting polymers can be further enhanced through incorporation of various
inorganic nanofillers (such as Te nanowires, Bi2Te3 nanowires, carbon nanotubes (CNTs), graphene,
etc.), which give rise to the improvement in Seebeck coefficient and/or electrical conductivity while
maintaining the low thermal conductivity.

It has been acknowledged that polymer’s properties are highly related to the morphologies
and structures. Nanoscaled conducting polymers, especially those with one-dimensional (1D)
nanostructures (such as polymer nanowires, nanotubes, nanofibers, nanorods, etc.) have their own
special set of advantages over their corresponding bulk materials due to the highly ordered structure,
large surface area and superior carrier transport [9,16–19]. Various methods for synthesizing 1D
conducting polymers have been developed, including hard or soft template-based methods and
template-free methods, such as inverse microemulsion polymerization, electrospinning method,
etc. [20]. To date, significant progress has been achieved in the 1D engineering of conducting polymers
for a wide variety of applications, such as batteries, supercapacitors, sensors, transistors, electrochromic
displays, photovoltaics etc. [21–24]. Unfortunately, the development and performance investigation
of 1D structured conducting polymers and their composites for thermoelectric applications are still
limited so far, compared to the extensive research on the nanostructured inorganic thermoelectric
semiconductors or semimetals [25–31]. In this review, we present the recent examples of the
“bottom-up” preparation of different kinds of 1D conducting polymers for thermoelectric applications.
The enhanced properties associated with the unique morphologies, structures, dopants and doping
levels of these materials are also discussed. Following this discussion, we introduce the reported
strategies to construct 1D nanocomposite thermoelectric materials based on these conducting polymers
with further performance improvement. Finally, we will end off with an outlook on the challenges and
future exploration directions for this new class of organic-based thermoelectric materials.

2. D-Conducting Polymers and Their Thermoelectric Properties

Recently, considerable progress has been achieved in the construction of 1D nanostructures
(such as nano/microfibers, nanowires, nanotubes, nanorods, etc.) with polymer-based materials for
thermoelectric applications. In this section, we mainly introduce the synthetic approaches towards
various 1D nanoscaled conducting polymers (including PEDOT, PPy, PANI and PTh derivatives) as
well as their thermoelectric performance enhancement resulted from the unique structures.

2.1. PEDOT

PEDOT is the most widely investigated conducting polymer for thermoelectric application due
to a high electrical conductivity when mixed with the respective additives or dopants, low thermal
conductivity and a relatively large Seebeck coefficient upon appropriate treatment and optimization [21–
23]. Moreover, PEDOT-based materials possess significant advantages, such as material abundance,
superior optical transparency, solution processability, good physical and chemical stability, providing
an opportunity for large-scale fabrication of flexible and printed thermoelectric devices.

In the past few years, the synthesis and investigation of nanostructured PEDOT for different
applications are gaining increasing research interest [32–39]. In 2011, Taggart et al. first
investigated the thermoelectric properties of PEDOT nanowires, which were synthesized by oxidative
electropolymerization of 3,4-ethylenedioxythiophene (EDOT) monomer in aqueous LiClO4 solution
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via a hard template through a lithographically patterned nanowire electrodeposition (LPNE) approach
with non-dependent control over the thickness and width of the nanowire (Figure 1) [34]. These
PEDOT nanowire arrays (40–90 nm thick, 150–580 nm wide and 200 µm long) exhibit much higher
Seebeck coefficient (−122 µV K−1 at 310 K) compared to bulk PEDOT films (−57 µV K−1 at 310 K).
Moreover, the electron mobility of the prepared PEDOT nanowires is two times higher than that of
the films, which is in accordance with the better electrical conductivity of the nanowires (40.5 S cm−1

versus 18.3 S cm−1 (films) at 310 K). The greatly enhanced thermoelectric properties are attributed
to the orderly arrangement of the PEDOT chains and the crystalline structure of PEDOT within
the nanowires.
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images (Figure 2a-b). The C-PEDOT nanowires, which consist of much longer polymer chains and 
higher molecular weights, exhibit an extremely high electrical conductivity of 540 S cm-1 and an 
enhanced Seebeck coefficient, which is 2.6 times that of the PEDOT: poly(styrenesulfonate) (PSS) 
films. After hydrazine treatment, the 3D network can reach an optimum power factor of 35.8 μW m-
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Figure 1. (a) Schematic synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT) nanowire arrays using
the lithographically patterned nanowire electrodeposition (LPNE) process. (b) Bright field optical
micrograph of PEDOT nanowire pattered on glass. (c) Atomic force microscope (AFM) image of an
array of 40 × 200 nm PEDOT nanowires on glass. A height versus distance trace across these nanowires
is shown at bottom. (d) Measured Seebeck coefficient versus nanowire height for PEDOT nanowires
and films at 310 K. (e) Electron mobilities versus the film or nanowire height, showing also (horizontal
line) the mean mobility value. Readapted with permission from American Chemical Society [34].

Using the hard-template method, Zhang et al. recently reported a three-dimensional (3D) assembly
of PEDOT nanowires synthesized by electrochemical polymerization in 3D-alumina templates [39]. A
free-standing network was attained after removal of the template. Two types of PEDOT nanowires
(C-PEDOT and T-PEDOT) were generated by using different oxidants, FeCl3 and Fe(Tos)3, respectively.
These two types of nanowires possess a similar average diameter of 12 nm, but with different lengths
(0.5–5 µm for C-PEDOT and 0.2–0.7 nm for T-PEDOT), as shown in the TEM images (Figure 2a,b). The
C-PEDOT nanowires, which consist of much longer polymer chains and higher molecular weights,
exhibit an extremely high electrical conductivity of 540 S cm−1 and an enhanced Seebeck coefficient,
which is 2.6 times that of the PEDOT: poly(styrenesulfonate) (PSS) films. After hydrazine treatment,
the 3D network can reach an optimum power factor of 35.8 µW m−1 K−2, which is the highest ever
reported amongst all of the reported 1D conducing polymers based films.
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Figure 2. Transmission electron microscopy (TEM) images of (a) T-PEDOT nanowires and (b) C-PEDOT
nanowires. Scanning electron microscopy (SEM) images of (c) T-PEDOT nanowires and (d) C-PEDOT
nanowire-based films. The scale bar is 500 nm for all images. (e) S, σ, and (f) power factor of C-PEDOT
nanowire-based film with respect to the hydrazine treatment duration. Readapted with permission
from Elsevier Ltd. [39].

In 2015, Hu et al. reported the thermoelectric performance of nanostructured PEDOT with various
morphologies (Figure 3a–e) by chemical oxidation polymerization in reverse microemulsions with
sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as the surfactant [35]. Tuning the quantity of oxidizing
agent added and the rate of polymerization gave rise to PEDOT with different nanostructures, which
were proved to have great effects on the thermoelectric properties (Figure 3f–h). The improvement
in thermoelectric properties in terms of electrical conductivity, Seebeck coefficient and power factor
follows the order of bulk PEDOT < globular nanoparticle < nanorod < nanotube < nanofiber. The
PEDOT nanofibers exhibit the best electrical conductivity of 71.4 S cm−1 and Seebeck coefficient
of 48.0 µV K−1, which is considerably higher than those of the bulk powder samples (0.032 S cm−1;
S = 10.7 µV K−1). The mechanism study shows the oxidation/doping level of PEDOT, the carrier
concentration and mobility and the orderly arrangement of the polymer chains all have close
relationship with the thermoelectric performance enhancement of the PEDOT nanostructures. Later
in 2017, the same research group also reported the relation of thermoelectric performance with
post-treatment conditions (acid treatment with H2SO4 and chemical reduction using Na2SO3) for
PEDOT nanorods synthesized by reverse microemulsion polymerization. Through varying the acid
concentration and reduction treatment time, the intensity of doping and oxidation, the carrier type
transition and orderliness of polymer chain interaction is adjustable. Therefore, the thermoelectric
properties of PEDOT nanorods can be modified easily and efficiently [40].
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Figure 3. SEM images of (a) bulk PEDOT power; (b) globular nanoparticles; (c) nanorods or ellipsoidal
nanoparticles; (d) nanotubes; (e) nanofibers; (f) Seebeck coefficient and (g) power factor of bulk PEDOT
and PEDOT nanostructures; (h) Carrier mobilities and carrier concentrations of bulk PEDOT and
PEDOT nanostructures. Readapted with permission from The Royal Society of Chemistry [35].

Flexible fiber-based thermoelectric generators which are lightweight and 3D deformable are
receiving increasing research interest for applications in wearable energy harvesting and mobile
electronic systems [41]. Very recently, Liu et al. fabricated a p-type PEDOT:PSS fiber that is highly
conductive with via a gelation methodology with the assistance of sulfuric acid in a capillary at an
elevated temperature of 90 ◦C (Figure 4a) [42]. The hydrogel was then released to a solvent bath to yield
a free-standing fiber with the average diameter of 142.5 ± 42.2 µm and a length of more than 20 cm
(Figure 4b–d). Post-treatment of the fibers with ethylene glycol or dimethyl sulfoxide successfully
improved the electrical conductivity by three times (up to 172.5 S cm−1) with only 5% decrease
in Seebeck coefficient (14.8 µV K−1), giving rise to an optimum power factor of 4.77 µW m−1 K−2.
Furthermore, a p−n-type thermoelectric generator was assembled with five p-n-type units where the
p-type materials were made of PEDOT:PSS hydrogel fibers while n-type material is made of CNT fibers
(Figure 4e,f). This fiber-based device showed a satisfactory output voltage of 20.7 mV and a power
density of 481.2 µW cm−2 when the difference in temperature between the two junctions is ∼60 K.
This is a good example of using organic thermoelectric fibers to harness energy via a wearable device.
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regions present that PEDOT:PSS is able (green) and unable (gray) to gel with various H2SO4 contents.
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and (d) after ethylene glycol post-treatment. (e) Schematic diagram for thermoelectric device and (f)
the output voltage and power density of five couples of legs at various temperature differences ranging
from 5 to 60 K. Readapted with permission from American Chemical Society [42].

2.2. Poly (3-alkylthiophene)

Polythiophene and its derivatives are regarded as the most promising conducting polymers for
thermoelectric applications [43–45]. Coupled on the good environmental stability of the polymer,
a significant overlap among the π electron orbitals delocalized throughout the polymer chains and
highly orientated semicrystalline structure give rise to a high carrier transport [46]. Among the
various polythiophenes, poly(3-alkylthiophene) (P3AT) is a noteworthy family which is extensively
investigated for their electrical transport mechanisms, processing methods and device applications in
solar cells, sensors, optoelectronics and so on [44,47–50]. A variety of 1D nanostructured materials
based on P3AT have been prepared by different kinds of approaches. It has been reported that
continuous long nanofibers from P3AT can be produced by electrospinning method, [24,51,52] while the
shorter P3AT nanofibers are mostly formed via self-assembly in solution with good crystallinity owing
to strong interactions along their longitudinal axis [53–56]. Other approaches, such as vapor-assisted
imprinting [57], electrochemical synthesis [58,59] and solution casting method [60,61] using sacrificial
templates have also been employed to prepare P3AT nanowires or nanotubes for diverse applications.

Samitsu et al. developed high-aspect-ratio P3AT nanofibers by the Whisker method utilizing
anisole as a solvent [46]. The formation and properties of the fibers largely depend on the length
of the alkyl chain and molecular weight of the polymer. In a typical experiment, a P3AT polymer
is well dissolved in anisole under heating and stirring. Then, during a quick cooling process to
room temperature, nanofibers can grow in the solution. Using the Whisker method, Endrodi et
al. prepared poly(3-hexylthiophene) (P3HT) nanofibers (50–60 nm in width and several microns in
length), which further self-assembled to form networks via drop casting and subsequent doping by
silver perchlorate to adjust the level of oxidation (Figure 5a–d) [62]. The nanonet structure exhibits
a ZT value (0.0026) that is six times greater than its bulk polymer counterpart, owing to the highly
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regularly spaced, crystalline supramolecular structure, the 1D nanofiber morphology and the close
electrical contact between each nanofibers inside the nanonet structure. Hiura et al. also prepared
P3HT nanofiber mats with high crystallinity using the similar method (Figure 5e,f) [63]. They found
the thermal conductivity of the nanofiber mat was two times lower than the non-fibrous P3HT polymer
despite having comparable electrical conductivity, which is due to presence of a more efficient electron
transport route and a large void fraction in the fibrous mats.
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2.3. PPy

PPy is amongst the family of conducting polymers that is widely used in broad applications such
as anti-electrostatic coatings, biosensors, solid electrolytic capacitors, polymer batteries, etc. [64–66].
It possesses a wide variety of advantages such as simple synthetic methods, commendable electrical
conductivity, low thermal conductivity, good environmental stability and low toxicity, and proved to
be a potential thermoelectric material to yield great thermoelectric properties [66–70]. In 2014, Wu et al.
first reported the fabrication of free-standing PPy nanotube films for thermoelectric applications [71].
Two kinds of PPy nanotubes (Ppy-1 and Ppy-2) were prepared via similar self-degraded template
methods which involves the oxidation of pyrrole monomers in the presence of methyl orange as
the soft templates. The as-prepared PPy nanotube suspensions were dried in petri dishes to afford
free-standing flexible films through self-assembly (Figure 6a,b). As shown in the SEM and TEM
images (Figure 6c–f), PPy-2 nanotubes exhibit longer length and smaller diameters (~40 nm), leading
to higher electrical conductivity and Seebeck coefficient at different temperatures (Figure 6g,h). At
310 K, the PPy-2 films exhibit a power factor of 0.31 µW m−1 K−2 and a ZT value of 5.71 × 10−4. The
ZTmax of PPy-2 film can reach 7.84 × 10−4 at 370 K, which is triple that of PPy-1 film. The developed
free-standing PPy nanotube films can be applied to fabricate flexible thermoelectric devices.

In 2018, Du et al. successfully prepared PPy of different texture and topography (nanoparticles,
nanotubes and nanowires) with or without various surfactants (methyl orange (MO), cetyltrimethyl
ammonium bromide (CTAB)) and using different oxidants (ammonium peroxydisulfate (APS), FeCl3)
through a chemical oxidative polymerization approach (Figure 7) [72]. The effects of different
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morphologies on their thermoelectric properties have been studied, and PPy nanowires with a diameter
of 30–60 nm were found to exhibit the highest electrical conductivity and Seebeck coefficient, leading
to an optimal power factor of 0.3 µW m−1 K−2 at 380 K. Using the similar approach, Liang et al. also
studied the controlled synthesis of 1D nanostructured PPy with various morphologies (straight wires,
curly wires, necklace-like structure, etc.) by adjusting the experimental conditions, including type of
oxidizing agent, concentration of oxidizing agent, duration of polymerization and the solvent used for
the reaction mixture [73]. It was found that the electrical conductivity and power factor were more
easily affected than the Seebeck coefficient, by the morphology of PPy.
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2.4. PANI

PANI is another important conducting polymer due to its low cost, good stability, simple synthetic
method and adjustable electronic properties for a wide range of applications [74–78]. In order to
enhance the transport properties, various protonic acids (such as H2SO4, HCl, HClO4, polyacrylic acid,
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sulfosalicylic acid, p-toluenesulfonic, etc.) have been used as dopants for PANI and the conductivities
are greatly influenced by the doping level and dopants. In 2010, Sun et al. prepared β-naphthalene
sulfonic acid (β-NSA) doped PANI nanotubes using a template-free method through oxidation
polymerization of aniline monomer using APS as the oxidizing agent with β-NSA as dopant and
soft template [79]. The length of the tubes ranges from 5 to 8 µm with an average diameter of 200
nm (Figure 8a,b). The β-NSA doped PANI without nanostructure was also synthesized and used as
reference to study the thermoelectric properties (Figure 8c,d). Different doping levels were investigated,
and the PANI nanotubes synthesized with an aniline/NSA ratio of 4:1 exhibit an optimum Seebeck
coefficient of 212.4 µV K−1 at 300 K, which is greater than the reference sample by seven folds.
Additionally, electrical conductivity increased by almost two folds from 0.0045 to 0.0077 S cm−1, while
thermal conductivity decreased from 0.29 to 0.21 W m−1 K−1. The PANI nanotubes structures are
strongly twisted and entangled, thereby increasing the phonon scattering at the boundary during heat
transfer. As a consequence, the phonons mean free path significantly decreases then nanostructures
are introduced into the system.
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Figure 8. (a,b) SEM images of PANI-NSA nanotubes. (c) Electrical conductivities (�) and Seebeck
coefficients (∆) of PANI nanotubes with different doping ratio. (d) Thermal conductivities (�) and ZT
value (∆) of PANI nanotubes changed with the doping ratio. Readapted with permission from Elsevier
B.V. [79].

In 2014, Wu et al. also reported the synthesis and thermoelectric performance study of PANI
nanowires or nanorods doped with different acids (Figure 9) [80]. The 1D nanostructured PANI was
synthesized using the soft template method with APS as oxidizing agent, CTAB as soft template and
different acids (HCl, acetic acid and p-toluenesulfonic (p-TSA)) as dopants. The effects of doping
agents and doping levels on the thermoelectric properties were systematically studied. The p-TSA was
found to be the best dopant between the three acids as the bulky p-toluenesulfonic anions helps to
orientate the polymer chains better. Also with the same doping concentration, p-TSA-doped nanowires
with reduced diameters and more consistent nanostructures (70 nm in diameter and 1–2 m in length)
produced a higher Seebeck coefficient and lower thermal conductivity compared to p-TSA-doped
nanorods (150 nm in diameter and 0.2 to 1 m in length), which is due to the improved charge carrier
mobility as a result of more ordered arrangement of the polymer chains.
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room temperature. (c) The temperature (T) dependence of figure-of-merit ZT of different acid doped
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3. Strategies to form 1D Conducting Polymer Nanocomposite Thermoelectric Materials

3.1. In Situ Polymerization of Conducting Polymers on 1D Nanofillers

Currently, surface coating of conducting polymers via in situ polymerization on inorganic or
carbon nanomaterials is the most commonly used strategy to fabricate composite thermoelectric
materials. To attain high thermoelectric performance, it is essential to construct the coating polymer
with ordered orientation and extended chain conformation, which can reduce the energy needed for
inter-chain and intra-chain hopping, offering improved carrier mobility of the polymer. The in situ
polymerization method can make monomer molecules polymerize and extend in a systematic mode on
the surface of the nanofillers as a result of the interfacial interactions (conjugation, hydrogen-bonding,
van der Waals forces, etc.) between polymer and nanofillers. Moreover, the thickness of the polymer
coating can be easily altered by varying the weight ratios of the monomers to nanofillers. A series
of 1D nanocomposite materials with enhanced thermoelectric performance have been successfully
developed, such as PEDOT/Te nanowires [81–83], PEDOT/CNTs [84,85], PANI/Bi2Te3 nanowires [86],
PANI/CNTs [87–94], PANI/ZnO nanorods [95], PPy/CNTs [96–98], etc.

To obtain highly aligned polymer chains at molecular level, Wang et al. prepared PANI/CNT
composite nanofibers by in situ polymerization combined with electrospinning process [87]. As shown
in Figure 10b, PANI was coated on multi-walled CNTs via in situ polymerization of aniline using APS
as oxidant. The prepared composite powders were then re-dispersed in chloroform and subjected to
electrospinning using rotating drum collector to generate aligned nanofibers with diameters around
150–200 nm, which were finally pressed into compacted pellets for thermoelectric performance
measurement. Electrospun fibers from directly mixed CNTs and PANI composite (DM-CNT/PANI)
were also prepared as a comparison. It was found highly ordered polymer chains were grown on
the CNTs via in situ polymerization as a result of strong conjugation interactions between PANI and
CNTs. Furthermore, during the electrospinning process, the high voltage electrical field is also effective
for aligning both CNTs and PANI polymer chains due to their anisotropic electric dipole moment.
As shown in the SEM and TEM images (Figure 10c,d), all the nanotubes were evenly enclosed by
PANI and oriented along the fiber axis in the CNT/PANI samples. The DM-CNT/PANI fibers have a
similar structure but less homogeneity due to the existence of isolated PANI particles and bare parts
of PANI coating layer. The CNT/PANI composite fibers were found to with significantly greater
electrical conductivity and power factor (75% improvement compared to DM-CNT/PANI samples) in
the polymer chain oriented direction.
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to free-standing films of different size and thickness (20–150 mm). With a CNT: Py ratio of 60 wt% 
and aqueous ethanol as solvent, the nanocomposite films exhibit a remarkably high thermoelectric 
performance. The electrical conductivity, Seebeck coefficient and power factor can reach up to 399 ± 
14 S cm-1, 22.2 ± 0.1 μV K-1 and 19.7 ± 0.8 μW m-1K-2, respectively. Furthermore, the reported composite 
films exhibit excellent mechanical stability upon various deformations. As shown in Figure 11c-e, no 
obvious reduction is observed with thermoelectric properties after bending for as many as 1000 times 
and the performance maintained after being stretched to a strain of 2.6%, demonstrating great 
promise of this thermoelectric material to be applied in wearable devices for energy harvesting. 

Figure 10. Schematic representations of the formation mechanism of DM-CNT/PANI (a) and
CNT/PANI (b) nanofibers. The enlarged part shows the highly ordered arrangement of the PANI
backbone chains on the surface of the CNTs. SEM images of the fiber mats of DM-CNT/PANI (40 wt%)
(c) and CNT/PANI (40 wt%) (d). The inserts are the TEM images of a single fiber. Arrows denote the
alignment direction of fibers. Readapted with permission from The Royal Society of Chemistry [87].

Flexible, stretchable and mechanically stable thermoelectric materials are most promising for
next-generation wearable electronic devices [99]. In 2016, Liang et al. reported the facile preparation of
a super flexible and mechanically stretchable thermoelectric films with tunable thickness via in situ
polymerization of PPy on single-walled CNTs (SWCNTs) followed by a vacuum filtration process
(Figure 11a,b) [96]. The CNTs were fully exfoliated by using sodium dodecyl sulfate (SDS) in water
with or without ethanol, and then pyrrole monomers were added and polymerized on the surface
of CNTs using iron sulfate as oxidant. The thickness of the PPy coating layers are easily altered by
tuning the SWCNT: Py mass ratios. After vacuum filtration, these composite fibers can self-assemble
to free-standing films of different size and thickness (20–150 mm). With a CNT: Py ratio of 60 wt%
and aqueous ethanol as solvent, the nanocomposite films exhibit a remarkably high thermoelectric
performance. The electrical conductivity, Seebeck coefficient and power factor can reach up to 399 ±
14 S cm−1, 22.2 ± 0.1 µV K−1 and 19.7 ± 0.8 µW m−1 K−2, respectively. Furthermore, the reported
composite films exhibit excellent mechanical stability upon various deformations. As shown in
Figure 11c–e, no obvious reduction is observed with thermoelectric properties after bending for
as many as 1000 times and the performance maintained after being stretched to a strain of 2.6%,
demonstrating great promise of this thermoelectric material to be applied in wearable devices for
energy harvesting.
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mixing or in situ polymerization method still cannot effectively prevent agglomeration of the 
nanofillers, especially at high loading levels. Therefore, it poses as great challenge to achieve intimate 
interfacial connections between the conducting polymers and inorganic / carbon nanofillers to avoid 
aggregation and also assist carrier transport without scattering the carriers at the boundary. In 2017, 
An et al. developed a P3HT-based nanocomposite thermoelectric material through chemically 
grafting P3HT onto the surface of double-walled CNTs (DWCNTs) [100]. As shown in Figure 12, 
amino-terminated P3HT (P3HT-NH2) was prepared via a Grignard metathesis polymerization 
process, which is a general methodology for preparing polythiophenes with small molecular weight 
distribution and large regularity. Then P3HT-NH2 was covalently grafted onto DWCNTs through an 
amidation reaction with the acyl moieties on the exterior of the acid-treated DWCNTs. The as-
prepared P3HT grafted DWCNTs (P3HT-g-DWCNT) nanocomposites exhibit excellent dispersibility 
in organic solvents; hence, resulting in smaller aggregate sizes.  

Figure 11. (a) Schematic illustration showing the preparation procedure for the PPy/SWCNT
nanocomposites via a template-directed in situ polymerization approach with water or aqueous
ethanol as reaction medium. (b) SEM image of the composites with a SWCNT: Py ratio of 20 wt%,
prepared in the medium of aqueous ethanol. Inset is a photo of the PPy/SWCNT nanocomposite
thermoelectric film. (c) Bending measurement of the flexible film with a bending radius of 2 mm. (d)
thermoelectric performance of the PPy/SWCNT nanocomposite film (40 wt%, aqueous ethanol) before
and after bending up to 1000 times. (e) Dependence of mechanical stretching on the thermoelectric
performance of the PPy/SWCNT nanocomposite film (40 wt%, aqueous ethanol). Insets are SEM
images showing no cracks after bending or stretching. Readapted with permission from The Royal
Society of Chemistry [96].

3.2. Covalent Grafting of Conducting Polymers on 1D Nanofillers

For preparation of polymer nanocomposite thermoelectric materials, the conventional physical
mixing or in situ polymerization method still cannot effectively prevent agglomeration of the
nanofillers, especially at high loading levels. Therefore, it poses as great challenge to achieve intimate
interfacial connections between the conducting polymers and inorganic/carbon nanofillers to avoid
aggregation and also assist carrier transport without scattering the carriers at the boundary. In
2017, An et al. developed a P3HT-based nanocomposite thermoelectric material through chemically
grafting P3HT onto the surface of double-walled CNTs (DWCNTs) [100]. As shown in Figure 12,
amino-terminated P3HT (P3HT-NH2) was prepared via a Grignard metathesis polymerization process,
which is a general methodology for preparing polythiophenes with small molecular weight distribution
and large regularity. Then P3HT-NH2 was covalently grafted onto DWCNTs through an amidation
reaction with the acyl moieties on the exterior of the acid-treated DWCNTs. The as-prepared
P3HT grafted DWCNTs (P3HT-g-DWCNT) nanocomposites exhibit excellent dispersibility in organic
solvents; hence, resulting in smaller aggregate sizes.
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P3HT-g-DWCNT. (d) Seebeck coefficient (red column), electrical conductivity (blue column), and
corresponding power factor (green column); (e) thermal conductivity, and (f) figure of merit of pristine
DWCNT, P3HT-g-DWCNT, and physically mixed P3HT/DWCNT nanocomposites. Readapted with
permission from Elsevier Ltd. [100].

The thermoelectric performance of the P3HT-g-DWCNT films was investigated in comparison
with the physically mixed P3HT/DWCNT composite and pristine DWCNTs (Figure 12d–f). The
chemically anchored P3HT-g-DWCNT composite films exhibit a greatly improved Seebeck coefficient
of 116. 6 µV K−1, while the P3HT/DWCNT composite by physical blending only yielded a Seebeck
coefficient of 69.2 µV K−1. It is believed that the intimate and large contact interface resulted from
covalent bonding can facilitate the carrier transport by decreasing the carrier scattering at the boundary.
Moreover, due to the reduced diameter of CNT bundles, the P3HT-g-DWCNT composites also
exhibit reduced thermal conductivity. The in-plane ZT value of the P3HT-g-DWCNT films can
reach up to 0.0069, which is about two-fold superior to the pristine DWCNT and the physically mixed
P3HT/DWCNT composites, demonstrating the effectiveness of this approach for fabrication of high
performance thermoelectric nanocomposite materials.

3.3. Self-Assembly of 1D Conducting Polymer with Nanofillers

Very recently, Hu et al. reported a new type of thermoelectric composite film by self-assembly
of PEDOT naonwires with tellurium nanowires (Figure 13) [101]. The PEDOT nanowires (with an
average diameter of 12.2 nm and length of 1.2 µm) were synthesized by oxidation polymerization of
ethylenedioxythiophene (EDOT) monomer using SDS as cylindrical soft template and FeCl3 as oxidant
and further doped with 5% dimethyl sulfoxide to improve the dispensability. The PEDOT nanowire
suspensions were physically mixed with various fractions of Te nanowires (with average diameter
of 40 nm and length of 3 µm) and subjected to vacuum filtering to afford the PEDOT nanowire/Te
nanowire composite films. When Te nanowires were added, the thermoelectric power factor of the
composites improved by ∼40%. When increasing the Te nanowire content from 0 to 95 wt%, the
Seebeck coefficient rose from 20.18 to 28.46 µV K−1, and the electrical conductivity dropped from 541
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to 38.76 S cm−1. The maximum PF of 29.05 µW m−1 K−2 was achieved with 30 wt% Te nanowire
content, which is significantly greater than the respective components (22 µW m−1 K−2 for PEDOT
nanowires, 1.28 µW m−1 K−2 for Te nanowires). The thermoelectric performance enhancement
could be attributed to the large carrier mobility in nanowire composites and proper energy barrier at
polymer/inorganic boundary.
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Figure 13. (a) Schematic illustration of the fabrication process of the Te nanowire/PEDOT nanowire
composite films. (b) Measured thermoelectric properties including S, σ and PF of the composites
relative to the mass fraction of Te nanowires. (c) SEM image of the surface morphology of 70 wt% Te
nanowire/PEDOT nanowire composite films. Readapted with permission from American Chemical
Society [101].

In addition to PEDOT, 1D nanostructured PPy has also been reported to form self-assembled hyrid
themoelectric materials with carbonaceous nanofillers. Xin et al. have prepared free-standing PPy
nanotube/reduced graphene oxide (rGO) composite films with good mechanical strength and flexibility
through vacuum filtration of a blend of GO nanosheets and solution-prepared PPy nanotubes, followed
by hydrogen iodide (HI) reduction (Figure 14a,b) [102]. The PPy naontubes were homogeneously
intercalated into the rGO nanolayers, which effectively prevent the agglomeration of rGO nanosheets
and provide sufficient conducting pathways for charge transfer. The power factor of the PPy/rGO
composite film can reach up to 7.28 µW m−1 K−2 at room temperature, which is 135 times that of the
pure PPy film. Liang et al. also reported self-assembled composite films from PPy nanowires and
SWCNTs (Figure 14c,d) [103]. The PPy nanowires prepared by chemical oxidative polymerization
were physically mixed with CNTs and subjected to vacuum filtration to afford the free-standing hybrid
films. A classic layered structure made up of parallel CNT nanosheets in between PPy nanowires
with a diameter of 55–75 nm was obtained. The hybrid films exhibit outstanding thermoelectric
performance with optimum power factor up to 21.7 ± 0.8 µW m−1 K−2, which outperforms other
PPy-based composites reported thus far.
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Figure 14. (a) Schematic of the synthesis procedure of PPy/rGO hybrid film. (b) Cross-sectional
SEM image of the PPy/rGO hybrid film with a mass ratio of PPy:GO 1:0.6. (c) Schematic illustration
of the preparation process for the PPy-nanowire/SWCNT nanocomposite free-standing films by
solution mixing and subsequent vacuum filtration. (d) SEM image of the S/S-PPy nanowire/SWCNT
composite films with SWCNT:PPy-nanowire mass ratio of 60 wt%. The arrows in blue point to the PPy
nanowires, while the red arrows point toward the SWCNTs. Readapted with permission from Elsevier
Ltd. [102,103].

3.4. Incorporation of 1D Conducting Polymer into Polymer Matrix by Physical Mixing

Besides organic-inorganic hybrid materials, 1D nanostructured conducting polymers can also
be incorporated into polymer matrix to generate polymer/polymer composites. Recently, Zhang
et al. integrated the in situ polymerized PEDOT nanowires into PSS-doped and tosylate-doped
PEDOT hosts via physical mixing to afford a novel free-standing composite thermoelectric films [104].
As revealed in the AFM image, the PEDOT nanowires are homogenouly dispersed in the polymer
matrix (Figure 15a). The best themoelectric performance was achieved with addition of only 0.2 wt%
PEDOT nanowires. The power factor of the hybrids with tosylate-doped PEDOT host can reach a
high of 446.6 µW m−1 K−2 and the corresponding figure of merit can reach 0.44 at room temperature.
Furthermore, these free-standing PEDOT nanowire/PEDOT composite films were employed as p-type
legs for fabrication of a thermoelectric power generator, which delivered a normalized power output
of ∼0.5 mW m−2 at ∆T = 10.1 K. These promising outcomes demonstrate the effectiveness of this new
strategy for the design and preparation of high performance organic thermoelectric materials.
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Figure 15. (a) The AFM image of 1 wt% PEDOT nanowire/PEDOT:PSS nanocomposites showing the
random distribution of PEDOT nanowires in the PEDOT:PSS matrix and percolated networks. (b)
Thermoelectric power factor of PEDOT nanowire/PEDOT:PSS hybrids. (c) Power factors of (from left
to right) the as-prepared 5 vol% DMSO/PEDOT:PSS, nominal 0.2 wt% PEDOT nanowire/PEDOT:PSS
with ethylene glocyl treatment, the as-synthesized PEDOT:Tos, and nominal 0.2 wt% PEDOT
nanowire/PEDOT:Tos nanocomposites. Readapted with permission from The Royal Society of
Chemistry [104].

4. Conclusions and Outlook

Nanostructure engineering of conducting polymers and their composites to realize significant
performance enhancement is an attractive new direction in the thermoelectric materials research,
especially for the development of next-generation flexible and light weight organic thermoelectric
devices, such as wearable self-powered sensors, health monitors, electronic devices, etc. This review
provides an overview of the construction and thermoelectric performance study of various conducting
polymers and polymer nanocomposites with 1D morphology (nanowires, nanotubes, nanorods,
nano-/microfibers, etc.). The thermoelectric properties and preparation methods of these 1D structured
polymers and hybrid materials are summarized in Tables 1 and 2. Compared to their bulk counterparts,
considerable enhancements in both electrical conductivity and Seebeck coefficient have been achieved
with these nanoscaled conducting polymers due to the highly orientated order of the polymer chains
and enhanced carrier mobility within the 1D nanostructrues. Their thermoelectric performance can
be readily tuned and further enhanced by using different kinds of dopants, varying the doping
levels and post-treatment methods. Through hybridization with inorganic/carbonaceous nanofillers
via covalent bonding, in situ polymerization, physical mixing and self-assembly, the obtained 1D
polymer nanocomposite materials with higher power factors can be generated and most of them can be
obtained as free-standing flexible (even stretchable) films, providing great potential for thermoelectric
device fabrication.
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Table 1. Summary of the thermoelectric properties of 1D structured conducting polymers.

1D Polymer Preparation Method σ

(S cm−1)
S

(µV K−1)
PFmax

(µW m−1 K−2)
κ

(W m−1 K−1) ZT Ref

PEDOT nanowires Hard template 43 ± 5 28 ± 2 3.4 – – [33]
PEDOT nanowires Hard template 12 −85 8.7 – – [34]
PEDOT nanofibers Reverse microemulsion 71.4 48 16.4 – – [35]
PEDOT nanowires Hard template + post-treatment 541 20.78 23.4 – – [39]
PEDOT naonrods Reverse microemulsion + post-treatment 16.9 23.3 0.91 – – [40]

PEDOT microfibers Acid gelation + post-treatment 172.5 14.8 4.77 – – [42]
P3HT nanofibers Whisker method + silver doping 18.3 61.1 6.84 0.80 2.6 × 10−3 [62]
P3HT nanofibers Whisker method 12.6 48.8 3.7 0.0708 1.6 × 10−2 [63]
PPy nanotubes Soft template 9.81 17.68 0.31 0.17 5.71 × 10−4 [71]
PPy nanowires Soft template 22.5 11.5 0.3 – – [72]
PPy nanowires Soft template 2.217 10.1 0.023 – – [73]

PANI nanowires Soft template + acid doping 0.0077 212.4 0.035 0.21 4.86 × 10−5 [79]
PANI nanowires Soft template + acid doping 1.24 15 0.028 0.32 2.75 × 10−5 [80]

Table 2. Summary of the thermoelectric properties of 1D conducting polymer nanocomposite materials.

Polymer Composites Preparation Method σ

(S cm−1)
S

(µV K−1)
PFmax

(µW m−1 K−2)
κ

(W m−1 K−1) ZT Ref

PEDOT/CNTs In situ polymerization 586 18 19.00 ± 1.43 – – [84]
PEDOT/CNTs In situ polymerization 15 12 0.229 ± 0.014 – – [85]

PANI/Bi2Te3 nanowires In situ polymerization 12 35 1.57 0.1096 0.0043 [86]
PANI/CNTs In situ polymerization 17 10 0.18 – – [87]

PANI/SWCNTs In situ polymerization 125 40 20 – – [88]
PANI/ZnO nanorods In situ polymerization 28.15 41.55 4.86 0.87 0.0017 [95]

PPy/SWCNTs In situ polymerization 399 ± 14 22.2 ± 0.1 19.7 ± 0.8 – – [96]
P3HT/DWCNTs Covalent grafting 115 35 46 2.0 0.0069 [100]

Te/PEDOT nanowires Self-assembly 500 24 29.05 – – [101]
PPy nanotubes/rGO Self-assembly 80 28 7.28 – – [102]

PPy nanowires/CNTs Self-assembly 300 27 21.7 – [103]
PEDOT nanowires/PEDOT Physical mixing 1270 59.3 446.6 0.26 0.44 [104]
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Future breakthroughs in this exciting new area may reside in the molecular design and preparation
of novel monomers or polymers and the incorporation of other functional inorganic nanofillers. In
spite of the significant performance enhancement achieved with these 1D materials, the in-depth
mechanism understanding of the structure-property relationships and interfacial interactions in the
composites are still needed for future design and engineering of high performance polymer-based
thermoelectric materials and devices.
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