Supporting Information ## Rotation of Liquid Metal Droplets Solely Driven by the Action of Magnetic Fields Jian Shu ¹, Shi-Yang Tang ^{2*}, Sizepeng Zhao ¹, Zhihua Feng ¹, Haoyao Chen ³, Xiangpeng Li ^{4,*}, Weihua Li ², Shiwu Zhang ^{1,*} - ¹ CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China; <u>jianshu@mail.ustc.edu.cn</u> (J. S.); <u>zszp894345865@mail.ustc.edu.cn</u> (S. Z.); <u>fff@ustc.edu.cn</u> (Z. F.) - ² School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Australia; weihuali@uow.edu.au (W. L.) - ³ School of Mechanical Engineering and Automation, State Key Laboratory of Robotics and System, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China; hychen5@hit.edu.cn (H. C.) - ⁴ College of Mechanical and Electrical Engineering, Soochow University, Suzhou, China; - * Correspondence: swzhang@ustc.edu.cn (S. Z.); shiyang@uow.edu.au (S.-Y. T.); licool@suda.edu.cn (X. L.) Keywords: liquid metal; self-rotation; mixer; Lorentz force; EGaIn ## Supporting Information S1: Self-rotation of EGaIn droplets in different diameter tubes In order to investigate the mechanism of the self-rotational speed partially decreasing as the droplet volume increases, we repeated the experiment using a larger diameter tube (diameter: 10 mm). As shown in Figure S1, at the beginning, the self-rotational speed of the droplet increases with the increase of the droplet volume, which is consistent with the performance in the 8 mm diameter tube. However, when the volume of EGaIn droplets is larger than 0.08 mL, the rotational speed decreases a little with the volume increase and eventually remains stable. Compared with the 8 mm diameter tube, the 10 mm tube has a larger threshold of 0.08 mL (the threshold for the 8 mm diameter tube is ~0.06 mL). These demonstrate that the diameter of the tube affects the self-rotational speed; that is to say, the friction between the droplets and the sidewall of the tube might have a negative influence on the self-rotational speed. Figure S1. Plots of self-rotational speed vs. sizes of droplets. Video S1: Self-rotation of liquid metal droplet. Video S2: Mixer based on self-rotation of liquid metal droplet. Figure S1. Plots of self-rotational speed vs. sizes of droplets.