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Abstract: The self-rotation of liquid metal droplets (LMDs) has garnered potential for numerous
applications, such as chip cooling, fluid mixture, and robotics. However, the controllable self-rotation
of LMDs utilizing magnetic fields is still underexplored. Here, we report a novel method to induce
self-rotation of LMDs solely utilizing a rotating magnetic field. This is achieved by rotating a pair
of permanent magnets around a LMD located at the magnetic field center. The LMD experiences
Lorenz force generated by the relative motion between the droplet and the permanent magnets and
can be rotated. Remarkably, unlike the actuation induced by electrochemistry, the rotational motion
of the droplet induced by magnetic fields avoids the generation of gas bubbles and behaves smoothly
and steadily. We investigate the main parameters that affect the self-rotational behaviors of LMDs
and validate the theory of this approach. We further demonstrate the ability of accelerating cooling
and a mixer enabled by the self-rotation of a LMD. We believe that the presented technique can be
conveniently adapted by other systems after necessary modifications and enables new progress in
microfluidics, microelectromechanical (MEMS) applications, and micro robotics.
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1. Introduction

“Liquid metal” such as gallium and its several alloys exhibit a liquid state at room temperature [1–3].
Droplets of such liquid metal have shown to be platforms for applications such as stretchable and
reconfigurable electronics [3–6], microfluidics actuators [2,7,8], as well as forming three-dimensional
structures [9–11]. Liquid metal droplets (LMDs) have demonstrated many unique properties,
for instance, large surface tension, favorable thermal and electrical conductivity, strong stability,
and extremely excellent biosafety compared with mercury [12,13]. Over the past few years, benefitting
from the flexibility and operability of liquid metal surfaces, investigations of formation, actuation,
and application of their droplets have gained momentum [2,14–23]. As has been recently reported,
LMDs can act as self-fueled motors, paving the way without human intervention [14,23]; also, a LMD
can be used to drive a wheeled robot by changing its center of gravity under electrical fields [22].
Moreover, a potential gradient was applied to explore inducing the Marangoni flow along the surface of
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LMDs and making microactuators in microfluidics [2,24–27]. Further studies have demonstrated that
LMDs coating modest nanoparticles can be propelled by bubbles generated through photochemical
reactions [28–30].

Chaotic advection is the key mechanism for enabling applications such as heat transfer, fluid
mixing, and chemical reaction improvement [24,31–35], in particular, in some areas including
microfluidic systems, chemical and biological transport, etc., smooth and steady methods for inducing
chaotic advection are needed, and inexpensive and simple systems are urgently required [36–39].
Self-rotation of LMDs with negligible solubility in most solvents may be a promising candidate for
providing a solution [7]. Nevertheless, to the best knowledge of the authors, there is still a lack of
investigations focused on the self-rotational motion of LMDs.

Self-rotation of LMDs has the potential to be widely used in fluid cooling and mixing. Therefore,
we have been motivated to explore novel methods for inducing self-rotation of LMDs that are
smooth, simple, steady, and, especially, that do not introduce undesired violent chemical reactions.
According to our previous report, we introduced a simple and violent chemical reaction-free method
in which we utilized Lorenz force induced by magnetic fields to control the locomotion of LMDs [38].
Inspired by this, we report here the self-rotation of EGaIn droplets (consisting of 75% gallium and
25% indium) which are solely driven by magnetic fields without mixing or coating ferromagnetic
particles. The relative motion of the magnetic fields and LMDs generates an eddy current in
the droplet and further induces the Lorenz force to actuate the self-rotation of the droplet. The
theory behind the method was developed and the experiments conducted to validate this approach.
Moreover, we demonstrate applications of accelerating cooling and mixing liquids based on the
self-rotational LMDs.

2. Materials and Methods

Materials and instrumentation: EGaIn liquid metal and sodium hydroxide (NaOH) were purchased
from Santech Materials Co. Ltd, China. An electrolyte solution of NaOH and hydrochloric acid
(HCl) were introduced to remove the oxide layer on the surface of LMDs, where NaOH solution was
prepared by dissolving solid sodium hydroxide particles in deionized (DI) water, and HCl solution was
prepared by diluting concentrated hydrochloric acid with DI water. A small amount (~2 mg) of fine
phosphors (Juen technology Co. Ltd, China) was sprinkled on the LMDs to create easily identifiable
points for calculating the rotational speed of the LMDs. Blue and yellow dyes were obtained by
diluting edible dye (1:5, SUGARMAN) and then dripped into a quartz tube using a syringe pump
(LSP02-1B, LONGERPUMP). Self-rotation videos of LMDs were captured using a digital single lens
reflex camera (Canon 5D Mark II) equipped with a macro lens (Sigma 105mm 1:2.8 DG Macro HSM).
The sequential snapshots were extracted from these videos.

Experimental Setup: The experimental setup is illustrated in Figure 1a. A pair of permanent
magnets were fixed to an aluminum frame, and the aluminum frame was connected to the output shaft
of a DC motor (Leadshine 57HS09) whose speed and direction were controlled by a microcontroller
unit (MCU, Arduino Carduino UNO R3). An EGaIn LMD was placed in a quartz tube (diameter:
8 mm, height: 15 mm) filled with NaOH or HCl solution, and the quartz tube was placed at the center
point between the magnets.

Mechanism: The mechanism of self-rotation of LMDs is shown in Figure 1b, in which we
hypothesize that by moving two permanent magnets around the droplet within an aqueous solution,
an EGaIn droplet can be actuated to self-rotate after the introduction of eddy current. On account
of the large surface tension of liquid metal, the EGaIn droplet (diameter < 5 mm) immersed in the
aqueous solution can be considered as a sphere. In addition, to simplify the model, the EGaIn droplet
is equivalent to several parallel coils located at a different longitude of the droplet. Before the external
magnetic field rotates, the magnetic flux through the equivalent coils is almost a constant. When
the external magnetic field starts to rotate, relative motion (in other words, phase shift) is formed
between the magnetic field and the EGaIn droplet, which further induces the change of the magnetic
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flux through the equivalent coils ϕ and eddy current I within the equivalent coils. The eddy current I
can be explicitly expressed as

I =
dΦ

Redt
(1)

where ϕ is determined by the magnetic flux density B as well as the equivalent coils area S, which
can be written as ϕ =B·S, and Re represents the equivalent resistance of the coils. Subsequently, an
induced magnetic field is engendered by the eddy current to hinder the change of magnetic flux,
according to the Lenz’s law [40,41]. In other words, assuming that the external magnetic field rotates
counterclockwise, the induced magnetic field will generate a clockwise torque to hinder the rotation of
the magnetic field, no matter whether the magnetic flux through the coils increases or decreases. It is
well known that forces are mutual actions of two bodies [38,42–46], that is, when the equivalent coils
impede the external magnetic field, the external magnetic field also exerts a torque Me of the equal
magnitude and opposite direction on the EGaIn droplet. According to Ampere’s law, the torque Me

can be expressed as

Me = 2
∫ πR

0
sin

l
R

Idl × B (2)

where R is the radius of the equivalent coil, and l is the length of the equivalent coil, respectively [42–46].
The torque Me enables the droplet to overcome the friction and commence to self-rotate.
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We established an actuating platform to examine the hypothesis and investigate the 
self-rotational behaviors of the droplet (Figure 1a). Figure 1c shows the self-rotation of an EGaIn 
droplet submerged in 0.5 mol/L NaOH solution induced by the magnetic field (also see Video S1); 
the measured magnetic flux density was ~1 kGs at the center point between the magnets, and we set 
the DC motor speed to 420 RPM. Then, the EGaIn droplet self-rotated following the same direction 

Figure 1. Self-rotation behavior of a liquid metal droplet (LMD). (a) Schematic of the self-rotation
inducing setup. (b) Forces schematic of the equivalent coils in an EGaIn droplet; the magnetic field
directions are indicated by the blue arrows, the magnetic field rotating direction (with a velocity of Vm)
is indicated by the green arrow, the self-rotation direction of the EGaIn droplet (with a velocity of Vd)
is indicated by the red arrow, and the forces experienced on the equivalent coils are indicated by the
black arrows. (c) Continuous captures of the self-rotation of an EGaIn droplet (volume of 0.08 mL).

3. Results and Discussions

We established an actuating platform to examine the hypothesis and investigate the self-rotational
behaviors of the droplet (Figure 1a). Figure 1c shows the self-rotation of an EGaIn droplet submerged
in 0.5 mol/L NaOH solution induced by the magnetic field (also see Video S1); the measured magnetic
flux density was ~1 kGs at the center point between the magnets, and we set the DC motor speed to
420 RPM. Then, the EGaIn droplet self-rotated following the same direction of rotation as the magnets
(counterclockwise) with a speed of ~100 RPM, which aligns with our analysis given in Figure 1b.
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On the basis of successfully demonstrating of magnetic field driven self-rotation of EGaIn droplet,
we carried out a set of experiments to ascertain the performance of self-rotation. We found that motor
speed, the LMDs size, as well as the NaOH solution concentration are the three main factors that affect
the self-rotational speed. In Figure 2a, we can see that the self-rotational speed increases along with
the increase of the DC motor rotational speed since larger rates of magnetic flux change dϕ can be
induced by higher motor speeds. A larger rate of magnetic flux change further induces a larger eddy
current which eventually converts into a greater Me (see Equation 2). We also studied the influence
of the magnetic flux density B on the self-rotational performance, as shown in Figure 2a. Obviously,
a higher B can induce a larger torque and lead to a larger self-rotational speed.

Figure 2b shows that the self-rotational speed increases along with the increase of the size of the
EGaIn droplets until the droplet volume reaches ~0.06 mL, and then the speed gradually decreases
and eventually remains stable. This is probably due to that, in a larger droplet, the increasing S and
decreasing Re enlarge the driving force. When the volume of the EGaIn droplets is larger than 0.06 mL,
the friction between the droplet and the sidewall may give a negative effect on the rotational speed of
the droplet which has been elucidated by repeating the experiment with a bigger tube, as discussed
in Supporting Information S1. As the rotational speed decreases, the relative rotational speed of the
droplet and the magnetic field increases (that is, dϕ increases), which then can cause the increase of I,
the driven force, and the rotational speed. Next, increasing the rotational speed reduces the relative
speed, and finally, the driving force and resistance are balanced, which is manifested in the fact that
the rotation speed was basically stable during our experiments. Moreover, the depth of EGaIn droplet
immersion in the NaOH solution (represented by the percentage of the height of the droplet immersed)
also influences the speed of rotation (Figure 2b). For smaller droplets (<0.06 mL), the difference in
rotational speed is not obvious for different immersion depths. However, for droplets larger than
0.06 mL, a larger immersion depth leads to a higher speed of rotation. This is probably due to the
fact that despite the increase in viscous friction for larger immersion depths, the solid oxide layer
formed on the EGaIn droplet surface can be efficiently removed by NaOH solution, thus a slip layer
between the droplet and the container wall is formed. This slip layer can reduce the friction like a
lubricant, and thus increase the rotational speed. Interestingly, we observed that when the droplet was
100% immersed, the droplet reached its maximum rotational speed when the volume was increased to
0.04 mL, which is smaller than that of other immersion depths (0.06, 0.06, and 0.08 mL). We believe
this is due to the fact that the significant increase in rotational speed at 100% immersion flattens the
droplets and, therefore, increases the friction between the droplets and the tube.

As shown in Figure 2c, NaOH concentration also affects the self-rotational speed of the LMDs.
We found that using NaOH solution with a high concentration can lead to a faster rotational speed
until the concentration of NaOH solution reaches 0.03 mol/L. When the concentration of NaOH
solution exceeds 0.03 mol/L, the rotational speed of the droplets no longer increases with the increase
of concentration and remains almost constant. No self-rotation was observed in our experiments when
we reduced the NaOH solution concentration to zero. That might be due to the fact that without NaOH,
the oxide layer cannot be removed, and the droplet becomes wrinkled [14,17], so the friction between
the droplet, the tube, and the solution eventually increases. With the increase of the concentration
of NaOH solution, the oxide layer was gradually removed, the friction gradually decreased, and the
rotational speed increased. However, when the concentration reaches the threshold (0.03 mol/L),
the oxide layer is almost completely removed, and the speed no longer increases with the concentration
increase. Considering HCl solution can also be used to remove the oxide layer on the surface of EGaIn
droplets [17,47], as shown in Figure 2d, we further studied the influence of HCl concentration on the
rotational speed of EGaIn droplets. We observed the increase in rotational speed when increasing the
concentration of HCl solution from 0 to 0.5 mol/L.
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solution, respectively. (c) Self-rotational speed vs. concentration of NaOH plot. (d) Self-rotational
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Use in cooling systems is an import potential application of liquid metal, and here we demonstrate
the ability of liquid metal self-rotation to accelerate liquid cooling. As shown in Figure 3a, we heated
the 0.5 mol/L NaOH solution and 0.08 mL EGaIn in a tube with a heat gun (DH-HG2-2000, Delixi
Electric). When the temperature of the solution reached about 40 ◦C, a large number of bubbles were
separated from the solution similar to boiling. We stopped heating and rotated the motor at 420 RPM
and measured the temperature of the solution every 5 seconds. For comparison, the other tube was
tested in the same way except that the permanent magnets in the device were removed, that is, the LMD
did not self-rotate as the motor rotated. The temperature change is shown in Figure 3b; the group in
which the EGaIn droplet self-rotated cooled significantly faster than the group in which the EGaIn
droplet did not rotate. After about 520 s, the group of rotated EGaIn cooled to room temperature
(~24.2 ◦C), and after another 130 s, the other group cooled to room temperature.
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Based on the fact that LMDs are negligibly soluble in most liquids, possess great surface tension,
and keep almost unmixed with the solvent [7], LMDs have great potential for application as a mixer.
Therefore, we further investigated its application as a mixer based on the self-rotation phenomenon
of LMDs in a rotating magnetic field, as shown in Figure 4a (see also Video S2). We applied the
self-rotation of EGaIn droplets to mix two droplets of the same volume, similar viscosity, and different
colors. We added a drop of blue dye and a drop of yellow dye (volume of 0.05 mL, respectively) into
the solution while the 0.08 mL EGaIn droplet was rotating in the NaOH (0.5 mol/L) solution, as shown
in Figure 4b. The motor speed was 420 RPM, and the magnetic flux density at the center of the droplet
was ~0.8 kGs. The self-rotational speed of EGaIn droplet after mixing was ~70 RPM which is almost
the same as that when the EGaIn droplet is not acting as a mixer, as shown in Figure 2b. Figure 4c,d
demonstrates that the two drops of dye can be mixed along with the rotating EGaIn droplet. This mixer
is smooth, quick, and can be easily implemented into a MEMS platform.
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4. Conclusions

We have demonstrated a novel method to manipulate the self-rotation of LMDs by solely utilizing
magnetic fields which is smooth, simple, steady and, most importantly, does not produce a violent
chemical reaction. The relative motion of the magnetic fields and LMDs generates an eddy current in
the droplets and further induces the Lorentz force to actuate the self-rotation of the droplets. The motor
speed, the LMD sizes, and the concentration of NaOH solution can be easily manipulated to regulate
the self-rotational speed of droplet. Moreover, we demonstrated that such a technique can be used for
the application of accelerating the cooling and mixing liquids. Nonetheless, bulky rotating magnets and
a motor are still required in our current platform; however, we believe that introducing programmed
electromagnetic fields can be helpful in resolving this problem in our future work. As such, utilizing
magnetic fields to induce the self-rotation of LMDs could widely expand the application of LMDs to
be used as MEMS devices.
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Figure S1: Self-rotation of EGaIn droplets in different diameter tubes, Video S1: Self-rotation of liquid metal
droplet, Video S2: Mixer based on self-rotation of liquid metal droplet.
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