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Abstract: Aiming at the optimal configuration of a regional integrated energy system (IES), this paper
proposes an energy-conversion interface (ECI) model that simplifies the complex multienergy network
into a multi-input–multioutput dual-port network, consequently achieving the energy-coupling
relationship between the energy-supply side and the demand side. An optimized configuration
model of the ECI was constructed by considering economic performance, such as device-installation
cost, operation and maintenance cost, and environmental cost, as well as energy-saving performance,
such as energy-utilization efficiency. Then, the ECI optimal-configuration model was established by
taking a campus in northern China as an example. To verify the validity of the model, device planning
quantity and daily energy scheduling of the integrated energy system of the campus were obtained
by solving the model with the particle-swarm optimization method. Finally, sensitivity analysis of
the system to energy prices and the reweight approach for the targets are also given in this paper,
providing a decision-making basis for system planning.
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1. Introduction

Lack of co-ordination and co-operation between traditional energy systems, such as power
systems, natural-gas systems, and thermal systems, results in dissatisfying advantageous
complementary and synergy energy benefits, because these energy systems are separately planned and
operated. An Integrated Energy System (IES) has different energy forms collaborating in development,
conversion, storage, transportation to meet the needs of terminal consumers.

To improve energy efficiency and economic benefits, reduce environmental influence, and satisfy
various energy demands at the same time, an IES utilizes advanced technologies for load forecasting,
data processing, and innovative management in a certain area to co-ordinate, optimize, and intelligently
manage multiple energy sources, such as electricity, natural gas, petroleum, and coal [1–3].

At present, the optimization problems of regional integrated energy systems can be divided
into two categories: (1) optimizing the capacity and model of devices for a given regional IES
and (2) optimizing energy flows for existing system topologies. For the former, Bahrami et al. [4]
co-ordinated the capacity of cogeneration units, absorption chillers, gas boilers, and other devices.
Singh et al. [5] used the genetic algorithm to optimize the location and capacity of IES power supply
with the aim of minimizing system network loss. Xu et al. [6] planned devices in building an
integrated energy system and analyzed the economic benefits of combined heat and power (CHP).
For the latter, Li et al. [7] proposed a mixed-integer nonlinear model to optimize the system with the
lowest operating cost. Ress et al. [8] estimated the thermal and electrical flows within the system by
analyzing the thermoelectric-energy system model on the distribution side. Rezvan et al. [9] optimized
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the device output of the system after dealing with load volatility by a Monte Carlo simulation.
Yang et al. [10] proposed an optimal dispatching model of a electrothermal multienergy system
with power-to-gas (P2G) facilities on the basis of considering the characteristics of P2G facilities,
power systems, natural-gas systems, and heating systems. Thieblemont et al. [11] put forward sensible
thermal-energy storage (TES) systems that can shift a portion or all of it to off-peak periods to help
reduce peak demand and electrical-grid stress.

With the development of IES, an increasing number of scholars have begun to turn their focus to a
comprehensive benefit evaluation of the system. Ruan et al. [12] considered the economic cost-saving
rate, primary energy-saving rate, pollution-gas emission-reduction rate, and other indicators, analyzed
the four types of buildings, and finally concluded that buildings with higher heat-to-electric ratio were
more suitable for energy supply by way of combined cooling, heating, and power. Wang et al. [13]
established a comprehensive IES indicator system that included economic, environmental, and social
benefits, and combined the entropy weight method and the analytic hierarchy process to give weights
of the indicators. Bai et al. [14] proposed a comprehensive energy-utilization assessment indicator
for multienergy flow characteristics existing in IES to reflect the system’s acceptance level and
energy-efficiency level of renewable energy.

In summary, there are two difficulties in the study of IES: (1) simultaneously planning the topology
and IES device capacity or model, that is, IES planning starts from scratch; and (2) combining IES
energy-dispatch optimization with planning devices to support each other.

In response to the above problems, this paper introduces the concept of the Energy Conversion
Interface (ECI) [15–17], which is applied to regional load-side IES, as shown in Figure 1. The ECI
connects to a multienergy transmission network and the demand side, which enables the distribution
and conversion of multiple energy sources and regulates energy flowing into the demand side.
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energy flow and devices. Second, on the basis of economic indicators such as device-installation cost, 
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utilization efficiency, an optimized ECI configuration model was established. The model has the 
following innovations: (1) IES planning starts from scratch and (2) energy-optimization dispatch and 
device quantity are jointly planned. 

Finally, an input–output coupling model was constructed for a campus in northern China, and 
the model was solved with the particle-swarm algorithm method. During this procedure, the planned 
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First, this paper establishes an energy input–output coupling model by deducing the energy
input–output relationship of the energy-conversion interface, and classifying and refining the
energy-conversion devices. The model has good ductility and clarifies the relationship between system
energy flow and devices. Second, on the basis of economic indicators such as device-installation
cost, operation and maintenance cost, and annual cost, as well as energy-saving indicators, such as
energy-utilization efficiency, an optimized ECI configuration model was established. The model has
the following innovations: (1) IES planning starts from scratch and (2) energy-optimization dispatch
and device quantity are jointly planned.

Finally, an input–output coupling model was constructed for a campus in northern China, and the
model was solved with the particle-swarm algorithm method. During this procedure, the planned
quantity of various energy-conversion devices and energy-storage devices, as well as the daily energy
schedule, were obtained. System-sensitivity analysis to energy prices and the reweight approach for
targets are also given in this paper, providing a decision-making basis for system planning.
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2. Energy-Conversion Interface Model

The energy-conversion interface is shown in Figure 2, where Em is the m-th type of input energy,
Ln is the n-th type of output energy, and C is the transformation matrix. The mathematical relationship
between the supply side and demand side is deduced and analyzed in this section.
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In a simple ECI, the relationship between Input E and Output L can be expressed by Equation 
(1). For a system with m types of input energy and n types of output energy, the input–output 
relationship can be specifically expressed by Equation (2). 
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2.1. Simple Input–Output Coupling Model

A simple input–output coupling model can be constructed when all the devices’ output energy
inside the ECI goes to the demand side. The energy-conversion process inside the ECI is shown in
Figure 3.
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In a simple ECI, the relationship between Input E and Output L can be expressed by Equation (1).
For a system with m types of input energy and n types of output energy, the input–output relationship
can be specifically expressed by Equation (2).

L = C · E (1)
l1
l2
...

ln

 =


c11 c12 · · · c1m
c21 c22 · · · c2m
...

...
. . .

...
cn1 cn2 · · · cnm




e1

e2
...

em

 (2)

where ln and em denote the n-th type of output-energy source and the m-th type of input-energy,
respectively, and cmn denotes the coupling factor.

We define the energy-flow distribution ratio from one energy-output port J (supply-side output or
device output) to energy-input port K (demand-side input or device input) at different energy-transfer
paths as the energy-flow distribution coefficient. The coupling coefficient can be expressed by the
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energy-flow distribution coefficient, the energy-conversion efficiency of the device, and the associated
state of the device and the load. The energy-conversion efficiency of the device is determined by the
characteristics and operation situation of the device itself. The connection between the device and the
load is the correspondence relationship between the energy converted by the conversion device and
the load energy form. Then, the input–output relationship of the energy-conversion interface can be
expressed by Equation (3).

L = (FTHAT + A′T) · E (3)

where H is the efficiency matrix and hii represents the energy–conversion efficiency of the i-th device;
A and A′ are the distribution matrices; αij indicates the allocation ratio from ei to the j-th device;
α′ij indicates the allocation ratio from ei to the j-th load, and when there is one and only one energy-flow
path, the value is 1; F is the branch connection characteristic matrix; fij indicates the relationship of the
i-th device and the j-th load, and its value is 1 when the branch exists. Otherwise, its value is 0.

2.2. Complex Input–Output Coupling Model

The energy flow of a complex ECI is shown in Figure 4. Compared to a simple ECI, there is
an intermediate energy-flow process between the devices. The above simple input–output coupling
model is no longer applicable. The input–output model for a complex ECI is derived below.
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For convenience of representation, this paper proposes a device-grading model. A device that
directly receives energy from the energy-supply side and does not have another input from another
device is defined as a primary conversion device. A device that is powered by a primary conversion
device and does not have a higher-level input is a secondary conversion device. By this analogy,
a device that is powered by an S-1 device and does not have a higher-level device is defined as an
S-class conversion device.

In a complex ECI, there are m types of input energy, n types of output energy, k types of
energy-conversion devices, and S energy-conversion levels, as shown in Figure 5. Different energy form
collection other than the energy-supply side and the demand side occurs during the energy-transfer
process. Assuming that there are p types of intermediate energy forms, the same energy forms
existing on the energy-supply side and the demand side are treated as different energy forms. If q
represents the number of same energy forms on both sides of supply and demand, there should be q
virtual-conversion devices whose conversion factors is 1. Totally, there are m + n + p energy forms and
k + q energy-conversion devices in the system.
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Energy form property matrix D is defined to represent the correspondence between energy-output
port J, energy-input port K, and the energy form in the system. In this matrix, dij represents the
correspondence between the i-th input/output port and the j-th energy form, that is, the value of dij is
1 when the i-th port is about the j-th energy form, and 0 otherwise. D1 ~ D4 are the corresponding
relationship between power-supply-side output port J1, device output port J2, demand-side input port
K1, device input port K2, and the energy forms. The devices are arranged in order of level. According
to the above complex model, the number of columns of the four matrices is m + n + p, and the numbers

of rows of the four matrices are m,
k+q
∑

i=1
Ni, n,

k+q
∑

i=1
Mi respectively, where Mi and Ni are the number of

input ports and the number of output ports of the i-th energy-conversion device, respectively.
We define branch connection characteristic matrix F to indicate the connection relationship

between each energy-output port and the energy-input port. Block matrices F1 ~ F4 represent the
connection relationship between J1 and K1, J1 and K2, J2 and K1, J2 and K2, respectively. Then,
the relationship between matrix F and energy form characteristic matrix D can be expressed as:

F =

[
D3 ·D1T D4 ·D1T

D3 ·D2T D4 ·D2T

]
=

[
F1 F2
F3 F4

]
(4)

The distribution matrix corresponds to the branch connection characteristic matrix. “1” in the
branch connection characteristic matrices corresponds to the corresponding distribution coefficient,
and “0” in the branch connection characteristic matrices corresponds to “0” in the corresponding
distribution matrices. That is, the sparsity of the two characteristic matrices is the same, and the
matrices are both highly sparse matrices. The distribution matrix satisfies Equation (5), that is, the sum
of the elements of each column satisfying the distribution matrix is 1.

∑ Aj = 1 (5)

The efficiency matrix of the device is defined as H, and HI to HS are the efficiency matrices from
the primary conversion device to the S-level conversion device, respectively. The efficiency matrix is a
generalized diagonal matrix. Using the matrix to represent its energy-transmission process requires
multilevel calculation, and the branch relationship matrix is divided into (s + 1) × (s + 1) blocks
according to device level and the relation between energy supply and demand sides, represented by Fij.
The matrices are divided into generalized lower triangular matrices, as shown in Equation (6). For the
convenience of calculation, the matrix was reblocked and represented by FI to FS+1. FI represents
the correspondence between energy-supply side energy output and the first-order conversion device
input, and FII represents the correspondence between energy-supply side, the energy output of the
primary conversion device, and the energy input of the secondary conversion device. FS+1 represents
the correspondence between the energy outputs of the energy-supply side, the energy outputs of the
primary conversion devices to the S conversion devices, and the energy inputs on the demand side.
Therefore, block matrices AI to AS+1 of the corresponding allocation matrix were obtained.
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and “0” in the branch connection characteristic matrices corresponds to “0” in the corresponding 
distribution matrices. That is, the sparsity of the two characteristic matrices is the same, and the 
matrices are both highly sparse matrices. The distribution matrix satisfies Equation (5), that is, the 
sum of the elements of each column satisfying the distribution matrix is 1. 

=A 1j  (5)

The efficiency matrix of the device is defined as H, and HI to HS are the efficiency matrices from 
the primary conversion device to the S-level conversion device, respectively. The efficiency matrix is 
a generalized diagonal matrix. Using the matrix to represent its energy-transmission process requires 
multilevel calculation, and the branch relationship matrix is divided into ( ) ( )+ × +1 1s s  blocks 
according to device level and the relation between energy supply and demand sides, represented by 
Fij. The matrices are divided into generalized lower triangular matrices, as shown in Equation (6). For 
the convenience of calculation, the matrix was reblocked and represented by FI to FS+1. FI represents 
the correspondence between energy-supply side energy output and the first-order conversion device 
input, and FII represents the correspondence between energy-supply side, the energy output of the 
primary conversion device, and the energy input of the secondary conversion device. FS+1 represents 
the correspondence between the energy outputs of the energy-supply side, the energy outputs of the 
primary conversion devices to the S conversion devices, and the energy inputs on the demand side. 
Therefore, block matrices AI to AS+1 of the corresponding allocation matrix were obtained. 
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L = AS+1



E
HIAIE

...

HSAS



E
HIAIE

...

HS−1AS−1

 E
HIAIE

...







(7)

L = (A1
S+1 + A2

S+1HIAI · · ·+ AS+1
S+1HS(A1

S + A2
SHIAI · · ·+ AS

SHS−1(A1
S−1 + · · · )))E (8)

3. Optimal Configuration Model of Energy-Conversion Interface

According to the evaluation indicators and configuration principles, an optimal configuration
model is established in this section. It includes the relevant objective functions and constraints. It aims
at improving the economic performance and energy-utilization level of the system. The optimal ECI
configuration system is shown in Figure 6 [18,19].
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3.1. Objective Function

3.1.1. Economic Performance

As shown in Equations (9)–(14), aiming at minimizing the cost of the ECI, including energy
purchase cost C1(t), device-installation cost C2, device-maintenance cost C3(t), environmental costs
C4(t), and electricity sales revenue C5(t), the following variables were optimized, including the type
of installed energy-conversion device in the system, the corresponding installed capacity, and the
energy-flow ratio at each moment.

Device-installation cost is calculated by the equivalent annual cost, which is the converted annual
input cost considering life- and time-related market factors.

Device-maintenance cost is related to the working status and output level in each period.
Environmental cost is calculated by the environmental value converted from the pollutants

discharged by the device during system operation [13].

C = min(∑ C1(t) + C2 + ∑ C3(t) + ∑ C4(t) + ∑ C5(t)) (9)

C1(t) = ∑ Pi(t)λi (10)
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C2 = ∑ σi · Ni ·
r(1 + r)τi

(1 + r)τi − 1
(11)

C3(t) = ∑ δi · Pi(t) (12)

C4(t) = ∑ Pij(t)λijγij (13)

C5(t) = Ps(t) · cs (14)

Equation (10) is the energy purchase cost, which is obtained by multiplying the
energy-consumption amount by the corresponding energy price. λi is the unit price of the i-th energy.

Equation (11) is the device-installation cost, expressed by the equivalent annual cost. σi, ICi, τi
represent the unit installed price, quantity, and service life of the i-th device, respectively. r is the
discount rate.

Equation (12) is the device-maintenance cost, where δi is the maintenance cost corresponding to
the unit energy output of the i-th device.

Equation (13) is the environmental cost. λij (U/kg) is the environmental value of the j-th pollutant
produced by the i-th device. γij (kg/kWh) is the intensity of the j-th class pollutant corresponding to
the output unit energy of the device.

Equation (14) is the electricity sale revenue, Ps(t) is the sale power, and cs is the sale price.

3.1.2. Energy-Utilization Efficiency

The overall energy-utilization efficiency of the system is one of the most important bases of
evaluating IES structure rationality. There are many factors affecting energy loss in the transmission
process, such as different energy-conversion efficiencies between several energy networks and different
energy-transmission paths. Even if total energy demand is the same, the energy consumption of
different energy forms may be still varied. Equation (15) is the energy-utilization efficiency of the IES,
which can be calculated as the ratio of the total energy output and the total energy input. The total
energy-output amount is shown in Equation (16). The total amount of energy input is shown in
Equation (17).

ηeu = max
Lsum(t)
Esum(t)

(15)

Lsum(t) =
n

∑
i=1

Li(t) (16)

Esum(t) =
m

∑
i=1

Ei(t) (17)

3.2. Restrictions

Equations (18)–(22) are the model constraints that include energy-conservation, device-installation,
and device-operation constraints.

3.2.1. Energy-Conservation Constraints

In the energy-conversion interface, energy at any node should be conservation. If the energy
source does not have stored energy transposed in the system, it should satisfy Equation (18).

Li(t) = ∑ Pi.in(t) (18)

where Li(t) is the i-th energy output, and Pi,in(t) is the total power of the i-th energy source flowing into
the energy output port.
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If part of a certain energy form may be stored in the energy-storage device, it should satisfy
Equation (19):

Li(t) = ∑ Pi.in(t) + Pi.out(t) (19)

where Pi,out(t) is the stored energy during the t-th period for the i-th energy source. When energy is
stored, Pi,out(t) is negative, and when it is discharged, Pi,out(t) is positive.

3.2.2. Device-Installation Constraints

Device-installation capacity must meet the load demand and have a certain spare capacity at
maximum load. At the same time, there should be a maximum-capacity limit according to actual
installation conditions and device capacity. Therefore, the type and number of device installations
should satisfy the inequality relationship in Equation (20):

Si ≤ Si,t ≤ Si (20)

where Si is the installation capacity of i-th device, Si and Si are the minimum and maximum limits of
device-installation capacity.

3.2.3. Device-Operation Constraints

The device should meet its operating characteristics as shown in Equations (21) and (22)
during the optimization process, including energy-conversion and device-output characteristics.
Energy-conversion characteristics are shown in Equation (21). Device-output characteristics are shown
in Equation (22). The output level of the device is related to the parameters of the device itself and
fluctuates within the scope.

Eo,j(t) = Hj · Ei,j(t) (21)

Pj ≤ Pj(t) ≤ Pj (22)

where Eo,j(t) and Ei,j(t) are the output and input of j-th device, Hj is the output level of j-th device in
the t-th period, Pj(t) is the output level of j-th device in t-th period, and Pj and Pj are the maximum

and minimum output of the j-th device. For energy-storage devices, Pj and Pj represent maximum and
minimum energy storage and release power.

3.2.4. Energy-Dispatch Constraints

Energy conservation should be satisfied in the energy-dispatch process, and reflected in the
dispatch factor as shown in Equation (8).

4. Case Analysis

A campus in the north of China is selected as the example. Its ECI planning model is shown in
Figure 7.
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4.1. Campus Energy-Conversion-Interface Model

According to the energy-conversion modeling method described in Section 2.2, the P2G device
is a primary conversion device, and the gas turbine (GT), internal combustion engine (ICE), and gas
boiler (GB) are secondary conversion devices. The electric refrigerator (EC), absorption chiller (AC),
electric-heat pump (HP), waste-heat boiler (WB), and electric storage (ES) are tertiary conversion
devices. Cold storage (CS) and thermal storage (TS) are quaternary conversion devices. Due to the
particularity of the energy-storage devices, the equation containing the remaining conversion devices
is first deduced, and then the energy-storage device is specially treated. What should be pointed out
is that, since power grid supply and electrical load are treated as two different forms of energy, it is
assumed that there is a primary conversion device with an efficiency of 1 between power grid and
electrical load.

The block matrix of energy-distribution matrix A corresponding to the branch connection
characteristic matrix is shown in Equation (23) and satisfies the equality constraint of Equation (8).

AI =

[
α11 0 0
α21 0 0

]

AII =

 0 α32 0 0 α35

0 α42 0 0 α45

0 0 α53 0 0



AIII =


α61 0 0 0 0 α66 0 0
α71 0 0 0 0 α76 0 0
0 0 0 0 0 0 α87 0
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
AIV =
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

(23)

Mentioned herein are various types of gas turbines and internal-combustion engines. Assuming
that there are n unit models, the operating characteristics of the gas turbine and internal-combustion
engine can be expressed as:

[
Pe

Pth

]
=

[
ηe,1 ηe,2 · · · ηe,n

ηth,1 ηth,2 · · · ηth,n

]
α1

α2
...

αn

Eair =

[
ηe

ηth

]
Eair (24)
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The efficiency matrix of the energy-conversion devices at all levels is given by Equations (25)–(27).

HI = diag(1, ηP2G) (25)

HII =

 ηe 0
ηth 0
0 ηGB

 (26)

HIII = diag(ηEC, ηHP, ηAC, ηWB) (27)

Energy-storage devices are handled with the load in this paper. After passing through the
energy-conversion device, when energy appears in a form corresponding to the load, there are two
energy-transmission paths, direct supply to load or storage. The relationship between energy input
and load can be shown as Equation (28), and expressed in matrix form as Equation (29):

Li = (1− Xiαs,i)Ein,i + Yiβs,iEs,i (28)

L = (1−XAs)Ein + YBsEs (29)

The values of Xi and Yi may be 0 or 1, satisfying Xi + Y i = 1. Matrix X = diag(X1, X2, . . . Xn),
Y = diag(Y1, Y2, . . . Yn), where n is the number of energy forms of the load. αs,i and βs,i are, respectively,
energy-storage and energy-release dispatch factors corresponding to the i-th energy-storage form
according to matrices As = (αs,1, αs,2, . . . αs,n)

T and Bs = (βs,1, βs,2, . . . βs,n)
T . Ein,I and Es,i are the

energy input after energy passes through the energy-conversion device, and the energy stored in the
energy-storage device, respectively, corresponding to two column vectors, Ein and Es, whose length
is n.

The input–output coupling model of the complicated model is finally obtained as shown in
Equation (30):

L = (1−XAs)[A1
IV + A2

IVHIAI + A3
IVHII(A1

II + A2
IIHIAI) +

A4
IVHIII(A1

III + A2
IIIHIAI + A3

IIIHII(A1
II + A2

IIHIAI))]E + YBsEs
(30)

4.2. Case Data

The research period of the campus load was one year, which was divided into twelve time periods,
that is, twelve months. In order to simplify the calculation, all months were classified into three
categories according to seasonal characteristics. The load fluctuation of each seasonal characteristic
is represented by load fluctuations of typical days. December, January, and February were classified
as typical loads in winter. June to August were classified as typical loads in summer, and the other
months are typical loads in spring and autumn. The maximum electrical, heat, and cold load for each
month is shown in Figure 8. The load of a typical day of each season and the ratio of the maximum
load in those days are shown in Figure 9.
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The literature [14] proposed the particle swarm optimization (PSO) algorithm with inertia weight,
which is applied to the solution of the example. The basic parameters of the PSO algorithm were set
as follows: number of particles, 50; acceleration factors c1 and c2, 1.494; wstart = 0.95 and wend = 0.4;
take control factor d1 = 0.2, d2 = 7, and maximum number of iterations, 10,000. The PSO flowchart
is shown in Figure A1. The parameters of each device and related system parameters are shown in
Tables A1 and A2 [19–28]. Taking whether the system device will be installed, installation quantity,
and energy-flow dispatch as optimization variates, the campus is optimized for the purposes of
economy and energy-utilization efficiency.

4.3. Result Analysis

4.3.1. Configuration Result

The PSO algorithm described above is used to optimize system economy and energy efficiency.
By programming and calculating the case data in MATLAB, the number of installed devices was
obtained and is shown in Table 1. It can be seen from the table that, when choosing economy as
the optimization goal, the total cost of the system is reduced by 21.13% compared with the cost of
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choosing energy-utilization efficiency as the goal, and energy-utilization efficiency is 45.46% lower
than energy efficiency.

Table 1. Number of installed devices under different objective functions.

Aims
Number of Installed Devices Target Value

GT ICE P2G WB HP GB EC AC ES TS CS C (Ten Thousand
Yuan) ηeu

Economy 1(4#) 0 0 7 2 0 2 4 309 62 67 4385.18 0.853
0 0 0 0 6 0 15 0 0 0 0 5560.28 1.564

Economic Analysis

It can be seen from Table 1 that from the obtained device-configuration result from the minimum
comprehensive system cost, a gas turbine with higher power-generation efficiency was selected
and installed. For the electricity–gas conversion device, energy consumption exists in the process
of electric-energy conversion, and gas supply was sufficient in this paper, so it was not installed.
The gas boiler was not installed, either, due to the existence of a highly efficient electric-heat pump.
The remaining devices were installed because of their own advantages. For example, the input energy
of absorption refrigeration and the waste-heat boiler is the residual smoke of the device with lower
cost, which can improve the efficiency of the entire energy-production device; electric refrigerators
and electric-heat pumps have the characteristic of high energy-conversion efficiency. The maximum
output level of each device in different months of the year is shown in Figure 10. Figure 11 shows the
annual energy-flow output of each device in the energy-conversion interface. The coupling of various
energy forms can also be seen in Figure 11.
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Figure 12 shows the output of the device with daily running power conservation,
and gives the graphs (Figure 13) of electricity conservation on the typical days of January, July,
and October. The electric-load supply consists of power-grid purchase, gas-turbine power generation,
and electric-energy storage discharge. In addition to electric-load supply, there are two power-flow
directions of electricity storage and electricity sales.
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As shown from the above figures, the overall system energy flow satisfies the conservation of
electrical energy. In the month when electric load was relatively low, gas-turbine power generation
mainly met the load demand, and electricity was sold at the peak of the electricity price. In the month
when electric load was high, purchased electricity in the system was large, so there were no electricity
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sales. It can be seen from the device output of the typical season that electric-load supply mainly
came from grid-power supply and gas-turbine power generation. In the low-price stage of electricity,
a small amount of energy storage occurred due to a lower energy cost. In the peak stage of electricity
price, due to the high cost of electricity, the energy storage device will release the energy and sell
the remaining electricity generated by the gas turbine online, thereby improving the economy of
the system.

Figure 14 shows the output of the device with daily heat-energy conservation, and gives the
heat-energy conservation map for three seasons. Heat-load supply consists of a waste-heat boiler and
an electric-heat pump. In addition to heat-load supply, there is thermal-energy storage.Appl. Sci. 2019, 9, x 14 of 21 
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Figure 14. Daily running of heat-conserving device: (a) days of running heat-conservation device
output; (b) January; (c) July; (d) October.

As can be seen from Figure 14, the whole system satisfies the conservation of thermal energy.
The overall change level of the thermal load in one year is opposite to the change trend of the electric
load and cold load in the system. In a month when the heat load is high, the cold load and the electric
load are relatively low. The residual smoke generated by the gas turbine is fully used by the waste-heat
boiler. The residual smoke can be regarded as zero-cost energy. The heat supply is preferentially
supplied by the waste-heat boiler. When the waste-heat boiler cannot meet the heat-load demand,
the higher-efficiency electric-heat pump is used to improve the thermal efficiency of the system. It can
be seen from the heat-conservation figure of a typical season that heat energy is mainly supplied by the
waste-heat boiler and the electric-heat pump. Heat energy is reserved when the heat of the waste-heat
boiler is abundant, and the electric-heat pump is mainly applied during the lower-price period.

Figure 15 shows the output of the device with daily cooling energy conservation, and gives the
cooling energy conservation graph for typical days of three seasons. The cold-load supply consists
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of an electric chiller and an absorption chiller. In addition to the cold-load supply, there is also
cold-energy storage.Appl. Sci. 2019, 9, x 15 of 21 
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As concluded from the figure above, the whole system satisfies the conservation of cold energy.
The change law of the cold load is positively correlated with the electric load. Therefore, residual smoke
generated by the gas turbine can be fully utilized by the absorption chiller during the high electric-load
period to improve the cooling efficiency of the system. When the absorption chiller cannot meet
refrigeration demand, the electric chiller is applied. This can be obtained from the cold-conservation
graph of the typical season. The system-cooling load of the system is mainly supplied by the absorption
chiller. When the working efficiency of the absorption chiller is relatively high, the cold-energy storage
device stores cold energy, and the cold energy is released when absorption refrigeration fails to meet
cold-load demand. The electric refrigerator has high energy-conversion efficiency, but because of its
high energy cost, as well as its restricted outputs, this only occurs during the period of low electricity
price so as to meet the energy conservation of the system.

Energy-Use Efficiency Analysis

From Table 1 we can see when the comprehensive energy-utilization efficiency of the system is
optimized. Overall energy utilization has efficiency over 1.0 due to the high conversion efficiency of
electric refrigeration and the electric-heat pump. As per the results of device configuration, only the
electric refrigerator and the electric-heat pump with a high energy-utilization rate could be installed.
The maximum output level of each device in different months of the year is shown in Figure 16.
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The sensitivity of the optimization model indicates the sensitivity of the optimization targets to 
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results to system-parameter changes. The smaller the sensitivity value is, the stronger the adaptability 

of the optimization results to parameter changes. Since the increase of device energy-conversion 

efficiency is slow due to technological developments, this paper only considers the adaptability of 

economic system-optimization results to energy-cost changes. Figure 18 shows the impact of energy 

Figure 16. Device output level and unit adjustment: (a) electric-heat pump; (b) electric refrigerator.

As can be seen from Figure 16, the output level of the device has a large-scale fluctuation range.
The load rate of several months is below 0.2, so the load rate of the device is low. By adjusting the
actual working quantity of the unit, the corrected output level of the device is obviously improved.
The reasonable option among the devices could also relatively improve the service life of the devices.

The energy-flow figure obtained with the goal of energy efficiency is relatively simple. As shown
in Figure 17, daily-operation power distribution notes that electricity purchased from the grid flows
to the electric load, electric-heat pump, and electric refrigerator. It can be seen from the figure that
the purchase of electricity is mainly for electric-load supply. Since the conversion efficiency of the
electric-heat pump and the electric refrigerator is high, only a small amount of electric energy input
into the two devices can meet cooling-load and heating-load system demands.
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4.3.2. Sensitivity Analysis

The sensitivity of the optimization model indicates the sensitivity of the optimization targets to
relevant system-parameter changes. It may be used to observe the adaptability of the optimization
results to system-parameter changes. The smaller the sensitivity value is, the stronger the adaptability
of the optimization results to parameter changes. Since the increase of device energy-conversion
efficiency is slow due to technological developments, this paper only considers the adaptability of
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economic system-optimization results to energy-cost changes. Figure 18 shows the impact of energy
price fluctuation on system cost. The abscissa represents the ratio of energy price to its original
value, and the ordinate represents the variation amplitude of the system economic indicator to its
optimal value.
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As can be seen from Figure 18, the total cost of the system shows a general upward trend with the
increase of energy costs. The lower the energy price, the greater the system-cost sensitivity to energy
price changes. As the energy price increases, the total cost of the system gradually decreases, because
the cost of purchasing energy from the system becomes larger. From the overall results, the price of
natural gas has the greatest impact on the economy of the system, which then follows the price of
electricity purchase. The price of fuel has the least impact on the system economy.

4.3.3. Weighted System Optimization

According to the optimal economic target value and the optimal energy-utilization efficiency
value, the proportion of economy and energy-utilization efficiency is changed to optimize the system.
The specific target value is shown in Equation (31), where w1 and w2 are weights, and the sum of the
two is 1.0. The two target values and the number of devices installed with different weights were
obtained. Figure 19 shows the two target values and the number of devices installed under different
weights. Figure 20 shows the installation of devices under different proportions.

f = min(w1
C− Cmin

Cmin
+ w2

ηeu,max − ηeu

ηeu,max
) (31)

Appl. Sci. 2019, 9, x 17 of 21 

Appl. Sci. 2019, 9, x; doi: www.mdpi.com/journal/applsci 

price fluctuation on system cost. The abscissa represents the ratio of energy price to its original value, 
and the ordinate represents the variation amplitude of the system economic indicator to its optimal 
value. 

 

 

 
Figure 18. System economic sensitivity to energy prices. 

As can be seen from Figure 18, the total cost of the system shows a general upward trend with 
the increase of energy costs. The lower the energy price, the greater the system-cost sensitivity to 
energy price changes. As the energy price increases, the total cost of the system gradually decreases, 
because the cost of purchasing energy from the system becomes larger. From the overall results, the 
price of natural gas has the greatest impact on the economy of the system, which then follows the 
price of electricity purchase. The price of fuel has the least impact on the system economy. 

4.3.3. Weighted System Optimization 

According to the optimal economic target value and the optimal energy-utilization efficiency 
value, the proportion of economy and energy-utilization efficiency is changed to optimize the system. 
The specific target value is shown in Equation (24), where w1 and w2 are weights, and the sum of the 
two is 1.0. The two target values and the number of devices installed with different weights were 
obtained. Figure 19 shows the two target values and the number of devices installed under different 
weights. Figure 20 shows the installation of devices under different proportions. 

η η
η

−−
= + ,maxmin

1 2
min ,max

C
min( )eu eu

eu

C
f w w

C
 (24)

 

Figure 19. Optimization target values under different weights. Figure 19. Optimization target values under different weights.



Appl. Sci. 2019, 9, 1367 18 of 21Appl. Sci. 2019, 9, x 18 of 21 

Appl. Sci. 2019, 9, x; doi: www.mdpi.com/journal/applsci 

Figure 20. Device installation under different proportions. 

As can be seen from Figure 20, as the economy proportion increases, economy optimization is 
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China has already started the construction of an energy Internet at a regional level. The National 
Energy Administration announced the first batch of smart-energy (energy Internet) demonstration 
projects in June 2017. The planning of regional IES has become the primary problem of these 
demonstration projects. The proposed model in this paper has higher practicability and ductility. It 
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plan.  
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As can be seen from Figure 20, as the economy proportion increases, economy optimization is
better and energy-use efficiency is reduced. Therein, economic and energy-efficiency indicators have
relatively large fluctuations under a certain proportion (circles in Figure 19). The reason is changes in
different device types in the system. Certain devices appearing or disappearing can influence the plan
of other devices, resulting in greatly changing the optimal target.

5. Conclusions

Building an efficient IES greatly promotes energy-utilization efficiency and improves system
economy. This paper focuses on two difficulties: (1) initial IES planning that grows out of nothing and
(2) joint planning of IES energy dispatch optimization and device planning.

The paper proposes an innovative energy-conversion interface model and simplifies a terminal IES
into a multi-input to multioutput dual-port network. First, according to graph theory, the topological
layering of system devices was carried out, the mathematical relationship of the energy input–output
coupling was derived, and an overall IES model was obtained. Second, considering the IES dispatch
optimization problem, an optimized ECI configuration model was established with the goal of system
economy and energy utilization efficiency. Finally, the IES of a typical area was modeled and analyzed
with the particle-swarm optimization algorithm to optimize the configuration to improve the economy
and energy-utilization levels. The installed capacity of devices under different optimization targets
and device output level at each moment was obtained. The energy-flow directions of the system
devices were analyzed. Sensitivity analysis shows that system costs are the most sensitive to energy
prices. For example, natural-gas price has the greatest impact on system economy in the study case.
Weighted system optimization shows that as the economy proportion increases, the economy of the
optimization result is better, and energy-utilization efficiency is reduced. This provides a reference for
decision making on IES planning.

China has already started the construction of an energy Internet at a regional level. The National
Energy Administration announced the first batch of smart-energy (energy Internet) demonstration
projects in June 2017. The planning of regional IES has become the primary problem of these
demonstration projects. The proposed model in this paper has higher practicability and ductility. It can
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Table A1. Device parameters.

Type
Output Rating

(kW)
Conversion
Coefficient Investment

Cost (Yuan/kW)

Operating and
Maintenance Cost

(Yuan/kW)

Durable
Years

Power Thermal Power Thermal

GT

1 3500 6000 0.28 0.48 15,428,000

0.06 30
2 4600 7800 0.30 0.50 19,710,000
3 5200 8300 0.30 0.48 21,931,520
4 7520 10,400 0.34 0.47 29,762,000

ICE
1 800 1460 0.15 0.28 4,422,400

0.06 302 534 780 0.15 0.22 3,336,000

WB 900 0.8 600,000 0.003 15
HP 2000 3.5 6,000,000 0.007 20
GB 3100 0.9 2,480,000 0.004 20
EC 1000 3 1,000,000 0.0097 15
AC 2700 1.2 4,968,000 0.008 30
P2G 1000 0.5 4,800,000 / 8
ES 12 0.95 4,000 / 5
TS 120 0.95 24,480 / 15
CS 120 0.95 24,000 / 15
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Table A2. Energy price.

Electricity Price (Yuan/kWh) Natural Gas Price
(Yuan/m3)

Fuel Oil Price (Yuan/kg)
Purchase Sale

0.83 (9–13, 17–19 h) 0.65 (9–13, 17–19 h)
2.67 2.20.49 (8–10, 14–16, 20–22 h) 0.38 (8–10, 14–16, 20–22 h)

0.17 (1–7 h) 0.13 (1–7 h)
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