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Abstract: To reduce the volume and weight of traditional optical telescopes effectively, this article
proposes an electro-optical imaging technology based on a microlens array and fiber interferometer.
Pairs of microlenses in the microlens array collect light and couple it into a fiber interferometer
to form interference fringes. Then the amplitude and phase of a large number of interferometer
baselines are analyzed to generate images. In this work, the principle of electro-optical imaging
technology has been analyzed according to the partially coherent light theory. The microlens-array
arrangement method and baseline pairing method have been optimized for arbitrary targets. From
the simulation results, it was found that the imaging resolution depends on the maximum baseline
length, and the imaging quality could be effectively improved by adjusting the Nyquist sampling
density and baseline pairing method. This technology can provide an important reference for the
miniaturization and complanation of imaging systems.

Keywords: interference imaging; microlens array; fiber interference; Van Cittert–Zernike theory;
interference baseline

1. Introduction

Without considering the influence of astronomical observation, the imaging resolution of
traditional optical telescopes based on the principle of refraction can only be improved by increasing
the aperture. However, the manufacture of large-aperture optical telescopes is an enormously
expensive undertaking and also requires significant technical support. To overcome the limitations
of the image resolution by the size of a single aperture, many novel optical telescopes based on
interference imaging have been designed in recent years. For example, the Cambridge Optical
Aperture Synthesis Telescope (COAST) has achieved imaging [1], and J. A. Benson et al. completed
the Naval Prototype Optical Interferometer (NPOI) optical synthetic aperture telescope array and
successfully performed observation and image reconstruction [2,3]. In addition, several cutting-edge
electro-optical imaging systems have been designed to greatly reduce the volume and weight of
traditional optical telescopes, like the geosynchronous earth orbit (GEO) telescopes, which are an
interferometric imaging system with arrays of telescopes. Other approaches include that of combining
observations from a separated-element interferometer with interferometric data obtained by optical
masking of a single-dish telescope [4]. The most representative cutting-edge electro-optical imaging
system is the Segmented Planar Imaging Detector for Electro-Optical Reconnaissance (SPIDER),
which has been developed by Lockheed Martin and can realize a 10× to 100× reduction in size and
weight by replacing the traditional lens stacks with silicon chip photonic integrated circuits (PICs) [5–7].

Most of the above telescopes are based on astronomical light interference and optical synthetic
aperture imaging [8–10]. The optical synthetic aperture imaging technique is to improve the resolution
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of single aperture imaging by measuring the interference result between the observation plane aperture
pairs (ie, the spectral value of the observed target). In this technique, the interference fringe of a pair
of apertures corresponds to a spectral value of the target, so the complete spectrum of the target
is often obtained by changing the relative position between the pairs of apertures or increasing
the number of apertures. As we all know, the optical fiber optical path has the characteristics of
softness, long transmission distance and strong anti-interference. The use of optical fiber to realize
light interference is an important application of interference phenomenon, and will greatly reduce the
working distance of the interference system [11,12].

To reduce the volume and weight of traditional optical telescopes effectively, we propose in
this paper a cutting-edge electro-optical imaging technique based on a microlens array and fiber
interference. In this technique, the light from a scene was first collected by the microlens array and
then coupled into the fiber interferometer. Note that each microlens pair was coupled by fiber to form
an interference baseline, which had a significant effect on the imaging resolution. Thus, through the
optimal microlens arrangement and pairing method, we could complete spectrum sampling of the
scene and generate high-resolution images. To establish the optical simulation model, the imaging
principle based on the partial coherence theory was first studied first. Then, a complex rectangular
sub-aperture arrangement and a symmetrical baseline pairing method were proposed to improve the
imaging resolution and quality further. Moreover, we investigated the impact of spatial frequency
distribution (u, v) on imaging quality, including the resolution, field of view, and depth of focus of the
imaging system. The simulation results provide a valid reference for the design of the actual system.

2. Structure Design

The structure of the electro-optical imaging system, which consists of a microlens array,
fiber interferometer, and a processing module, is shown in Figure 1. The light information is collected
and coupled into the fiber interferometer by the microlens array. Then, the interference fringes are
detected and analyzed by the processing module. Finally, a computer generates an image based on the
amplitude and phase information extracted from the interference fringes. Each fiber interferometer
includes a pair of microlenses for measuring the spectrum of one baseline.

The spectral distribution measurement was determined by the arrangement and pairing of the
microlenses. As shown in Figure 1a, the rectangular microlens array uses a centrally symmetric baseline
pairing method (e.g., pentagram and pentagram, diamond and diamond, etc.). We also proposed a
complex rectangular sub-aperture arrangement method to optimize the microlens-array arrangement
(Figure 1b). The complex rectangular sub-aperture arrangement achieved different sampling intervals
at high, intermediate, and low frequencies.

The performance of the fiber interferometer is closely related to the quality of interference fringes,
whose core device is a 3-dB fiber coupler. Because achieving a fiber coupler coupling efficiency of
100% is difficult, the split ratio cannot be 1:1 [13]. Interference arm length differences of the fiber optic
interferometer will also introduce additional phase differences, which will eventually affect the true
reflection of the stripe contrast and phase.
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Figure 1. (a) Rectangular microlens array using a symmetric pairing method; (b) microlens array 
using a complex rectangular sub-aperture arrangement method; (c) structure of the fiber 
interferometer. 

3. Theory and Algorithm 

Figure 2 shows the principle and processes of the electro-optical imaging technology; they 
consist of four parts: interference between microlens pairs, calculation of complex degree of 
coherence according to fringes, spectral coverage, and image reconstruction. 

 

Figure 1. (a) Rectangular microlens array using a symmetric pairing method; (b) microlens array using
a complex rectangular sub-aperture arrangement method; (c) structure of the fiber interferometer.

3. Theory and Algorithm

Figure 2 shows the principle and processes of the electro-optical imaging technology; they consist
of four parts: interference between microlens pairs, calculation of complex degree of coherence
according to fringes, spectral coverage, and image reconstruction.
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Using the Van Cittert–Zernike theorem in partial coherence theory [8], this study analyzes
the mutual intensity of a light field illuminated by an incoherent source and reaches an important
conclusion: when the linearity of the source and observation area are much smaller than the distance
between them, the complex coherence coefficient over the observation area is proportional to the
normalized Fourier transform of the source intensity. According to the principle shown in Figure 2,
the complex coherence coefficient between Q1 and Q2 in aperture planes can be expressed as [14]:

µ(Q1, Q2) =

s +∞
−∞ o(α, β)exp

[
−j 2π

λz ((x2 − x1)α + (y2 − y1)β)
]
dαdβ

s +∞
−∞ o(α, β)dαdβ

(1)

{
u = ∆x

λz = (x2−x1)
λz

v = ∆y
λz = (y2−y1)

λz

(2)

According to Equation (2), the distance between the sub-apertures Q1 and Q2 in a pair is called the
interferometer baseline, which is closely related to the spatial frequency (u, v) of the detection scene.
Therefore, we can optimally arrange the microlens array and use a better baseline-pairing method to
realize spatial frequency coverage. Equations (1) and (2) provide a theoretical basis for interference
imaging, which is different from the aberration imaging theory and the diffraction imaging principle.

The first step in reconstructing the image is to solve the complex coherence coefficient of a pair of
lenses. According to the partial coherence theory, the complex coherence coefficient of two apertures
on the observation plane can be determined by measuring the interference fringes. The second step
is to change the interference baseline and repeat the first step to achieve spectral coverage. Finally,
the solution result is substituted into the Equations (1) and (2), and the inverse intensity of the target
scene is obtained by using the inverse Fourier transform. The detailed process and the simplified
version of the program are shown in Algorithm 1.

Algorithm 1. Imaging process and reconstruction algorithm. Solving fringes and image reconstruction

1: Initial(obj,aperture, . . . );
2: for i,j = 1: (size(aperture)) //Step2: Change the interference baseline
3: for s,t = 1: max max(size(obj)) //Step1: Solve one complex coherence
coefficient
4: ∆phase = 2π/λ*d(s,t);
5: I1 = Σ(1 + I0*cos(∆phase)); I2 = Σ(1 + I0*cos(∆phase + π/2)); //Interference fringe
expression
6: I3 = Σ(1 + I0*cos(∆phase + π)); I4 = Σ(1 + I0*cos(∆phase + 3π/2));
7: end
8: absIM(i,j) = actan((I4 − I2)/(I1 − I3)); //Amplitude and phase
9: angIM(i,j) = (I4 − I2)/2/sin(angIM);
10: end
11: IM = absIM*exp(angIM);
12: im = fftshift(ifft2(IM)); //Step3: Image reconstruction

If the interference fringe coordinate system is omitted, the fiber interference fringe intensity of
any interference baseline can be expressed as [15]:

I = I0(1 + |µ| cos(ϕ)) (3)

In current interferometric measurements, the most commonly used phase calculation method
is the four-step phase shift algorithm. This type of algorithm has extremely high measurement
accuracy, anti-interference, and high calculation speed [16–18]. In this study, the visibility and phase
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of interference fringes are calculated by a four-step phase shift formula. The result can be expressed
as [17,18]: 

I1 = I0(1 + |µ| cos(ϕ))

I2 = I0(1 + |µ| cos(ϕ + π/2))
I3 = I0(1 + |µ| cos(ϕ + π))

I4 = I0(1 + |µ| cos(ϕ + 3π/2))

(4)

 ϕ = tan−1
(

I4−I2
I1−I3

)
|µ| = I4−I2

2 sin ϕ

(5)

We adopt the parameters in Table 1 to simulate a point source imaging process rectangular
microlens array, and the results are shown in Figure 3. For the numerical simulation, we used a
square-arranged microlens array and a centrally symmetric arrangement. Figure 3a presents the light
intensity distribution of the target source. Figure 3b shows the detected spatial frequency distribution.
Figure 3c shows the image obtained by an inverse Fourier transform. The results validate the imaging
principle and simulation model.

Table 1. Simulation parameters of the imaging system.

Parameters Symbol Value

Object plane
Scene side length D 30 m

Number of samples Nob 200 × 200

Aperture plane
Sampling interval ∆u∆v 0.33 m−1

Number of microlenses Nap 200 × 200

Diameter of microlens r 1 mm

Image plane Number of samples Nim 1200 × 1200

System
Wavelength λ 600 nm

Object distance z 105 m
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Figure 3. (a) Light intensity distribution of target source; (b) detected spatial frequency distribution;
(c) image obtained by inverse Fourier transform.

4. Numerical Simulation of the Imaging System

According to the point-source imaging simulation, as compared with the target source (Figure 3a),
the reconstructed image (Figure 3c) is obviously poor. Therefore, we perform further simulations by
changing the system parameters in order to evaluate the imaging resolution and quality.

First, we only change Nob, to simulate a resolution panel. With the same sampling interval,
Nob determines the maximum interference baseline length (Bmax). According to imaging Equations (1)
and (2), the larger the interference baseline length, the richer the high-frequency information contained,
and the higher the imaging resolution. The imaging achieved by the system when the maximum
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baseline (Bmax) is 1.5, 1.7, and 1.9 is shown in Figure 4a–c. It is obvious that the image resolution
was up to the length of the maximum baseline. This result also provides a basis for improving the
resolution of the imaging system.
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The Nyquist sampling density affects the detected spatial frequency distribution. An extremely
small sampling density can result in the loss of target information. In contrast, a high sampling
density leads to information redundancy. However, the minimum sampling interval is limited to the
sub-aperture size (r). Therefore, we have performed several repeated digital simulation experiments
on the relationship between sampling density and imaging quality.

In this regard, we introduce a sharpness evaluation function to evaluate the image quality.
The commonly used spatial domain functions for sharpness evaluation are listed in the literature,
among which the spatial domain functions represented by the variance function and the entropy
function perform better [19]. We use two imaging quality evaluation methods based on gray variance
and entropy function.

We use the resolution board as the source target and change the sampling interval. The relationship
between the value of the gray-scale variance and entropy and the sampling interval is shown in Figure 5.
We see that the imaging quality can be improved by increasing the sampling density, although these
two evaluation functions are not sensitive to small local changes. In addition, the imaging system has
no oversampling when the minimum sampling density is equal to the sub-aperture size (4u = 0.33).
Thereafter, we used a photograph of an airplane (Figure 6) as the original target to perform the same
simulation. Based on the results (Figure 7), we draw the same conclusion, although we compare the
image quality visually in this case.
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Figure 7. Image reconstruction result of digital simulation experiment when (a)4u = 0.33, Nap = 200;
(b)4u = 0.40, Nap = 166; (c)4u = 0.50, Nap = 134.

It is well known that different sources have different frequency information. For some sources,
the frequency information was concentrated in the low-frequency part; therefore, the sampling density
was increased to obtain a high-quality image. This resulted in a corresponding increase in system
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complexity. A satellite was used as the detection target; from the simulation results (Figure 8), it can
be seen that the spectrum information of the satellite image is concentrated in the low-frequency
part. We attempted to improve the image quality without increasing the number of microlenses, i.e.,
the complexity of the system. Then, the complex rectangular sub-aperture arrangement method was
adopted to adjust the sampling density at high and low frequencies separately.

In the results presented in Figure 8, the sampling interval is uniformly set to4u = 0.33. In Figure 9,
the sampling spectrum is divided into two parts, a high frequency and a low frequency, and the
sampling intervals are respectively set to4u1 = 0.19,4u2 = 0.38. Similarly, the sampling intervals are
set to4u1 = 0.33,4u2 = 0.66,4u3 = 1.3 in Figure 10. The above settings ensure that the number of
microlenses used in the three sampling modes is nearly equal.

The simulation results are shown in Figures 8–10. Visual comparison shows no difference in
image quality. This shows that the complex rectangular sub-aperture arrangement method proposed
in this paper is feasible. We use variance and entropy to evaluate the subtle differences between
the images. The results are presented in Table 2, which proves that higher-quality images could be
obtained with the same number of microlenses.

Table 2. Imaging process and reconstruction algorithm.

The Number of
Complex Arrangements Parameter Variance Entropy

1 4u = 0.33, N = 200 1.5087 × 108 3.7735
2 4u1 = 0.66,4u2 = 0.99, N = 200 1.4983 × 108 3.7765
3 4u1 = 0.33,4u2 = 0.66, u3 = 1.3, N = 200 1.6364 × 108 3.8652
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Figure 10. (a) Mutual intensity spectrum detected with the complex rectangular sub-aperture
arrangement method (4u1 = 0.33, 4u2 = 0.66, 4u3 = 1.3, N = 200); (b) partial enlargement of
the spectrum; (c) actual imaging of the system.

5. Conclusions

This paper proposes a cutting-edge electro-optical imaging technology based on a microlens array
and fiber interferometer, a centrally symmetric baseline pairing method, and a complex rectangular
sub-aperture arrangement method. We then briefly analyze the theoretical basis of the imaging system
and the method of analyzing the fringes. Finally, the imaging system was verified by digital simulation.

The main conclusions are as follows: (1) the resolution of the imaging system can only be improved
by increasing the maximum baseline length; (2) increasing the Nyquist sampling density increases the
density of the spatial frequency points and improves the imaging quality; (3) by adopting the complex
rectangular sub-aperture arrangement, better image quality can be obtained without increasing the
complexity of the imaging system.
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