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Abstract: This paper presents control algorithms for multiple non-holonomic mobile robots moving
in formation. Trajectory tracking based on linear feedback control is combined with inter-agent
collision avoidance. Artificial potential functions (APF) are used to generate a repulsive component
of the control. Stability analysis is based on a Lyapunov-like function. Then the presented method is
extended to include a goal exchange algorithm that makes the convergence of the formation much
more rapid and, in addition, reduces the number of collision avoidance interactions. The extended
method is theoretically justified using a Lyapunov-like function. The controller is discontinuous
but the set of discontinuity points is of zero measure. The novelty of the proposed method lies
in integration of the closed-loop control for non-holonomic mobile robots with the distributed
goal assignment, which is usually regarded in the literature as part of trajectory planning problem.
A Lyapunov-like function joins both trajectory tracking and goal assignment analyses. It is shown
that distributed goal exchange supports stability of the closed-loop control system. Moreover, robots
are equipped with a reactive collision avoidance mechanism, which often does not exist in the known
algorithms. The effectiveness of the presented method is illustrated by numerical simulations carried
out on the large formation of robots.

Keywords: formation of robots; non-holonomic robot; stability analysis; Lyapunov-like function;
target assignment; goal exchange; path following; switching control

1. Introduction

The idea to use artificial potential fields to control manipulators and mobile robots was introduced
by Khatib [1] in 1986. In this approach both attraction to the goal and repulsion from the obstacles are
negated gradients of the artificial potential functions (APF). His paper not only presents the theory,
but also a solution of the practical problem, implemented in the Puma 560 robot simulator. It is worth
noting that much earlier, in 1977, Laitmann and Skowronski [2] investigated control of two agents
avoiding collision with each other. This work was purely theoretical. The authors continued their
work in the following years [3].

Since the 1990s, intensive research on the trajectory tracking control for non-holonomic mobile
robots has been conducted [4–6]. The algorithm presented further in this paper is based on the method
from [4]. This method considers a single, differentially-driven mobile robot moving in a free space.
Its goal is to track a desired trajectory. The paper includes a stability analysis.

The last decade has seen a lot of publications on multiple mobile robot control. In [7], the goal of
multiple mobile robots is to track desired trajectories avoiding inter-agent collisions. The same type of
task is considered further in this paper. The tracking controller is different, as is the formula of APF,
but the method of combining trajectory tracking and collision avoidance is the same. In [8], the same
type of task is considered, but the dynamics of mobile platforms and uncertainties of its parameters
are taken into account. Kowalczyk et al. [9] propose a vector-field-orientation algorithm for multiple
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mobile robots moving in the environment with circle shaped static obstacles. The dynamic properties
of mobile platforms are also taken into account. The paper [10] presents a kinematic controller for the
formation of robots that move in a queue. The goal is to keep desired displacements between robots and
avoid collisions in the transient states. Hatanaka et al. [11] investigate a cooperative estimation problem
for visual sensor networks based on multi-agent optimization techniques. The paper [12] addresses
the formation control problem for fleets of autonomous underwater vehicles. Yoshioka et al. [13] deal
with formation control strategies based on virtual structure for multiple non-holonomic systems.

Recent years have also seen a number of publications on barrier functions. In [14], coordination
control for a group of mobile robots is combined with collision avoidance provided by a safety barrier.
If the coordination control command leads to collision, the safety barrier dominates the controller and
computes a safe control closest to coordination control law. In the method proposed in [15] control
barrier functions are unified with performance objectives expressed as control Lyapunov functions.
The authors of the paper [16] provide a theoretical framework to synthesize controllers using finite time
convergence control barrier functions guided by linear temporal logic specifications for continuous
time multi-agent systems.

The paper [17] addresses the problem of optimal goal assignment for the formation of holonomic
robots moving on a plane. A linear bottleneck assignment problem solution is used to minimize the
maximum completion time or maximum distance for any robot in the formation. The authors of [18]
consider formation of non-holonomic mobile vehicles that has to change the geometrical shape of
the formation. Goal assignment minimizes the total distance travelled by agents. The exemplary
application indicated by the authors is reconfiguration of the formation when it approaches a narrow
passage. In [19,20], goal assignment based on distances squared is proposed and tested for large
formations, but the collision avoidance is resolved at the trajectory planning level. This makes this
approach less robust in the case of unpredictable disturbances (which are natural in real applications).
The second of these papers proposes a solution to the problem of collision avoidance with static and
dynamic obstacles present in the environment. In [21], collision avoidance is obtained by applying
safety constraints in optimal trajectory generation. The robots do not have non-holonomic constraints
(they are quadrotors) and they have to change the shape of the formation using goal assignment
that minimizes the total distance travelled by the robots. Turpin et al. [22] present concurrent
assignment and planning of trajectories (CAPT) algorithms. The authors propose two variations
of the algorithm: centralized and decentralized, and test them on a group of holonomic mobile robots
moving in a three-dimensional space. The solution is based on the Hungarian assignment algorithm.
The above-mentioned works do not deal with the problem of closed-loop control. For this reason
stability issues were not considered there.

In comparison to the above two approaches, here the user or the higher level controller determines
the locations of desired trajectories according to the needs (this can be considered as an expected feature
in many applications). In addition, trajectory generation is decoupled from the closed-loop control
(the system is modular). Such a solution is considered as a design pattern in robotics. The algorithm
is responsible for tracking these trajectories and reacting to the risk of collisions between agents
at the same time. Even if initial states of individual robots are far from the desired ones, the
collision avoidance module works correctly. Furthermore, the algorithm characterizes conceptual and
computational simplicity. The paper considers preserving data integrity during the goal exchange as it
requires a simultaneous change of states in remote systems. This subject is omitted in the literature
on goal assignment in multi-robot systems. To the best of the author’s knowledge, no work has been
published so far that proposes closed-loop control for multiple non-holonomic mobile robots combined
with target assignment with analysis based on a Lyapunov-like function for both the tracking algorithm
and target assignment. Panagou et al. [23] propose a similar method, but it assumes that agents are
fully-actuated (modeled using integrators), and the analysis is based on multiple Lyapunov-like
functions. This algorithm also uses a different criterion for goal exchange.
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The algorithm proposed in this paper is applicable mainly to the homogeneous formations of
non-holonomic mobile robots but also in the scenarios when two or more robots of the same type are
involved in task execution. For a high number of applications of multiple mobile robots this situation
occurs, e.g., exploration, mapping, safety, and surveillance.

In Section 2 a control algorithm for the formation of non-holonomic mobile robots is described.
Section 3 analysis stability. The simulation results are presented in Section 4. The goal exchange
algorithm is introduced in Section 5. Section 6 provides stability analysis of extended algorithm.
Section 7 details distributed implementation. Some generalization of the proposed goal exchange rule
is given in Section 8. Section 9 discusses the problem of maintaining data integrity in the process of
the goal exchange. Section 10 offers simulation results for the goal exchange algorithm. Section 11
presents simulation results for limited wheel velocity controls. In the last Section concluding remarks
are provided.

2. Control Algorithm

The kinematic model of the i-th differentially-driven mobile robot Ri (i = 1 . . . N, N—number of
robots) is given by the following equation:

q̇i =

 cos θi 0
sin θi 0

0 1

 ui (1)

where vector qi = [xi yi θi]
> denotes the pose and xi, yi, θi are the position coordinates and orientation

of the robot with respect to a global, fixed coordinate frame. Vector ui =
[
vi ωi

]>
is the control

vector with vi denoting the linear velocity and ωi denoting the angular velocity of the platform.
The task of the formation is to follow the virtual leader that moves with desired linear and angular

velocities [vl ωl ]
T . The robots are expected to imitate the motion of the virtual leader. They should

have the same velocities as the virtual leader. The position coordinates [xl yl ]
T of the virtual leader

are used as a reference position for the individual robots but each of them has different displacement
with respect to the leader:

xid = xl + dix yid = yl + diy, (2)

where [dix diy]
T is desired displacement of the i-th robot. As the robots position converge to the

desired values their orientations θi converge to the orientation of the virtual leader θl .
The collision avoidance behaviour is based on the APF. This concept was originally proposed

in [1]. All robots are surrounded by APFs that raise to infinity near objects border rj (j—number of the
robots/obstacles) and decreases to zero at some distance Rj, Rj > rj.

One can introduce the following function [6]:

Baij(lij) =


0 for lij < rj

e
lij−rj
lij−Rj for rj ≤ lij < Rj
0 for lij ≥ Rj

, (3)

that gives output Baij(lij) ∈ 〈0, 1). The distance between the i-th robot and the j-th robot is defined as
the Euclidean length lij =

∥∥[xj yj]
> − [xi yi]

>∥∥.
Scaling the function given by Equation (3) within the range 〈0, ∞) can be given as follows:

Vaij(lij) =
Baij(lij)

1− Baij(lij)
, (4)

that is used later to avoid collisions.
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In further description, the terms ‘collision area’ or ‘collision region’ are used for locations fulfilling
the condition lij < rj. The range rj < lij < Rj is called ‘collision avoidance area’ or ‘collision
avoidance region’ (Figure 1).
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Figure 1. Artificial potential functions (APF) as a function of distance to the centre of the robot (indexes
omitted for simplicity).

The goal of the control is to drive the formation along the desired trajectory avoiding collisions
between agents. It is equivalent to bringing the following quantities to zero:

pix = xid − xi

piy = yid − yi

piθ = θl − θi. (5)

Assumption 1. ∀{i, j}, i 6= j, ||[xid yid]
T − [xjd yjd]

T || > Rj.

Assumption 2. If robot i gets into the collision avoidance region of any other robot j, j 6= i its desired
trajectory is temporarily frozen (ẋid = 0, ẏid = 0). If the robot leaves the avoidance area its desired coordinates
are immediately updated. As long as the robot remains in the avoidance region, its desired coordinates are
periodically updated at certain discrete instants of time. The time period tu of this update process is relatively
large in comparison to the main control loop sample time.

Assumption 1 comes down to the statement that desired paths of individual robots are planned
in such a way that in steady state all robots are out of the collision avoidance regions of other robots.

Assumption 2 means that the tracking process is temporarily suspended because collision
avoidance has a higher priority. Once the robot is outside the collision detection region, it updates the
reference to the new values. In addition, when the robot is in the collision avoidance region its reference
is periodically updated. This low-frequency process supports leaving the unstable equilibrium points
that occur e.g., when one robot is located exactly between the other robots and its goal.

The system error expressed with respect to the coordinate frame fixed to the robot is
described below:  eix

eiy
eiθ

 =

 cos(θi) sin(θi) 0
− sin(θi) cos(θi) 0

0 0 1


 pix

piy
piθ

 . (6)
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Using the above equations and non-holonomic constraint ẏi cos(θi) − ẋi sin(θi) = 0 the error
dynamics between the leader and the follower are as follows:

ėix = eiyωi − vi + vl cos eiθ

ėiy = −eixωi + vl sin eiθ

ėiθ = ωl −ωi. (7)

One can introduce the position correction variables that consist of position error and collision
avoidance terms:

Pix = pix −
N

∑
j=1,j 6=i

∂Vaij

∂xi

Piy = piy −
N

∑
j=1,j 6=i

∂Vaij

∂yi
. (8)

Vaij depends on xi and yi according to Equation (5). It is assumed that the robots avoid collisions
with each other and there are no other obstacles in the taskspace. The correction variables can be
transformed to the local coordinate frame fixed in the mass centre of the robot: Eix

Eiy
eiθ

 =

 cos(θi) sin(θi) 0
− sin(θi) cos(θi) 0

0 0 1


 Pix

Piy
piθ

 . (9)

Differentiating the first two equations of (5) with respect to the pix and piy respectively one obtains:

∂xi
∂pix

= −1
∂yi
∂piy

= −1. (10)

Using (10) one can write:

∂Vaij

∂pix
=

∂Vaij

∂xi

∂xi
∂pix

= −
∂Vaij

∂xi

∂Vaij

∂piy
=

∂Vaij

∂yi

∂yi
∂piy

= −
∂Vaij

∂yi
. (11)

Taking into account Equations (8) and (9) the gradient of the APF can be expressed with respect
to the local coordinate frame fixed to the i-th robot: ∂Vaij

∂eix
∂Vaij
∂eiy

 =

[
cos θi sin θi
− sin θi cos θi

]  ∂Vaij
∂pix
∂Vaij
∂piy

 . (12)

Equation (12) can be verified easily by taking partial derivatives of Vaij(dix − pix, diy − piy) =

Vaij(dix − pix(eix, eiy), diy − piy(eix, eiy)) with respect to eix, eiy and taking into account the inverse
transformation of the first two equations of Equation (6).

Using Equation (11), the above equation can be written as follows: ∂Vaij
∂eix
∂Vaij
∂eiy

 =

[
− cos θi − sin θi

sin θi − cos θi

]  ∂Vaij
∂xi

∂Vaij
∂yi

 . (13)
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Equations (9) and (12) can be transformed to the following form:

Eix = pix cos(θi) + piy sin(θi) +
N

∑
j=1,j 6=i

∂Vaij

∂eix

Eiy = −pix sin(θi) + piy cos(θi) +
N

∑
j=1,j 6=i

∂Vaij

∂eiy

eiθ = piθ , (14)

where each derivative of the APF is transformed from the global coordinate frame to the local
coordinate frame fixed to the robot. Finally, the correction variables expressed with respect to the local
coordinate frame (Figure 2) are as follows:

Eix = eix +
N

∑
j=1,j 6=i

∂Vaij

∂eix

Eiy = eiy +
N

∑
j=1,j 6=i

∂Vaij

∂eiy
. (15)

Figure 2. Robot in the environment with an obstacle.

Note the similarity of the structure of Equations (8) (updated by Equations (11)) and (15).
The trajectory tracking algorithm from [4] was chosen based on the author’s experience. It is

simple, easy to implement, and, above all, it is effective. Tracking control with persistent excitation [24]
and the vector-field-orientation method [25] were also taken into account. The former gives much
worse convergence time, the latter gives even better convergence but it is more difficult to implement
on a real robot.

The control for N robots extended by the collision avoidance is as follows:

vi = vl cos eiθ + k1Eix
ωi = ωl + k2sgn(vl)Eiy + k3eiθ ,

(16)
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where k1, k2 and k3 are positive constant design parameters.

Assumption 3. If the value of the linear control signal is less than considered threshold value vt, i.e., |v| < vt

(vt-positive constant), it is replaced with a new value ṽ = S(v)vt, where

S(v) =

{
−1 for v < 0
1 for v ≥ 0

, (17)

(indexes omitted for simplicity).

Substituting Equation (16) for (7) error dynamics is given by the following equations:

ėix = eiyωi − k1Eix
ėiy = −eixωi + vl sin eiθ

ėiθ = −k2sgn(vl)Eiy − k3eiθ

. (18)

Transforming (18) using (16) and taking into account Assumption 2 (when the robot gets into the
collision avoidance region, in the collision avoidance state, velocities vl and ωl are replaced with 0
value) error dynamics can be expressed in the following form:

ėix = k3eiyeiθ − k1Eix
ėiy = −k3eiθeix

ėiθ = −k3eiθ

. (19)

Orientation error eiθ decreases exponentially to zero (refer to the last equation in (19)).
In Figure 3 a schematic diagram of the control system is presented. The following signal vectors

are marked: [x y]T = [x1 . . . xN y1 . . . yN ]
T , θ = [θ1 . . . θN ]

T , [xd yd]
T = [x1d . . . xNd y1d . . . yNd]

T ,
[v ω]T = [v1 . . . vN ω1 . . . ωN ]

T , [px py]T = [p1x . . . pNx p1y . . . pNy]
T , [ex ey]T =

[e1x . . . eNx e1y . . . eNy]
T , [Ex Ey]T = [E1x . . . ENx E1y . . . ENy]

T .

Figure 3. Control system.

3. Stability of the System

In this section stability analysis of the closed-loop system is presented. When the i-th robot is out
of the collision regions of the other robots (APF takes the value zero) the analysis given in [4] is actual
and will not be repeated here. Further the analysis for the situation in which the i-th robot is in the
collision region of other robot is presented.

For further analysis a new variable is introduced: θiE = Atan2(−Eiy,−Eix) (Atan2(•, •) is
a version of the Atan(•) function covering all four quarters of the Euclidean plane)—auxiliary
orientation variable.
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Proposition 1. The system (1) with controls (16) is stable if the desired trajectories fulfil the condition
θiE /∈

〈
π
2 ± θE∆ ± πd

〉
(d = 0,±1,±2, ...), where θE∆ is a small constant.

As stated in [7], if θiE ∈
〈

π
2 ± θE∆ ± πd

〉
(the combination of obstacle position and reference

trajectory drive the robot into the neighbourhood of a singular configuration where the condition in
Proposition 1 does not hold) one solution is to add perturbation to the desired signal. The system
can also leave the neighbourhood of the singularity easily since the robot can reorient itself in place if
the condition is not satisfied. This requires a special procedure to be implemented, which will not be
discussed here.

Proof. Consider the following Lyapunov-like function:

V =
N

∑
i=1

[
1
2
(e2

ix + e2
iy + e2

iθ) +
N

∑
j=1,j 6=i

Vaij

]
. (20)

When the robot is outside of the collision avoidance region, i.e., lij ≥ Rj, the system is equivalent
to the one presented in [4] (robot moving in a free space) and stability analysis presented in this paper
still holds.

If the robot is in the collision avoidance region of the other robot time derivative of the
Lyapunov-like function is calculated as follows:

dV
dt

=
N

∑
i=1

[
eix ėix + eiy ėiy + eiθ ėiθ +

N

∑
j=1,j 6=i

(
∂Vaij

∂eix
ėix +

∂Vaij

∂eiy
ėiy

)]
. (21)

Taking into account Equation (15) the above formula can be transformed to the following form:

dV
dt

=
N

∑
i=1

[
Eix ėix + Eiy ėiy + eiθ ėiθ

]
. (22)

Next, using Equation (19) one obtains:

V̇ =
N

∑
i=1

[
k3Eixeiyeiθ − k3Eiyeixeiθ − k3e2

iθ − k1E2
ix

]
. (23)

Substituting Eix = Di cos θiE and Eiy = Di sin θiE, Di =
√

E2
ix + E2

iy in the above equation
one obtains:

V̇ =
N

∑
i=1

[
k3Di cos θiEeiyeiθ − k3D sin θiEeixeiθ − k3e2

iθ − k1D2
i cos2 θiE

]
=

N

∑
i=1

[
−1

2
k3e2

iθ + k3Di cos θiEeiyeiθ −
1
2

k3e2
iθ + k3Di sin θiEeixeiθ − k1D2

i cos2 θiE

]

=
N

∑
i=1

{
−k3

[
(

eiθ√
2
− 1√

2
Di cos θiEeiy)

2 − 1
2

D2
i cos2 θiEe2

iy

]
−k3

[
(

eiθ√
2
+

1√
2

Di sin θiEeix)
2 − 1

2
D2

i sin2 θiEe2
ix

]
− k1D2

i cos2 θiE

}
.
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To simplify further calculations, new scalar functions are introduced:

ai =
eiθ√

2
− 1√

2
Di cos θiEeiy, bi =

eiθ√
2
+

1√
2

Di sin θiEeix. (24)

Taking into account (24) V̇ can be written as follows:

V̇ =
N

∑
i=1

[
−k3a2

i − k3b2
i − k1D2

i cos2 θiE +
1
2

k3D2
i cos2 θiEe2

iy +
1
2

k3D2
i sin2 θiEe2

ix

]
(25)

V̇ ≤
N

∑
i=1

[
−k3a2

i − k3b2
i − k1D2

i cos2 θiE +
1
2

k3D2
i e2

iy +
1
2

k3D2
i e2

ix

]
. (26)

The closed-loop system is stable (V̇ ≤ 0) if the following condition is fulfilled:

N

∑
i=1

[
k1 cos2 θiE −

1
2

k3(e2
ix + e2

iy)

]
> 0. (27)

As cos2 θiE > 0 because of the assumption in Proposition 1 it cannot be arbitrarily small, the
condition (27) can be met by setting a sufficiently high value of k1 or by reducing k3.

Note that the error dynamics (19) with frozen reference velocities can be decomposed into
two subsystems (Figure 4). The origin of the system Σ2 is exponentially stable if k3 > 0. Each of
the subsystems is input to state stable (ISS). Stability of the origin may be concluded invoking the
small-gain theorem for ISS systems [26].

Figure 4. Diagram of the control system in the collision avoidance mode.

The boundedness of the output of the collision avoidance subsystem is necessary to prove stability.

Taking the first equation in (19), one can state that if
∂Vaij
∂eix

is sufficiently high (that happens if the
robot is very close to the obstacle; there is no problem of boundedness in the other cases (refer to the

properties of the APF, Figure 1)), i.e.,
∂Vaij
∂eix
� eix,

∂Vaij
∂eix
� eiy, and

∂Vaij
∂eix
� eiθ the error dynamics can be

approximated as follows:

ėix
∼= −k1

∂Vaij

∂eix
. (28)
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From the Equation (28) it is clear that ėix and
∂Vaij
∂eix

have different signs and as a result
∂Vaij
∂eix

ėix < 0.

To fulfil the condition that V̇aij =
∂Vaij
∂eix

ėix +
∂Vaij
∂eiy

ėiy is less than zero the second term on the right hand
side must be less than the first one taking their absolute values. This can be obtained by reducing k3

parameter (refer to Equation (16)). The property V̇aij ≤ 0 guarantees boundedness of both Vaij and
∂Vaij
∂eix

.
Finally one can state that the collision avoidance block that is input to the system shown in Figure 4
also has bounded output and both error components eix and eiy in Σ1 are bounded.

The above is true if the robot is not located close to the boundary of more than one robot at a time.
This situation is unlikely because it leads to high controls that increase the distance between the robots
quickly and therefore this will not be considered further.

As shown in [7] collision avoidance is guaranteed if V̇aij ≤ 0 and lim||[xi yi ]>−[xj yj ]> ||→r+ Vaij =

+∞, i 6= j.
Each robot needs information about positions of other robots in its neighbourhood to avoid

collision (their orientations are not needed). It can be obtained using on-board sensors with the range
equal to or greater than R. In addition, robots need to know their position and orientation errors
to calculate the tracking component of the control. This requirement imposes the use of a system
allowing localization with respect to the global coordinate frame, because usually, the motion task is
defined with respect to it. The author plans to conduct experiments on real robots in the near future.
The OptiTrack motion capture system will be used to obtain coordinates of robots (positions and
orientations) which is enough for control purposes.

4. Simulation Results

In this section a numerical simulation for a group of N = 48 mobile robots is presented. The initial
coordinates (both positions and orientations) were random. The goal of the formation was to follow a
circular reference trajectory at the same time avoiding collisions between agents. The formation had a
shape of a circle. The assignments of robots to particular goal points were also random.

The following settings of the algorithm were used: k1 = 0.5, k2 = 0.5, k3 = 1.0, tu = 1 s, r = 0.3 m,
R = 1.2 m.

Figure 5a shows paths of robots on the (x, y) plane. To make the presentation clearer in Figure 5a–g
signals of 45 robots are grey while the 3 selected ones are highlighted in black. In Figure 5h the three
selected inter-agent distances are highlighted in black. Figure 5b,c present graphs of x and y coordinates
as a function of time. The robots converged to the desired values in 115 s. Figure 5d shows a time graph
of the orientations. In Figure 5e,f linear and angular controls, respectively, are shown. Initially and in
the transient state, their values were high, exceeding the maximum values of a typical mobile platform.
In practical implementation, they should be scaled down to realizable values. Figure 5g presents a
time graph of the freeze procedure (refer to Assumption 2) of all robots. Although the drawings are
not easily readable (because they include the ‘freeze’ signal of all robots), one can interpret that the
last collision avoidance interaction ends in 108 s. In Figure 5h relative distances between robots are
shown. Important information that can be read from this drawing is that no pair of robots reaches
the inter-agent distance lower than or equal to r = 0.3 m (dashed line). This means that no collision
has occurred.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. Numerical simulation 1: trajectory tracking for N = 48 robots. (a) locations of robots in
xy-plane, (b) x coordinates as a function of time, (c) y coordinates as a function of time, (d) robot
orientations as a function of time, (e) linear velocity controls, (f) angular velocity controls, (g) ‘freeze’
signals, (h) distances between robots.
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5. Goal Exchange

This section presents a new control that introduces the ability to exchange goal between agents.
The block diagram of the new control is shown in Figure 6. Two new blocks are included: goal

switching and permutation block.

Figure 6. Control system with goal switching.

In the method proposed here Equation (2) is replaced as follows:

x̄id = xl + dix ȳid = yl + diy. (29)

The new variables x̄id and ȳid are not representing the goal position of robot i, but the goal that
can be assigned to any robot in the formation.

One can introduce the following aggregated goal coordinate vectors: x̄d = [x̄1d . . . x̄Nd]
T and

ȳd = [ȳ1d . . . ȳNd]
T (numbers in lower index represent the numbers of the goals). The assignment of

goals to particular robots is computed using N × N permutation matrix P(t):

xd = P(t)x̄d yd = P(t)ȳd. (30)

Resulting vectors contained goal coordinates assigned to particular robots xd = [x1d . . . xNd]
T

and yd = [y1d . . . yNd]
T (number in lower index represents the number of the robot).

An additional control loop is introduced that acts asynchronously to the main control loop
(Figure 6).

Let’s assume that at some instant of time t1 an arbitrary goal m is assigned to the robot k and
another goal n is assigned to the robot l. This can be written as:

[xkd ykd]
T = [x̄md ȳmd]

T

[xld yld]
T = [x̄nd ȳnd]

T .
(31)

There are ones in permutation matrix P(t1) at element (m, k) and (n, l) and all other elements in
rows m, n and columns k, l were zero.

At some discrete instant in time ts >= t1 for the pair of robots k and l and their goals m and n the
following switching function was computed:

σ =

{
1 if ||pmk||2 + ||pnl ||2 > ||pnk||2 + ||pml ||2
0 otherwise

, (32)

where pij = [x̄id − xj ȳid − yj]
T .

If the switching function σ takes the value of 1 matrix P is changed as follows:

P(t) = SmnP(t−s ), (33)
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where P(t−s ) is the permutation matrix before switching.
The elementary matrix Smn is a row-switching transformation. It swaps row m with row n and it

takes the following form:

Smn =



1 0 . . . 0 . . . 0 . . . 0 0
0 1 . . . 0 . . . 0 . . . 0 0
...

...
...

...
...

...
0 0 . . . 0 . . . 1 . . . 0 0
...

...
...

...
...

...
0 0 . . . 1 . . . 0 . . . 0 0
...

...
...

...
...

...
0 0 . . . 0 . . . 0 . . . 1 0
0 0 . . . 0 . . . 0 . . . 0 1


↑ ↑

m-th n-th
col. col.

← m-th row

← n-th row
. (34)

Transformation (33) describes a process of the goal exchange between agents k and l at time ts.
After that goal m, was assigned to robot l and goal n was assigned to robot k that is equivalent to the
following equalities:

[xkd ykd]
T = [x̄nd ȳnd]

T

[xld yld]
T = [x̄md ȳmd]

T .
(35)

Note that the process of goal exchange is asynchronous with the main control loop. It operated at
lower frequency because it required communication between remote agents, which is time consuming.
The low frequency subsystem is highlighted in grey in Figure 6.

6. Stability of the System with Target Assignment

The goal exchange procedure significantly improves system convergence and reduces the number
of collision avoidance interactions between agents. On the other hand, its execution time was not
critical for the control of the system.

Stability analysis of the control system with goal switching was conducted using the same
Lyapunov-like function (20) as in Section 3.

Proposition 2. The procedure given by Equation (33) results in a decrease of the Lyapunov-like function
Equation (20).

Proof. A hypothetical position error pij can be expressed in a local coordinate frame by the
following transformation

eij =

[
cos(θj) sin(θj)

− sin(θj) cos(θj)

]
pij. (36)

that is invariant under scaling, and thus, the following equality holds true:

||eij|| = ||pij|| (37)

(notice that index i is the number of the goal and index j is the number of the robot).
Using Equation (37) the switching function (32) can be rewritten as follows:

σ =

{
1 if ||emk||2 + ||enl ||2 > ||enk||2 + ||eml ||2
0 otherwise

. (38)
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To carry out further analysis the Lyapunov-like function (20) will be rewritten as follows:

V =

Vθ︷ ︸︸ ︷
N

∑
i=1

1
2

e2
iθ +

Va︷ ︸︸ ︷
N

∑
i=1

N

∑
j=1,j 6=i

Vaij +
1
2
(e2

1x + e2
1y) + . . . (39)

+
1
2
(e2

kx + e2
ky)︸ ︷︷ ︸

Vpk

+ . . . +
1
2
(e2

lx + e2
ly)︸ ︷︷ ︸

Vpl

+ . . . +
1
2
(e2

Nx + e2
Ny).

Terms Vpk and Vpl are related to the position errors of robot k and l, respectively. Notice that other
terms of the Lyapunov-like function V are invariant under goal assignment as Va depends only on
the distances between agents and Vθ remains constant because all agents share the same reference
orientation θl . The position error terms related to robots that were not involved in goal exchange were
also invariant under goal exchange.

Two cases will be considered further: case 1 at t−s , and case 2 at ts.
In case 1 the sum of position terms of robots k and l can be transformed using (36) and (31)

as follows:

Vp1 = Vpk + Vpl =
1
2
(e2

kx + e2
ky) +

1
2
(e2

lx + e2
ly)

=
1
2
||[ekx eky]

T ||2 + 1
2
||[elx ely]

T ||2

=
1
2
||[pkx pky]

T ||2 + 1
2
||[plx ply]

T ||2

=
1
2
(p2

kx + p2
ky) +

1
2
(p2

lx + p2
ly)

=
1
2
([xkd − xk ykd − yk])

2 +
1
2
([xld − xl yld − yl ])

2

=
1
2
([x̄md − xk ȳmd − yk])

2 +
1
2
([x̄nd − xl ȳnd − yl ])

2

=
1
2
(||pmk||2 + ||pnl ||2).

In case 2 the sum of position terms of robot k and l, repeating the initial steps above and taking
into account (35) is given by:

Vp2 = Vpk + Vpl =

=
1
2
([xkd − xk ykd − yk])

2 +
1
2
([xld − xl yld − yl ])

2

=
1
2
([x̄nd − xk ȳnd − yk])

2 +
1
2
([x̄md − xl ȳmd − yl ])

2

=
1
2
(||pnk||2 + ||pml ||2).

Note that Vp1 (omitting the constant multiplier 1
2 ) is the left hand side of the inequality in the

first condition of the switching function (32) while Vp2 is the right hand side of this condition (also
omitting the multiplier). This leads to the conclusion that as Vp1 > Vp2, goal exchange results in a
rapid decrease (discontinuous) of the Lyapunov-like function.

All other properties of the V still hold including V̇ ≤ 0 if the condition given by Equation (27)
is fulfilled.

Proposition 3. The procedure given by Equation (33) results in a decrease of the sum of the position
errors squared.
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Proof. As Va and Vθ in Equation (39) are invariant under the goal assignment and the sum of all other
terms represent the sum of the position errors squared (omitting the constant multiplier 1

2 ), the proof
of Proposition 3 comes directly from Proposition 2.

Notice that the sum of the position errors squared can be easily expressed in the global coordinate
frame using equality e2

ix + e2
iy = ||[eix eiy]

T ||2 = ||[pix piy]
T ||2 = p2

ix + p2
iy (refer to Equation (6)) to

transform the position error of each robot in (39).
The tracking algorithm presented in Section 2 together with the goal exchange procedure resulted

in time intervals continuous algorithm with discrete optimization that uses the Lyapunov-like function
as a criterion to be minimized. The discontinuities occur in two situations: when the robot is in the
collision avoidance region (the reference trajectory is temporarily frozen and then unfrozen) and when
a pair of agents exchange the goals. The set of these discontinuity points was of zero measure. Note
that including goal exchange in the control reinforces fulfilling condition (27) because it supports
reduction of the component ∑N

i=1
1
2 k3(e2

ix + e2
iy).

The presented algorithm does not guarantee optimal solutions but each goal exchange improves
the quality of the resulting motion. The total improvement depends significantly on the initial state of
the system. In extreme cases, there is a situation in which the initial coordinates are close to optimal.
The procedure may lead to no goal exchange, and thus no improvement, even though communication
costs have been incurred. On the other hand, if the initial coordinates are not special, benefits of using
the procedure are usually considerable.

7. Distributed Goal Exchange

The procedure described in Section 5 can be implemented in a distributed manner. Both
key components of the goal switching algorithm; computation of the switching function (32) and
permutation matrix transformation (33), involve only two agents. Reliable connection between them
was needed as the process was conducted in a sequence of steps. After the agents establish the
connection one of them (i-th) sends its position coordinates (xi, yi) and goal location to the other (j-th).
The second robot computes switching function (32) which is the verdict on the goal exchange. If it is
negative the robots disconnect and continue motion to their goals, otherwise robot j sends its position
coordinates (xj, yj) and goal location to robot i. This part is critical in the process and must be designed
carefully to ensure correct task execution.

To make distributed goal exchange possible, the robots must be equipped with the on-board
radio modules allowing inter-agent communication. Even if not all pairs of agents were capable of
communicating, the goal exchange algorithm improved the result. On the other hand, without
communication between all pairs of agents the algorithm did not fail. In the vast majority of
environments there was no problem with the communication range (current technology allows
communication through many routers, base stations and peers). The exceptions may be space and
oceanic applications. They will not be considered here. The author plans to conduct laboratory
experiments where there are no restrictions on communication. From the practical point of view, robots
need to know the network addresses of other robots and sequentially attempt to establish connection
and, if successful, exchange the goals.

8. On Some Generalization

The condition (32) can be rewritten in more general form as follows:

σ =

{
1 if ||pmk||n + ||pnl ||n > ||pnk||n + ||pml ||n
0 otherwise

(40)

Taking n = 1 leads to the shortest path criterion that seems to be natural in many cases because
the shortest path induces lower motion cost. Unfortunately this observation may not be true in a
cluttered case. This will be shown later in this section. Note that in the cases for n 6= 2 the Lyapunov
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analysis is much more complex. In [23] the similar method that results in the shortest total distance to
the goals is presented.

Several specific scenarios for the simple case of two robots are analysed further. These scenarios
should be treated as an approximation of a real case because typically paths of real robots are not
straight lines in the case of the platforms that are not fully actuated (like the differentially driven
mobile platform considered here).

In Figure 7 two robots are the same distance away from their goals. Initially the goals were
assigned as marked with dashed arrows. The goal exchange procedure led to the assignment marked
with continuous arrows. The resulting paths were less collisional or even non-collisional (as they are
parallel). The new assignment was optimal using both the shortest path criterion (n = 1) and quadratic
criterion (n = 2).

Figure 7. Two robot-goal assignment—case 1.

Figure 8 shows a case in which two robots and their goals lie on a straight line. Initially goal 2
is assigned to robot 1 and goal 1 is assigned to robot 2. This situation caused a saddle point because
during the motion to the goal R1 stays on the path of R2. One can observe that the shortest path
criterion (n = 1) produces exactly the same result for both possible goal assignments, while quadratic
one (n = 2) produces the result marked by continuous arrows. By the assignment R1−G1 and R2−G2

the goals can be reached by the robots without bypass manoeuvre. This is one of the examples showing
the significant advantage of the quadratic criterion over the shortest path criterion proposed in [23].

Figure 8. Two robot-goal assignment—case 2.

In Figure 9 R1 is exactly at the goal G2 assigned to it. G1 was assigned to R2. The quadratic
criterion resulted in the opposite assignment (continuous arrows). Notice that for the shortest path
criterion the collision avoidance interaction between R1 and R2 was possible. For this type of situation
the quadratic criterion resulted in goal exchange for all locations in the hatched circle. The opposite
situation is presented in Figure 10. Fields of squares shown in the figures represent values of cost
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functions for two possible goal assignments (compare two left-hand side squares with right-hand
square). The quadratic criterion resulted (in comparison to the shortest path) in a higher cost function
for assigning far goals to the robots. It favoured a larger number of short assignments instead of the
lower number of farther ones. This promoted the reduction of collision interaction situations.

Figure 9. Two robot-goal assignment—case 3.

Figure 10. Two robot-goal assignment—case 4.

In Figure 11 certain positions of the robot R1 and goals G1 and G2 have been assumed. If robot
R2 is located in the hatched area the quadratic criterion assigns it to G2, otherwise it is assigned to G1.
Some initial configuration may have led to temporary collision interaction states (i.e., when R2 initially
is located to the left of the R1) but the saddle point occurrence was not possible. Dashed circles on the
sides represent examples of boundary locations (for goal exchange) of the robot R2.
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Figure 11. Two robot-goal assignment—case 5.

The considered cases do not cover all possible scenarios, but since there is no formal guarantee
that the number of collision avoidance interactions between agents is reduced, they illustrate, together
with simulation results, that in typical situations goal exchange procedure leads to the simplification
of the control task.

9. Ensuring Integrity

As the goal exchange process involves two agents that are physically separated machines and
they communicate through a wireless link the goal exchange process is at the risk of failure. Using a
reliable communication protocol like Transmission Control Protocol (TCP) and dividing the process
into a sequence of stages acknowledged by the remote host the fault-tolerance of the system can be
increased. Assuming that the transmitted packets are encrypted (which is standard nowadays) and the
implementation is relatively simple (the author believes that software bugs can be corrected) byzantine
fault tolerance (BFT) [27] is not considered here.

The first stage of the goal exchange process is establishing the connection between agents. It is
proposed to use the TCP connection because this protocol uses sequence numbers, acknowledgements,
checksums and it is the most reliable, widely used communication protocol. Agents know network
addresses of the other agents. They can be given in advance, provided by the higher-level system or
obtained using a dedicated network broadcasting service. The attempt to connect to the agent that is
already involved in the goal exchange process should be rejected. This can be easily and effectively
implemented using TCP.

The second stage is transmission of the robot location coordinates and the goal from agent one to
another. The receiver computes σ (Equation (32)) and sends back the obtained value. If σ = 0 agent
closes the connection, otherwise they go to the third step.

The third step is a goal exchange that is the most critical part of the process. It must be guaranteed
that no goal stays unassigned and no goal can be assigned to more than one robot in the case of
agent/communication failure. To fulfil this condition the goal exchange must have all properties of
database transaction: it must be atomic, consistent, isolated and durable. In practice this idealistic
solution can be approximated by applying one of the widely used algorithms: two-phase commit
protocol [28], three-phase commit protocol [29], or Paxos [30]. All of them introduce a coordinator
block that is the central point of the algorithm. It can be run (for example as a separate process) on
the one of the machines involved in the goal exchange procedure. Notice that in the case of failure
(communication error, agent failure, etc.) the operation of goal exchange is aborted. This leads to
slower convergence of robots to their desired values but is not critical for the task execution.
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10. Simulation Results for Goal Exchange

This section presents numerical simulation of the algorithm extended with goal exchange
procedure. The initial conditions are exactly the same as in Section 4 (results for the algorithm
without goal exchange). The parameters of the controllers were also the same. The initial value of the
permutation matrix was the identity matrix P(0) = I.

Figure 12a shows paths of robots on the (x, y) plane. As in the previous experiment signals of
3 robots (out of 48) are highlighted in black. Figure 12b,c present graphs of x and y coordinates as a
function of time. The robots converge to the desired values in less than 20 s, a significantly better result
than 115 s (without goal exchange). This experiment was completed at 28 s due to faster convergence.
Figure 12d shows a time graph of the orientations. In Figure 12e,f linear and angular controls are
plotted. They reach constant values in less than 20 s. Figure 12g presents a time graph of the freeze
procedure (refer to Assumption 2). It can be seen that the last collision avoidance interaction ends at
13 s. In Figure 12h relative distances between robots are shown. No pair of robots reaches inter-agent
distance lower than or equal to r = 0.3 m (dashed line). It means that no collision has occurred.

(a) (b)

(c) (d)

Figure 12. Cont.
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(e) (f)

(g) (h)

Figure 12. Numerical simulation 2: trajectory tracking for N = 48 robots with goal exchange.
(a) locations of robots in xy-plane, (b) x coordinates as a function of time, (c) y coordinates as a
function of time, (d) robot orientations as a function of time, (e) linear velocity controls, (f) angular
velocity controls, (g) ‘freeze’ signals, (h) distances between robots.

Notice that in the presented simulation no communication delay of the goal exchange procedure
was taken into account. Depending on the quality of the network single goal exchange may take
even hundreds of milliseconds. On the other hand, as the procedure involves only a pair of agents,
many of such pairs can execute goal exchange at the same time. Of course another limitation was the
bandwidth of the communication network. These issues will be investigated by the author in the near
future. In the presented numerical simulations the number of goal switchings was 238, which is a
significant number.

Visualizations of the exemplary experiments are available on the website http://wojciech.
kowalczyk.pracownik.put.poznan.pl/research/target-assignment/ts.html.

11. Simulation Results for Saturated Wheel Controls

As the APFs used to avoid collisions are unbounded, the algorithm should be tested for the
limited wheel velocities (resulting from the motor velocity limits). This section presents a numerical
simulation for the mobile robots with the wheel diameter of 0.0245 m, the distance between wheels
amounting to 0.148 m and the maximum angular velocity of 48.6 rd/s.

A special scaling procedure was applied to the wheel controls. The desired wheel velocities were
scaled down when at least one of the wheels exceeds the assumed limitation. The scaled control signal
uiws is calculated as follows:

uiws = siuiw, (41)

where

si =

{
ωmax
ωio

if ωio > ωmax

1 otherwise
, (42)

http://wojciech.kowalczyk.pracownik.put.poznan.pl/research/target-assignment/ts.html
http://wojciech.kowalczyk.pracownik.put.poznan.pl/research/target-assignment/ts.html
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and
ωio = max{|ωiR|, |ωiL|}, (43)

where ωiR, ωiL denote right and left wheel angular velocity, ωmax is the predefined maximum allowed
angular velocity for each wheel.

Figure 13a,b show time graphs of the right and left wheels of the platforms. As in the previous
experiments, signals of three robots (out of 48) are highlighted in black. It can be clearly observed that
both of them were limited to ±48.6 rd/s. Linear and angular velocities of the platform are shown in
Figure 13c,d. Their velocities are lower in comparison to the non-limited case (refer to Figure 12e,f).
Figure 13e presents relative distances between the robots. The area below dashed line represents the
collision region. It can be seen that no pair of robots has reached it—no collision occurred during
this experiment.

(a) (b)

(c) (d)

(e)

Figure 13. Numerical simulation 3: trajectory tracking for N = 48 robots with goal exchange and
saturated wheel controls. (a) right wheel velocities, (b) left wheel velocities, (c) linear velocity controls,
(d) angular velocity controls, (e) distances between robots.
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12. Conclusions

This paper presents a new control algorithm for the formation of non-holonomic mobile robots.
Inter-agent communication is used to check if exchange of goals between robots reduces the system’s
overall Lyapunov-like function and the sum of position errors squared. The procedure is verified
by numerical simulations for large group of non-holonomic mobile robots moving in the formation.
The simulations also include the case in which wheel velocity controls are limited. A significant
improvement of system convergence is shown. The author plans to conduct extensive tests of the
presented algorithm on real two-wheeled mobile robots in the near future.
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