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Abstract: In the context of Industry 4.0, the matrix production concept represents revolutionary
solutions from a technological and logistics point of view. In a matrix production system, flexible,
configurable production and assembly cells are arranged in a grid layout, and the in-plant supply is
based on autonomous vehicles. Adaptable and flexible material handling solutions are required to
perform the dynamically changing supply-demands of standardized and categorized manufacturing
and assembly cells. Within the frame of this paper, the authors describe the in-plant supply process
of matrix production and the optimization potential in these processes. After a systematic literature
review, this paper introduces the structure of matrix production as a cyber-physical system focusing
on logistics aspects. A mathematical model of this in-plant supply process is described including
extended and real-time optimization from routing, assignment, and scheduling points of view.
The optimization problem described in the model is an NP-hard problem. There are no known
efficient analytical methods to find the best solution for this kind of problem; therefore, we use
heuristics to find a suitable solution for the above-described problem. Next, a sequential black
hole—floral pollination heuristic algorithm is described. The scenario analysis, which focuses on the
clustering and routing aspects of supply demands in a matrix production system, validates the model
and evaluates its performance to increase cost-efficiency and warrants environmental awareness of
the in-plant supply in matrix production.

Keywords: assembly; black hole optimization; clustering; digital twin technology; emission reduction;
floral pollination algorithm; matrix production; sustainable in-plant supply

1. Introduction

Production companies have to apply the solutions of cyber-physical systems to improve their
availability, efficiency, reliability, and productivity. The ever-changing manufacturing industry requires
the improvement of these attributes. Statistical surveys suggest that by the end of 2019, about 75% of
large manufacturing companies will update their operations with Internet of Things solutions [1] and
transform their conventional manufacturing environment to cyber-physical systems. The integration
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of IoT solutions leads to hyperconnected value chains, where not only manufacturing but also the
related supply chain and logistics processes are operating in a cyber-physical environment.

KUKA AG (a German manufacturer of industrial robots and solutions having 25 subsidiaries
worldwide) created a new versatile solution that compensates for peak capacity utilization or
bottlenecks in resources. In a matrix production system, configurable production or assembly cells are
arranged in a grid layout, and the in-plant supply is based on electric automated guided vehicles [2].
The matrix production system integrates a wide range of Internet of Things technologies and solutions,
like standardized configurable production and assembly cells; in-plant transfer system based on
configurable material handling machines; digital twin solutions to support prediction and optimization
performance; intelligent tools and gentelligent products. A gentelligent product can collect and store
lifecycle data about itself and its environment with integrated sensors and send feedback for product
design or process engineering.

The design and operation of the in-plant supply of a matrix production system is an important
part of this cyber-physical system because in matrix production logistics and manufacturing are
separated, and a logistics system must answer dynamically changing supply-demands and perform
them for an uninterrupted value chain. The role of in-plant supply has changed in these highly flexible,
responsive manufacturing systems, where manufacturing and assembly cells can be removed or added.
In this respect, the motivation of our research is analytic, as we describe a mathematical model and
a suitable heuristic optimization algorithm to offer a solution for the design and control problems
of in-plant supply in a matrix production environment. This paper studies the design aspects of the
in-plant supply of matrix production from sustainability and emission reduction points of view. As the
literature review section will show, the majority of the articles in the field of in-plant supply are focusing
on the optimization in a conventional manufacturing environment and only a few of them describe
the design aspects of in-plant logistics solutions in a cyber-physical environment. The application of
suitable design and control methods can increase the efficiency, availability, and sustainability.

This paper is organized as follows. Section 2 presents a systematic literature review, which
summarizes the research background of in-plant manufacturing supply. Section 3 describes the model
framework of in-plant supply in a cyber-physical production environment. Section 4 presents a
multiphase optimization model including clustering, routing, and scheduling problems based on a
black hole algorithm and a flower pollination algorithm and demonstrates the scenario analysis, which
validates the model and the optimization algorithm. Conclusions and future research directions are
discussed in Section 5.

2. Literature Review

Within the frame of this chapter, we are identifying research gaps with a systematic literature
review. This section includes three subsections as follows: descriptive analysis of available articles,
content analysis, and consequences.

Within the frame of our systematic literature review, we include the following actions: formulate
research questions, select sources from Web of Science, reduce the number of articles by reading
them and identifying the main topic, analyze the chosen articles, describe the main scientific results,
and identify the scientific gaps and bottlenecks.

Firstly, the relevant terms were defined. It is a crucial phase of the review because there are
excellent review articles in the field of in-plant supply and logistics in manufacturing processes,
and we didn’t want to produce a similar review. We used the following keywords to search in the
Web of Science database: TOPIC: (“manufacturing” and “logistics” and “optimization”). Initially,
403 articles were identified. This list was reduced to 370 articles selecting journal articles in English
only. Our search was conducted in January 2019; therefore, new articles may have been published
since then.
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2.1. Descriptive Analysis

The reduced articles can be classified depending on the research area. Figure 1 shows the
classification of these 370 articles considering ten subject areas. This classification shows that the
majority are on engineering while operations research and computer sciences define the importance of
computational methods related to the design of manufacturing related logistics systems.
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Figure 1. Classification of articles considering subject areas based on a search in Web of Science
database using TOPIC: “manufacturing” AND “logistics” AND “optimization”.

As Figure 2 demonstrates, the optimization of manufacturing-related logistics systems has been
researched in the past 20 years. The first articles in this field were published in 1995 focusing on
just-in-time manufacturing [3] and process related simulation [4]. The number of published papers
has been increased in the last five years; it shows the importance of this research field.
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Figure 2. Classification of articles by year of publication based on search in Web of Science.

Articles were analyzed from a scientific impact point of view. The most usual form to evaluate
articles from the scientific impact point of view is the citation. Figure 3 shows the ten most cited articles
with their number of citations.

As Figure 4 demonstrates, most of the articles were published in journals with production and
manufacturing topics, but a significant part of the papers was accepted for publication in journals
focusing on computation, operation research, and expert systems. The distribution of journals shows
that the design and operation problems of logistics systems in production and manufacturing are
multidisciplinary problems, where not only technological but also environmental and other aspects
must be taken into consideration.
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Figure 3. The ten most cited articles based on a search in Web of Science [3,5-13].
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Figure 4. Distribution of in-plant supply optimization in manufacturing systems related articles in
journals, based on a search in Web of Science.

We have analyzed the published articles from the Web of Science categories point of view. We have
analyzed the distribution of articles in the following categories: operations research management
science, engineering manufacturing, engineering industrial, computer science interdisciplinary;,
automation control systems, management, computer science artificial intelligence, engineering
multidisciplinary, environmental sciences, engineering chemical, engineering electrical electronic,
engineering environmental, green sustainable science, computer science software engineering,
engineering mechanical, and mathematics interdisciplinary. The distribution of the categories
is depicted in Figure 5. As the categories show, the design of manufacturing related logistics
systems is based on optimization methods, and not only cost efficiency but also environmental
and technological aspects are important, while automation and the application of smart solutions gain
a more prominent role.

In the following step, the 370 articles were reduced after reading them. We excluded articles
whose topic did not fit our interest and couldn’t address the optimization of manufacturing related
logistics systems focusing on in-plant supply. After this reduction, we had 80 articles.
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Figure 5. Distribution of papers according to Web of Science categories.
2.2. Content Analysis

In the 80s and 90s the so-called CIM addressed the first attempts to define hierarchy structured in
smart factories [14]. CIM and FMS was the key topic [15], and things such as dynamic scheduling [16]
and reactive MES [17] were invented then. After that, holonic manufacturing [18] and IMS
was established.

A Holonic Manufacturing System (HMS) is a manufacturing system where key elements,
such as machines, cells, factories, parts, products, operators, teams, etc., are modeled as
‘holons’ having autonomous and cooperative properties. The decentralized information
structure, the distributed decision-making authority, the integration of physical and
informational aspects, and the cooperative relationship among holons, make the HMS a new
paradigm, with great potential for meeting today’s agile manufacturing challenges [19].

Information management was a challenge in a virtual enterprise environment characterised by
distribution, autonomy and co-operation. Distributed information management architecture was one
of the key topics for production planning and control. It provided not only basic services but also
advanced services, like notification, security control, subscription, and data sending [20].

Some of the proposed models and concepts are missed, but the ideas still were appointed in
sources, for example focusing on the optimization of the accuracy of the wire electro-discharge
machining process [21] or the manufacturing of five-axis high speed milling of complex parts [22].

The smart factory is the integration of all recent IoT technological advances in computer networks,
data integration, and analytics to bring transparency to all manufacturing factories. The Internet of
Everything (IoE) is a concept that extends the Internet of Things (IoT) emphasis on machine-to-machine
(M2M) communications to describe a more complex system that also encompasses people and
processes. The steps to creating a smart factory are the followings [23]:

e data transmission: get data to communicate from robot to machine to person,
e connection: get this data to a large capacity IoT server,
e big data processing: make the data visible and actionable to people for analysis.

Several new edge computing devices were launched recently. In Japan there is a general movement
about first using common sense and later technology. Special processes are those in which more CPS
(cyber-physical systems) are in use because models are closely related to machine controls. In EDM
and other works about lasers, welding, etc., CPS are spreading. For instance, EDM edge computing is
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becoming a leading research line [24]. 5G and IoT will be key to enhancing and enabling the advances
in manufacturing. 5G networks offer manufacturers and telecom operators the chance to build smart
factories and truly take advantage of technologies such as automation, artificial intelligence, augmented
reality for troubleshooting, and the Internet of Things [25].

The research in the field of manufacturing processes indicated a huge number of articles reporting
the results of research projects in all fields of engineering and economic sciences. These researches are
discussing a wide range of manufacturing solutions, from traditional manufacturing to cyber-physical
manufacturing systems [26]. The improvement of 3D printing led to the appearance of a new decision
to be made by production companies: how to make components for final products? Products can be
produced either with traditional technology or with additive manufacturing. Additive manufacturing
has a great impact on related supply chain and logistics solutions; therefore, it is important to put
more and more effort into the research of additive manufacturing solutions [27]. Traditional routing,
assignment and scheduling models and solutions must be transformed to cyber-physical models, like
the transformation of conventional scheduling to 3D printing service scheduling demonstrates [28] in
the case of cloud manufacturing, where distributed manufacturing resources are encapsulated into
services and aggregated [29]. The additive manufacturing can lead to decentralized, flexible production
facilities, where the customer’s demands can be produced with low financial risk; they are flexible and
can respond rapidly to changes in demand [30]. In hybrid production systems, the manufacturing of
new and remanufactured products is integrated. In hybrid production systems, special constraints
caused by uncertainties in recycling processes must be taken into consideration [31-33].

The literature introduces a wide range of methods used to solve design problems of logistics
processes in manufacturing, like integer programming, decision-making methods, heuristic and
metaheuristic algorithms, Petri Net simulation, statistical approaches, simulation and simulation-based
optimization, fuzzy modelling, and hybrid optimization approach. Linear programming, integer
linear programming, and mixed integer linear programming can also be used for the optimization
of logistics processes in manufacturing systems. Researchers developed a multi-objective mixed integer
linear programming model to generate efficient solutions minimizing cost and assigning more reliable
manufacturers in a dynamic manufacturing network [34]. Clustering algorithms, like K-mean, mean-shift,
density-based spatial clustering, or agglomerative hierarchical clustering are widely used in the design
of complex in-plant supply systems; they can be combined for multi-stage optimization with heuristic
and metaheuristic algorithms. The combination of prioritized K-mean and genetic algorithm was used to
optimize manufacturing related transportation processes [35]. Heuristic optimization methods are used
in the case of NP-hard optimization problems: genetic algorithm was used to increase machine utilization,
reduce throughput time and delivery delays [36,37], while discrete particle swarm optimization (PSO)
was applied to solve the dynamic travelling salesman problem in chip manufacturing, where machine
failure can force changes to the problem specification [38]. A typical application field of PSO is flow shop
and job shop manufacturing [39] or the machine loading problem in flexible manufacturing systems,
where the feeding process is generally robotized or automatized [40]. Heuristic methods can be used not
only for the optimization of processes but also for the allocation of IT structure in the manufacturing
process: a fruit fly algorithm was used to find the optimal location of the wireless sensor network in the
intelligent workshop [41]. The in-plant supply of manufacturing processes is based on complex material
handling systems, which were optimized with a hybrid multi-objective artificial immune systems-based
algorithm [42]. Manufacturing processes are typical uncertain environments, where fuzzy modelling
and fuzzy optimization offers suitable tools [43,44] and the fuzzy approach can easily integrate with
other analytical or heuristic algorithms [45]. Researchers used an integrated data-driven stochastic
degradation model to find the optimal maintenance strategy in chemical and manufacturing processes,
where unit failures are caused due to equipment degradation [46]. Different types of simulation methods
and tools can be used to optimize in-plant and external manufacturing related logistics processes, like
discrete event simulation [47], timed Petri net simulation [48], and hybrid simulation integrating discrete
and continuous time event simulation [49]. The Petri net modelling, the timed, colored, and fuzzy
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Petri net approaches are widely spread in the field of simulation of manufacturing related logistics
systems [50,51]. Integrated approaches [52], multi-objective optimization problems [53] can be solved
with other effective optimization methods, like teaching-learning based optimization [54], force generated
graph algorithms [55], agent-based optimization methods [56], or TOPSIS [57]. Figure 6 shows the
conceptual framework of the published articles demonstrating the new manufacturing environments,
applied methods and tools, typical models, and case studies.

Several scenarios and case studies related to in-plant supply and material handling in
manufacturing were assessed and evaluated to compare the effects of technology, logistics, human
resources, and policies on the efficiency, reliability, and availability of value making. The case studies
of manufacturing design are generally focusing on traditional manufacturing environment, and only a
few of them are discussing the cyber-physical systems. The most important fields of case studies are
from the automotive industry [58,59], but valuable case studies were published in the field of aircraft
final assembly [60], in-mold decoration manufacturing [61], timber industry [62], semiconductor
manufacturing [63,64], food manufacturing [65], and injection molding [66].

The objective functions and constraints of design and operation of in-plant supply systems of
manufacturing processes include a wide range of economical, technical-technological, ecological,
and logistic aspects. Green in-plant supply problems are represented by carbon cap constrained
manufacturing system, where green solutions can support sustainability [67]. The financial aspects
of manufacturing supply are analyzed from price [68,69], operational costs [70], and profit [71]
points of view. Responsiveness, robustness, and resilience (known as “Triple R”) become more
and more important in logistics and material handling [72] because customer satisfaction is based on
“Triple R”-based performance of manufacturing and related logistics operations [73]. The objective
functions and constraints are based on the problems of typical material handling related problem:s,
like facility location [74], allocation [75], lot sizing [76-78], shortage planning [79], scheduling [80],
inventory planning [81], and ergonomic [82] and trade policy aspects [83].

Manufacturing environment Case studies

*  cyber-physical manufacturing systems [26] *  automotive industry [58,59]

*  additive manufacturing [27] aircraft final assembly [60]

* transformation of traditional manufacturing to ¢ in-mold decoration manufacturing [61]
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L T S T R S S S T R
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timed Petri net simulation [48]

hybrid simulation [49]

Petri net modelling [50,51]

like teaching-learning based optimization [54]
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price [68,69]
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Figure 6. The conceptual framework of published articles.
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2.3. Consequences of Literature Review

More than 50% of the articles were published in the last four years. This result indicates the
scientific potential of the design of in-plant supply solutions for manufacturing systems. The articles
that addressed the optimization of in-plant supply and material handling solutions are focusing on
a conventional manufacturing environment and only a few of them describe the design aspects of
in-plant logistics solutions in cyber-physical environment. Therefore, this research topic still needs
more attention and research. It was found that mathematical models and algorithms are important
tools for the design and control of in-plant supply solutions since a wide range of models determines
complex optimization problems. According to that, the main focus of this research is the modelling
and optimization of in-plant supply focusing on extended and real-time logistics resource optimization
from assignment, clustering, and scheduling points of view.

As a consequence, the main contributions of this article are the followings: (1) model framework
of cyber-physical in-plant supply in matrix production; (2) mathematical description of in-plant
supply of standardized, categorized manufacturing and assembly cells of the production matrix;
(8) computational method to solve clustering, assignment, and scheduling of logistics resources;
(4) computational results of the described model with various datasets and scenarios focusing on
environmental impacts and reduction of GHG emission.

3. Methodology—Mathematical Modelling and Heuristic Optimization Method

As the KUKA matrix production paradigm defines, in-plant supply, and manufacturing processes
are separated from each other, and the logistics system with variable accessories and tools of autonomous
material handling and transportation machines (autonomous guided vehicles) is always able to supply
all matrix cells [2]. Figure 7 demonstrates the model of a matrix production system focusing on real-time
resource optimization.

The physical processes in matrix production include logistics (material handling, transportation
and warehousing), assembly, manufacturing, processing and quality control. The physical process
is transformed into a virtual system called digital twin, which can include digital aggregate, digital
instance, and digital prototypes. The transformation is based on sensors, which collect data on
resources, components, tools, and their environment. Machines, tools, products, and other logistics
resources are connected with the digital twin through a sensor network. The extended and real-time
optimization of supply-demands is supervised by the ERP, while forecasting and testing are performed
in a digital twin environment.

In our in-plant supply chain model, there are two different types of deliveries to be performed.
The first types are supply-demands, which are available from the ERP and they can be scheduled and
assigned for a predefined time window. The second type of supply-demands must be scheduled and
assigned in real-time which means that the scheduled routes must be changed so that the scheduled
supply-demands will arrive within the time frame to the matrix cell. The in-plant supply model of
matrix production includes m matrix cells (standardized production of assembly cells), « jobs and
B time frame for scheduling of in-plant supply routes. The components and the tools are stored in
specific stores (components warehouse and tool storage) and they are transported with AGV parking
in an AGV-pool [2]. This in-plant supply model can be divided into two main parts: the first part
is the extended scheduling based on ERP data, while the second part, the real-time scheduling, is
based on information from the cyber-physical environment (intelligent tools, cooperative standardized
assembly and manufacturing cells). The following decisions must be made: (a) clustering of available
supply-demands; (b) routing and scheduling of clustered supply-demands; (c) rescheduling and
rerouting of matrix cell’s supply in order to insert new supply-demands caused by malfunction of
technology and logistics or caused by a new customer’s order to be fulfilled. The decision variable of
the clustering problem is the assignment matrix which defines the assignment of supply-demands
and supply routes. The decision variable of extended routing and scheduling problem is another
assignment matrix, which defines the sequence of supply. In the case of the real-time rerouting and
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rescheduling, we also use an assignment matrix, in which some positions of sequences are changed to
insert new supply-demand into the scheduled supply (Figure 8).
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Figure 7. Structure of real-time resource optimization in matrix production.
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Figure 8. Phases of extended and real-time in-plant supply of matrix production: (a) Two AGVs are
available in the AGV-pool. One tool must be supplied to matrix cell 3, and two components must be
transported from the component warehouse to the matrix cells 2 and 5. Three supplied demands are given

among matrix cells in relations (5-3), (5-9) and (8-4). (b) Extended routing of available supply-demands.

(c) There is a malfunction in the production system. Therefore, a component must be transported in
relation (4-1). A K* and a K# relation is inserted into the original route instead of starting a second AGV.
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The methodology of our research includes the following main parts:

e mathematical modelling of the cyber-physical matrix production system from an extended and
real-time optimization point of view,

e performance analysis of available heuristic solution algorithm and selection of the
suitable algorithms,

e  application of suitable algorithms to solve the extended and real-time clustering, routing, and
assignment problems,

e validation of the model and the algorithm with scenario analysis.

3.1. Mathematical Modelling of Extended and Real-Time Resource Optimization in Cyber-Physical
Matrix Production

Within the frame of this chapter, a two-level mathematical model is discussed including extended
and real-time scheduling problems of in-plant supply of matrix production.

3.1.1. Extended Logistics Resource Optimization

The extended optimization of supply resources in matrix production can be divided into two
main phases. The first phase is a clustering phase, where the available supply-demands are clustered
based on time frame related objective function. The second phase represents a vehicle routing problem,
where the clustered supply-demands are scheduled.

Clustering of Supply-Demand

The objective function of the clustering of supply-demands is the minimization of the total time
deviance of supply-demands from the average time frame, which can be calculated as the sum of
supply-demands assigned to route r in relations warehouse-matrix cell, tool storage-matrix cell and
among matrix cells:

TDWT™ — DV 4+ TDT 4+ TDM — min. (1)

where TD" is the time deviance of clustered supply-demands from component warehouse to matrix
cells, TD' is the time deviance of clustered supply-demands from tool storage to matrix cells, and TDM
is the time deviance of clustered supply-demands among matrix cells.

The first part of the objective function includes the minimization of time frame deviance from the
average time frame between the component warehouse and matrix cells:

Tmax M. &max Pmax

™YW — 2( mﬁrtz‘;\t/ﬁ — tW) and tW = Z 2 2 Xzzxﬁr ztxﬁ @

r=1 i=1a=

where, % is average time frame of supply-demand from the component warehouse to matrix cell
j for job & in time frame B, is the average time frame of route 7, xmé\f is the assignment matrix of

supply-demands from component warehouse to matrix cells. xl wpr M takes value 1 if the supply-demand
from component warehouse to the matrix cell i for job « in time frame § is assigned to route 7,
otherwise 0.

The second part of the objective function includes the minimization of time frame deviance from

the average time frame between tool storage and matrix cells:

Fax m amax max
DT = 21( 171;]\/5/[7 B~ tT> and tT = 21 Z 2 ux‘Br uxﬁ ©)
= — p=1

where, ﬁ is average time frame of supply-demand from the tool storage to matrix cell j for job & in

time frame S, tT is the average time frame of route r, x| " /Sr is the assignment matrix of supply-demands
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from component warehouse to matrix cells. xl wpr M takes value 1 if the supply-demand from the tool
storage to the matrix cell i for job « in time frame f is assigned to route , otherwise 0.

The third part of the objective function includes the minimization of time frame deviance from
the average time frame among matrix cells:

Ymax m n ,Bmax
M MM
TDM = 1( MM MM tMM) and tMM = 21 Y 2 2 XM VN 4)
r= =17=1 a=1 :
where th”gI is average time frame of supply-demand between matrix cell i and matrix cell j for

MM
ijapr
supply-demands between matrix cell i and matrix cell j for job & in time frame B. x

job « in time frame B, tMM is the average time frame of route r, x is the assignment matrix of

ijapr M takes value 1 if
the supply-demand from matrix cell i to matrix cell j for job « in time frame B is assigned to route 7,
otherwise 0.

The solutions of the above-described clustering problem are limited by the following two
constraints related to time frame and capacity of AGVs:

Constraint 1: We can define an upper limit for time frame deviance for each route and it is not
permitted to exceed the upper limit of time frame deviance within route r:

Vi p,r: rlilﬁarx tmﬁ (5)

Vi pB,r: 111;25 tuxﬁ—tT (6)
‘MM _ MM MMmax

Vi juapBr: %laﬁ)?’( tiap — tr ‘ <t (7)

where t""19% is the upper limit of time frame deviance for supply-demands from component warehouse

to matrix cells, tTmax

is the upper limit of time frame deviance for supply-demands from tool storage
to matrix cells, and tMMm¥ is the upper limit of time frame deviance for supply-demands among
matrix cells.

Constraint 2: We can define the upper limit of AGVs’ loading capacity and it is not permitted to
exceed this upper limit after assigning suitable supply-demands from component warehouse to matrix

cells, from tool storage to matrix cells and among matrix cells:

m Kmax ,Bmax

LEEDIDY ﬁ}: Yiﬁm%‘ﬂ%qiﬁ
i—1a=1 p=1

m§

n
Z Z Z z]aﬁrquaﬁ —= Cmux 8
where qWM amount of required component from the component warehouse to the matrix cell 7 for job

« in time frame B, g/ ﬂ M amount of required component from the tool storage to the matrix cell i for job

o in time frame B, g i M amount of required component from matrix cell i to the matrix cell j for job & in
time frame B, and C;"** is the upper limit of loading capacity of AGV in route r.

Routing and Scheduling of Supply-Demand

The objective function of the routing and scheduling of supply-demands is the minimization of
energy consumption:

/\max
. x Y X Y ;
Y 1’,,5 : /\Z:2 E,SM_lsM (Psm,l, Ps;a_17Ps,yr psm>er — min. )

where Ay is the number of supply-demands assigned to route 7, s, is the ID of supply-demand

assigned as destination A to route 7, p; and ply are the x and y coordinates of matrix cell i, and &;,, s,
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it the length of the route between matrix cell A — 1 and matrix cell A in route r and e, is the specific
energy consumption of AGV used in route r.

The solutions of the above-described routing and scheduling problem are limited by the
constraints related to the time frame of arrival times to matrix cells.

Constraint 3: Depending on the velocity of the AGVs we can calculate the travelling time among
matrix cells, component warehouse or tool storage and the arrival time can be defined. It is not
permitted to exceed the upper and lower limit of time frame for each supply-demand to the matrix cells:

x Y X Y
VA mm Aﬁx Es 150 (PSMA’ Psia_17Ps,y 0 psm)
r,A

e < pmax (10)

where " and " is the lower and upper limit of the arrival time to the matrix cell assigned as node
A* to the route r and " = t;’:f\’;éﬁ and £ = 110 B

To simplify the representation of dlfferent types of supply-demands, we integrate the component
warehouse-matrix cells, tool storage—matrix cells, and matrix cell-matrix cell relations into one type of

relation and we create a virtual supply-demand matrix as follows:

e  Matrix cell-matrix cell relations are simply added to the virtual demand matrix:
qz;txﬂ %]aﬁ (11)

e  Component warehouse-matrix cell relation is transformed into a matrix cell-matrix cell relation.
The component amount will be added as initial loading to the AGVs loading and a virtual matrix
cell-matrix cell relation is added to the virtual supply-demand matrix:

qwxﬁ qzaﬁ (12)

e  Tool storage—-matrix cell relation is transformed into a matrix cell-matrix cell relation. The tool

amount will be added as initial loading to the AGVs loading and a virtual matrix cell-matrix cell
relation is added to the virtual supply-demand matrix:

Thap = Ting. (13)

In the same way, we can create the virtual time frame matrix and assignment matrix:

™M MM
x;‘iaﬁr = Xinpr A Xiinpr = zzxﬁr A xz]tx/Sr = Xinpr (14)
tluxﬁr = twcﬁr A tuaﬁr = tnxﬁr A tz]aﬁr = tuxﬁr (15)

As an example, Figure 9 demonstrates the transformation of assignment matrices to a virtual
assignment matrix.

™ ™ wM wM MM MM MM
xZaBr xla[}r x3aBr xSa{i‘r x45aﬁr x79a/1r x68a[s’r

* * Wx M * * *
xlla[}r x22aﬁr x33u[3r x44a[}r x45a,8r x68a,8r x79a/3r

Figure 9. Transformation of three different assignment matrices into one virtual assignment matrix.
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Using the virtual assignment, supply-demand and time frame matrices the objective function can
be simplified as follows:

T'max Xmax

- m n Bmax _
TDWTM _— Z (X?jaﬁrt;ﬁjaﬁ — Z Z Z Z ijaﬂr ;k]'txﬁ> (16)
i=1j=1a=1 p=1

while Constraints 1 (5)—(7) can be written as:

.. . e *Max
Vi o pBr: {]l}%i( tijtxﬁ <t (17)
and Constraints 2 (8) can be written as:
m n &max ﬁmax
Vr: Qor+ 3.3 Y Y XiaprTiap < G (18)
i=1j=1a=1 p=1

where g, is the initial loading of AGV r that can be calculated as follows:

m n Kmax ﬂmax

Vreo oge=Y Y ) Y (xm{ +x3]7§gr) (19)
i=1j=1a=1 p=1

The described mathematical representation of the extended logistics resource optimization makes
it possible to optimize the in-plant supply of manufacturing and assembly cells of matrix production
in a cyber-physical system. This extended optimization is possible if the supply-demand of the
manufacturing and assembly cells of the matrix production is known for a predefined time window
represented by f in the model.

The next phase of the optimization is the real-time rerouting and rescheduling of routed AGVs
and supply tours caused by new orders, or malfunction of technological, logistic, or human resources.

3.1.2. Real-Time Logistics Resource Optimization

The second phase of our approach includes a real-time routing and scheduling problem. Within
the frame of this phase, the extended assignment and routing can be modified depending on the
real-time information of matrix production systems and ERP.

The decision variables of the real-time logistics resource optimization describe the decisions to be
made. In this model it must be decided which new supply-demand by which AGV in which time is
picked up. This decision represents an integrated assignment and scheduling problem. With this in
mind, we define the following positions based on the results of extended logistics resource optimization
describing the layout of the matrix production supply problem:

° pg‘r v pzr , is the x and y coordinate of the scheduled matrix cell s, of scheduled route 7,

° pgx and pgy is the x and y coordinate of the pickup matrix cell of the new supply-demand 1,

. pg Y and pg ¥ is the x and y coordinate of the destination matrix cell of the new supply-demand .
The objective function of the problem describes the minimization of the energy consumption

of the whole in-plant supply process including scheduled routes (extended optimization) and new
supply-demands (real-time optimization).

EC = ECR + ECNSP 4 ECNSP 5 min. (20)

where ECR is the energy consumption of scheduled supply-demands without any assigned new
supply-demands, ECN5? is the energy consumption of pickup route of new assigned and scheduled



Appl. Sci. 2019, 9, 1287 14 of 33

CNSD g the energy consumption of delivery route of new assigned and

supply-demand, and E
scheduled supply-demand.

The first part of the objective function (20) includes the sum of energy consumption of scheduled
supply-demands without assignment of new supply-demands, where the energy consumption is the
function of positions of matrix cells for pickup and delivery, the loading of AGVs and the specific
energy consumption, as written in (9).

The second part of the objective function (20) includes the energy consumption of the pickup

route of new assigned and scheduled supply-demand:

Tmax Ymax
ECNSP = X #721 %P (Bt (P P P 13) + Esp (P Pl Pl py) Jor - (2D)
r= =

where 7,4y is the total number of scheduled routes within the time frame, 1,4y is the number of new
supply-demands within the time frame (in the case of real-time scheduling ¥,y = 1 because new
supply-demands are scheduled real-time and they are not collected to be scheduled together), x, /\1/; is

the assignment matrix of pickup matrix cells of new supply-demands to the scheduled routes. x” A
takes value 1 if the new supply-demand ¢ is assigned to route r following scheduled supply-demand
A, otherwise 0.

The third part of the objective function (20) includes the energy consumption of the delivery route
of new assigned and scheduled supply-demand:

Ymax l/fmax

ECNSD =y Y xBy (G (P2 P P 1) + oy (P PPl pl) Jer @2
r=1 =1

where er/\w is the assignment matrix of destination matrix cells of new supply-demands to the

scheduled routes. xBWJ takes value 1 if the pickup matrix cell of the new supply-demand ¢ is assigned
to route r following scheduled supply-demand A, otherwise 0.

The solutions of this integrated assignment and scheduling problem are limited by the following
three constraints:

Constraint 4: The capacity of AGV is not to exceed after assignment of new supply-demand.
The new loading of AGV r passing pickup matrix cell A — 1 can be calculated by adding the assigned
new supply-demand and subtracting the value of a previously assigned delivery of an open task
as follows:

Xmax Pmax Amax  Xmax Pmax
VT /\ ‘8 for + Z Z Z qsrb 25rp-14P + qlll\js + Z Z Z qsrh 1srblxlS - Cmax (23)
b=3 a=1 B=1 b=A+1a=1 p=1

Constraint 5: It is not permitted to exceed the upper and lower limit of pickup time frame for each
scheduled matrix cell.

v T,/\ : tf}ﬁm r/\*t/J + t}’/\*l[] + tr)\*tp + tr/\*tp < i’fﬂ“, (24)
where
A asrb—zsrb—l (pgrlﬁZ’ pgrb—Z’ pgth 4 pzrh—l)
ey =tor+ Y — , (25)
b=3 r

Y Yy
Ev‘/’SM (pé(r/\’ pS,A/ Pi;c,q]/ Psw)

[

Y Y
E'Smflllf (pgmq 1 Psn_ar pgrqﬂ psrt[))

P2
by = = and tm*w =

(26)
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Amax ésrb—lsrb (pgrb—l’ P]S/rbfl’ pgb’ pgrb)
=t + ) — (27)
b=A+1 r

where tP7" and tF19% ig the lower and upper limit of pickup time for matrix cell 5,5+, t7L. p 18 the
travelling time from the AGV-pool to the predecessor matrix cell of the new supply-demand’s matrix
cell ¢ in route 1, tg, is the initial travelling time from the AGV-pool to the first scheduled matrix cell,
th2, p 1s the travelling time from the predecessor matrix cell to the new supply-demand’s matrix cell ¢ in
route 1, t75, p s the travelling time from the new supply-demand’s matrix cell ¢ to the following matrix
cell in route 1, and #7 /{1*4] is the travelling time from the pickup matrix cell of the new supply-demand
to matrix cell A* in route r.

Constraint 6: It is not permitted to exceed the upper and lower limit of delivery time frame for
each scheduled matrix cell.

VA T < Dk Gy ey by < (28)

where tg\l* g by /\* gr b tD A and tr A Can be calculated in the same was as in (25)—(27).
Constraint 7: It is not permittFed to exceed the upper and lower limit of pickup and delivery time

frame for each new supply-demand.
v IIJ: thmm < tr/\*l[) 4t rA*l,b < thmax A thmm < tr)\*l,b 4t t’/\*l/} < thmax’ (29)

where th min and th "ax is the lower and upper limit of pickup time for new supply-demand ¢ and
tfp) Nmin and tl/l? Nmax is the lower and upper limit of pickup time for new supply-demand .

The decision variables have two different types: the decision variables of the assignment problems
are integer matrices, while the decision variables of the scheduling problem are matrices with real
values. The assignment matrices x7; iopr xP Ay Ay define the scheduling of supply-demands both
in extended and real-time optimization, so we have only integer decision variables.

and x5
Figure 10 demonstrates the model framework including time frame and capacity constraints.
As the figure shows, the assigned new supply-demands have a great impact on the performance of

supply routes.

PNmin jPNmax ¢DNmin (DNmax
tlll t,p t¢ t’#

3

N
/
&

x y x Yy
ESM—WM (pb‘rx—\' Psya—y2Psra psr/l)

Bl— R -

x y x
Psas Pspa, ¢bmin  pDmax Ps;a Pspy tDmin tD{f‘a"
rA -1 ‘ra'-1 * A’ T

*
qsnl—zsra—ﬂzﬁ qsnl-ﬁnl“ﬁ

Pmin Pmax
h tf/lmml trl",{naalc }'* tr/l'—l l,‘M._1
Ysra-2sra-1aB Sra-15raap
Legends: Parameters Local constraints Global constraints Decision variables

Figure 10. The structure of the mathematical model including parameters, local and global constraint
and decision variables.
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However, without constraints of time frame and capacity the new supply-demand can be assigned
to the nearest matrix cells, but in the case of time and capacity related constraints the assignment and
scheduling is an NP-hard optimization problem, therefore we suggest a heuristic approach to solve it.

3.2. Heuristic Optimization for Extended and Real-Time Logistics Resource Optimization Based on Black
Hole Algorithm

Within the frame of this part of the article, a multiphase optimization algorithm is described.
The algorithm includes an extended and real-time optimization phase. Within the extended phase,
the in-plant supply of known supply-demands of the matrix production system is optimized. This
extended optimization includes the clustering of supply-demands, the routing and the scheduling
of clustered supply-demands. The second phase of the optimization is the real-time rerouting and
rescheduling, where the existing routes are redesigned in order to insert new supply-demands into the
existing routes. The objective function of the optimization algorithm includes time-related aspects,
while time-frames and capacities are taken into consideration. The algorithm makes it possible to
analyze the solutions from a sustainability point of view because greenhouse gas emission can be
calculated. Within the frame of performance analysis, various heuristic algorithms are tested to
measure their efficiency. Table 1 shows the results of this performance analysis.

Table 1. Performance analysis of various heuristic algorithms: error values in the case of six benchmark
functions after 50 iteration steps.

Evaluation Function Black Hole Genetic Harmony Flower
Optimization Algorithm Search Pollination
Ackley 3.66 x 107 4.67 x 107° 1.28 x 1077 3.45 x 1077
Bukin 2.45 x 107° 5.45 x 1077 9.08 x 107 5.61 x 108
Cross-in-tray 8.55 x 10~Y 7.32 x 1077 6.98 x 108 6.12 x 1077
Easom 1.18 x 107° 2.09 x 107* 8.18 x 1077 4.02 x 1078
Eggholder 5.50 x 107 312 x 1077 1.98 x 108 1.39 x 1078
Three hump camel back 1.51 x 107° 417 x 1078 7.79 x 10710 6.60 x 1077

As the performance analysis shows, the results of black hole and flower pollination algorithms
are comparable with genetic and harmony search algorithms.

3.2.1. Black Hole Optimization-Based Clustering

There is a wide range of clustering algorithms in the literature, which is suitable for the solution
of clustering problems without complex restrictions. K-means clustering, mean-shift clustering,
density-based spatial clustering, and agglomerative hierarchical clustering algorithms belong to the
most well-known general clustering algorithms. However, their implementation codes are quite
simple, but they have disadvantages:

e K-mean: the classes must be defined [84];

e  Mean-shift: the size of the sliding window must be defined [85];

e Density-based spatial clustering: its performance is low in the case of varying density of
points [86];

e  Agglomerative hierarchical clustering: its complexity is O (n3) while K-means is linear [87].

The constraints and the complexity of the multi-dimensional search space make the clustering
problem NP-hard, which means that heuristic clustering methods are suitable to solve the clustering
problem of the extended logistics resource optimization in matrix production.

The idea of black holes was first suggested by John Michel and Pierre-Simon Laplace. They
proposed the existence of “invisible stars”. They calculated its mass and size, which is the so-called
event horizon in today’s science. Later, in 1916 Albert Einstein predicted the existence of black holes
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with his general relativity theory. The first black hole called Cygnus X-1 was recognized by John
Wheeler in 1971. Black holes are strange and fascinating places in space where the gravitation forces
are so high that they can trap not only particles, planets, and stars but also light. Black holes are born
when stars die. There are three types of black holes depending on their size and weight: supermassive
black holes, stellar black holes, and miniature black holes. The black hole optimization is based on
this phenomenon of black holes. Black holes have four layers: space outside the photonsphere, space
between photonsphere and event horizon, space inside the event horizon, and the singularity, where
the mass of the black hole in concentrated in one single point. The photon sphere is a spherical region
of non-spinning black holes; photons reaching the photon sphere are not captured but they are forced
to travel in orbits. The distance between particles and the black hole has a great impact on the behavior
of the particles. If the distance between a particle is much higher than the Schwarzschild radius, then
the particle can move in any direction. If this distance is larger than the Schwarzschild radius, but this
difference is not too much, the space-time is deformed, and more particles are moving towards the
center of the black hole than in other directions (Figure 11).

photon sphere event horizon

Toa < Tps

singularity

Tps =375

P e _ _
«&Xr photon <%~ particle, like star, planet or space waste
Pl X

Figure 11. Impact of photon sphere and event horizon on moving particles and photons.

The event horizon and the photon sphere can be calculated as follows:

2¢M 3
Top = %, and rps = Ers (30)

where g is Newton’s gravitational constant, M is the mass, and c is the speed of light.

Black hole algorithm belongs to the swarm intelligence algorithm, which are inspired either
by living bodies, like ants [88], bees [89], fishes [90], bats [91], krill herds [92], fireflies [93],
fruit flies [94], bacteria’s [95], or by other natural phenomena, like gravitation [96], big-bang [97],
or intelligent water drop [98]. Black hole optimization is used in a wide range of NP-hard optimization
problems, like investigating the critical slip surface of soil slope [99], solving the non-unicost set
covering problem [100], optimization of consignment-store-based supply chain [101], thermodynamic
optimization of a Penrose process [102], power flow optimization [103], and design of electromagnetic
devices [104], but one of its most important application fields is the clustering. The black hole
algorithms have six phases as follows:
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e  big-bang phase: this phase is the initialization of the position and velocity of stars in the
multidimensional search space. The stars represent potential solutions of the optimization
problem, where the coordinates of the stars in the search space are the values of the decision
variables. Stars can be initialized only inside the search space.

. .
pi = (pi1 pi2- - Pin) € [Pi’ﬁ'm e PT]'M} (31)

e  cvaluation phase: this phase includes the calculation of the objective function based on the
parameters represented by the coordinates of the star.

Vi = f(pi1, Piz - Pin) (32)

o  selection of black hole: within the frame of this phase a new black hole is defined as having the
highest value of objective function. This star has the highest weight (represented by the value of
objective function) and therefore it has the highest force of gravity and it is the center of movement
of stars in the next movement phase.

Py =Pi = UBH = m?X(Vz') (33)

e  moving of stars: in this phase of the algorithm, a new position of stars is calculated. The movement
of the stars can be influenced only by the black hole, but it is also possible to take into consideration
the gravity force of the other stars.

pij(t+ At) = pij(t) + Rnd|ppu(t) — pi;(t)]| (34)

o  decreasing the event horizon and the photon sphere: in this phase, the size of the event horizon and
the photon sphere is decreased based on the Hawking radiation, which describes the lost weight
process of black holes. This phase makes it possible to prevent the absorption of stars representing
solutions of the optimization problem near the optimum:

YBH

Teh = —=m——— and rps =

3 upH
—— 35
oy v, (35)

where @ is the number of the current iteration step.

e shift the position of the black hole: in this phase of the optimization we use the idea of Hawking
radiation. Particles can escape and the black hole’s mass reduces because if a particle-antiparticle
pair is created beyond the event horizon, it is possible to have one drawn into the black
hole itself while the other is ejected [105]. The position of the black hole is shifted using the
following calculation:

5 UBH
Py (t+ At) = F+A)+ ———— 36
BH( ) = Panl ) @y v (36)

where y is the shift-factor.

We demonstrate the clustering with a short example shown in Tables 2 and 3. Table 2 shows the
parameters of the clustering problem. There are 12 tasks which must be clustered within a predefined
time frame so that the objective function is the minimization of time deviance of average supply time
(1), while time and capacity related constraints (5)—(8) must be taken into consideration. As Table 2
shows, the loadings to be supplied are given in loading units.
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Table 2. Input parameters of the clustering problem !.

Tasks Relation Time Frame Limit Loading 2
From To Lower Upper
1 7 14 10:10 10:50 2
2 8 12 10:00 11:00 4
3 9 11 10:15 11:10 6
4 16 20 10:35 11:20 8
5 32 36 11:15 11:35 1
6 2 5 10:05 10:35 3
7 8 1 10:32 11:00 5
8 22 33 10:40 11:25 7
9 5 9 10:45 11:30 8
10 14 22 10:20 10:55 5
11 8 13 10:55 11:30 3
12 3 11 10:12 10:45 9

1 The upper limit of the capacity of AGVs is 38 LU (loading unit). 2 Loading is measured in LU.

The algorithm clustered the dataset given in Table 2 and resulted a time deviance of 104 min,
while the constrained loading capacity of AGVs was not exceeded. Within the frame of the extended
optimization of logistics resources of matrix production, we are using the above-mentioned black hole
optimization-based clustering algorithm to find the best sets of supply-demands to be assigned to
supply routes in order to minimize the time deviance from the time frames. As Table 3 shows, in this
simple scenario, two supply routes must be performed to minimize the objective function while the
upper limit of available AGVs is not exceeded.

Table 3. Results of clustering.

Tasks Relation Loading Tasks Relation Loading
From To From To
7 8 1 5 12 3 11 9
10 14 22 5 4 16 20 8
2 8 12 4 9 5 9 8
3 9 11 6 11 8 13 3
6 2 5 3 8 22 33 7
1 7 14 2 5 32 36 1

3.2.2. Discretized Flower Pollination-Based Routing and Scheduling for Extended and
Real-Time Optimization

Flower pollination algorithm is used in many fields of science: maximizing area coverage in
wireless sensor networks [106], sizing optimization of truss structures [107], economic dispatch
problems in modern power systems [108], optimizing wire electrical discharge machining [109],
or calculation of maximum permitted capacity of photovoltaic in distribution network [110].

The flower pollination algorithm takes its metaphor from nature, from the pollination process
of plants. Pollination is the act of transferring pollen grains from the male anther of a flower to the
female stigma. External agents are responsible for the transportation of pollen grains. Typical agents
are the following: insects, wind, birds, mammals, or water. Floral pollination algorithms are based
on this natural phenomenon and their most important rules are the followings: [111]: the potential
solutions of the optimization problem are represented by pollen grains; the global search in the search
space is modelled through the biotic pollination; the local search in the search space is modelled by
abiotic pollination and self-pollination; the global and local search is controlled through a switching
probability between biotic, abiotic, and self-pollution. The algorithm has the following phases:
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e initialization of parameters: in this phase both problem-specific and algorithm-specific parameters
are initialized. Problem-specific parameters are the parameters of search space (dimensions and
size) and the constraints-defined parameters. Algorithm-specific parameters are the following:
switch parameter between local and global search, distribution function parameters for Lévy
flight, termination criteria, and the number of pollen grains.

e calculation of the initial solutions: in this phase, the initial potential solutions of the optimization
problem are defined.

o cvaluation of pollen grains: within the frame of this phase, pollen grains are evaluated based on the
objective function of the optimization problem.

e initialization of iteration phase: in this phase, a random number & € [0,1] is generated to switch
between global and local search option. If i < h* then global pollination (biotic pollination) takes
place otherwise local pollination (abiotic pollination) takes place.

e biotic pollination phase: this phase represents the global search in the search space. The operator is
based on Lévy flight and can be defined as follows:

Wit =wl+L(A) (wl.mt't - wf) (37)

1 1

where w! is the value of variable i at iteration step ¢, cuf"es ! is the value of variable i at iteration

step t in the case of the global best solution and L(A) is the Levy distribution.
e  abiotic pollination: this phase represents a local search, in which pollen grains are spread to a
local neighbor:

wf+1:w§+¢<w§—wé>, w#IN] A0 (38)

where wf§ and wfg are random selected pollen grains about the neighborhood of the currently
processed pollen grain and ¢ € [0,1] is a random number.

e  transformation of the continuous representation into permutation-based representation: within the
frame of this phase the continuous variables are transformed into discrete numbers describing a
permutation-based problem. We are using the smallest position value rule and the largest order
value rule [112] for this transformation (Table 4).

o checking the termination criteria: in this phase, the following termination criteria’s can be checked:
computational time, iteration steps, the value of the best solution, lower limit of convergence speed.

Table 4. Example of the transformation of a continuous representation of pollen grains to permutation
representation [112].

Pollen Grain Value Index Number Permutation Rule SPV
12.31 1 6
8.24 2 4
—24.51 3 1
9.25 4 5
0.15 5 3
—1.35 6 2

Within the frame of the remaining part of this chapter, we will demonstrate the performance
of the above-mentioned hybrid heuristic optimization method including clustering, assignment,
and scheduling problems. In this scenario, 36 assembly stations are in around and there are 12
supply-demands to be clustered, routed, and scheduled. Table 5 shows the input parameters of the
scenario, while Table 6 demonstrates the optimal clustering of the 12 supply-demands.
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Table 5. Input parameters of the sensitivity analysis.

Relation Time Frame Limit .
Tasks Loading
From To Lower Upper
1 6 11 9:10 9:50 4
2 31 35 9:00 10:00 8
3 28 29 9:15 10:10 2
4 16 20 9:35 10:20 3
5 32 36 10:15 10:35 9
6 1 4 9:05 9:35 3
7 3 8 9:32 10:00 2
8 22 33 9:40 10:25 8
9 2 4 9:45 10:30 5
10 14 20 9:20 9:55 9
11 7 14 9:55 10:30 7
12 23 27 9:12 9:45 9

The upper limit of loading capacity of the AGVs is 38 and the clustering algorithm has found the
best clusters for extended scheduling and routing with a maximum capacity of 34 and 35 LUs.

Table 6. Results of clustering.

Relation Relation

Tasks "  Loading Tasks " Loading
From To From To
6 1 4 3 4 16 20 3
2 31 35 8 11 7 14 7
10 14 20 9 12 23 27 9
3 28 29 2 9 2 4 5
8 22 33 8 5 32 36 9
1 6 11 4 7 3 8 2

Figure 12 demonstrates the solution of extended clustering and routing problems including two
routes. The value of the objective function is 137 min, while the total length of the unloaded sections is
3468 m.

Increasing the available loading capacity of AGVs the extended clustering and routing gives a
better solution (Figure 13), because the time frame deviance is only 104 min.

2
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Figure 12. Clustered and sequenced supply-demands in scenario 1.
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Figure 13. Clustered and sequenced supply-demands in scenario 2.

If the objective function of the extended clustering and routing problem is the minimization of the
empty routes, then the energy efficiency can be minimized, but the time frame deviance is too high and
some supply-demands cannot be performed within the lower and upper limit of the predefined time
frame. The minimization of the length of empty routes can be performed in the case of one route, which
means that the available loading capacity of AGV must be higher than in the case of scenarios 1 and 2.
In the case of scenario three, the total length of the empty routes is 2948.7 m, while the required AGV’s
capacity is 69 LU and the total time frame deviance is 192 min. The key functionality of the algorithm
has been explained. Figures 14 and 15 show the pseudocode of the algorithm because the details of the
software engineering part would be interesting for anyone aiming to replicate the implementation.

Input: number of stars, objective function, constraints, sign restrictions, termination criteria
Output: optimal clustering
//Initialization
1 generate feasible solutions randomly in the n-dimensional search space (30)
//Pre-evaluation
2 for each star, evaluate the objective function (1-4, 31)
//Loop until the termination criteria satisfy
While (termination criteria satisfy) do
//Selection of the black hole
3 select the best star that has the best value to become a black hole (32)
//Hawking radiation
4 change the position of the black hole (33)
//movement of stars towards the black hole
5 move the stars towards the black holes (35) while constraints (equations 5-8) are taken into consideration
//Check the position of stars
Six if a star is inside the event horizon
absorb the star and generate a new one in the search space
end if
//Evaluation
7  for each star, evaluate the objective function (1-4, 31)
End of while

Figure 14. Pseudocode of the implementation of black hole algorithm for clustering of supply-demand
in the extended phase of logistics resource optimization.
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Input: number of pollen grains, objective function, constraints, sign restrictions, termination criteria
Output: optimal solution
//nitialization
1  Generate feasible solutions randomly in the n-dimensional search space
/[Pre-evaluation
2 For each pollen grain, evaluate the objective function (9 and 20-22)
//Loop until the termination criteria satisfy
While (termination criteria satisfy) do
//Generate switch parameter and perform either global or local search
3 If biotic pollution is chosen
Move the pollen grains based on Lévy flight while constraints (36) are taken into consideration
end if
4 If abiotic pollution is chosen
Pollen grains are spread to a local neighbour (37) while constraints (10 and 23-29) are taken into
consideration
end if
//Evaluation
5 For each pollen grain, evaluate the objective function (9 and 20-22)
End of while

Figure 15. Pseudocode of the implementation of flower pollination algorithm for extended and
real-time rescheduling and reassignment of supply routes.

4. Results from the Scenario Analysis of Extended and Real-Time Logistics Resource Optimization
in Matrix Production

Within the frame of this chapter, a scenario analysis demonstrates the application possibilities of
the above described mathematical model and validates the applied heuristic optimization algorithm.
The scenario is simplified to make examples as perspicuous as possible. We have chosen a simple
scenario, which makes it possible to check the performance of the optimization algorithm and to
validate the suggested model and solution algorithm. It makes sense to consider this specific scenario
because both the clustering and the routing/rerouting problems can be demonstrated. In this scenario,
16 assembly stations are in a matrix grid and there are 16 supply-demands to be clustered, routed and
scheduled. Table 7 shows the input parameters of the scenario, while Table 8 demonstrates the optimal
clustering of the 16 supply-demands.

Table 7. Input parameters of the Scenario.

Relation Time Frame Limit .
Tasks Loading
From To Lower Upper

1 12 15 10:10 10:30 12
2 1 4 10:20 10:50 9
3 9 10 10:30 11:15 15
4 5 8 10:40 11:05 8
5 3 7 10:50 11:10 24
6 14 8 10:10 10:40 7
7 9 13 10:05 10:35 44
8 6 9 10:12 10:38 7
9 5 8 10:55 11:28 31
10 15 10 11:25 11:40 21
11 14 6 11:30 12:00 17
12 1 5 11:05 11:30 56
13 3 6 10:35 11:05 22
14 6 12 10:25 10:55 11
15 4 14 10:45 11:05 8
16 14 16 10:50 12:00 9
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The upper limit of loading capacity of the AGVs is 120 and the clustering algorithm has found the
best clusters for extended scheduling and routing with a maximum capacity of 109, 79, and 113 LUs.

Table 8. Clustering results.

Tasks Relation Loading  Tasks Relation Loading  Tasks Relation Loading
From To From To From To

4 5 8 8 7 9 13 44 9 5 8 31
16 14 16 9 6 14 8 7 14 6 12 11

3 9 10 15 8 6 9 7 5 3 7 24
12 1 5 56 1 12 15 12 13 3 6 22
10 15 10 21 2 1 4 9 15 4 14 8

- - - - - - - - 11 14 6 17

Figure 16 demonstrates the solution of extended clustering and routing problem including three
routes. The value of the objective function (total deviance of time frame) is 205.67 min, while the total
length of unloaded sections is 372 m. The length of loaded routes is 444 m and the total length of the
three supply routes is 816 m. The maximum loading of AGVs is 109, 79, and 113 LU, which means a
capacity utilization of 91%, 66%, and 94%.
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Figure 16. Results of extended clustering, assignment and routing of AGVs.

The next phase of the optimization is the real-time scheduling. Within the frame of our scenario,
one supply-demand must be performed. The optimization algorithm is responsible for the reclustering,
rerouting, and rescheduling of the routes in order to find the most energy efficient way, while time
frame and capacity related constraints are taken into consideration. The new supply-demand must be
performed between matrix cell 2 and 12, the time frame to perform this supply chain is between 10:30
and 10:45 and the loading is 21 LU. The results of reclustering are shown in Table 9 and Figure 17.

The value of the objective function (total deviance of time frame) is 237.75 min, while the total
length of unloaded sections is 372 m. The length of loaded routes is 492 m and the total length of the
three supply routes is 864 m. The maximum loading of AGVs is 114, 91, and 117 LU, which means a
capacity utilization of 95%, 76%, and 98%.

The AGVs are using electricity. As the comparison of the World Nuclear Association shows,
the greenhouse gas (GHG) emission depends on the electricity generation source (Figure 18).
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Table 9. Reclustering results.

25 of 33

Tasks Relation Loading  Tasks Relation Loading  Tasks Relation Loading
From To From To From To
11 14 6 17 17 2 12 21 9 5 8 31
5 3 7 24 7 9 13 44 16 14 16 9
12 1 5 56 6 14 8 7 10 15 10 21
2 1 4 9 8 6 9 7 4 5 8 8
15 4 14 8 1 12 15 12 13 3 6 22
- - - - - - - 3 9 10 15
- - - - - - - - 14 6 12 11

Matrix production grid — route 1

s wiel¥

Matrix production grid —route 2

Matrix production grid - route 3

Figure 17. Results of real-time reclustering, reassignment, and rerouting of AGVs.
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Figure 18. Comparison of lifecycle greenhouse gas emissions of various electricity generation sources [113].
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Using the specific emission in g/liter fuel consumption and calculate the proportion of them to
the GHG emission reported by World Nuclear Association [113] we can calculate the specific virtual
emission of used electricity (Table 10).

Table 10. Calculated greenhouse gas (GHG) emission depending on the electricity generation source.

Emission
Routes EGS!
Co, SO, co HC  NOy PM
Specific emissions in glliter - 2629 0.8 2.2 12 11.9 0.1
fuel consumption [114]
Lignite 1054 0032 0880 0480 4760  0.040
Coal 888 0028 0733 0400 3960  0.030
oil 733 002 0615 0335 3324 0028
N _ ., Naturalgas 499 0016 0418 0228 2226 0019
Specific GHG emission Photovoltaic 85 0002 0073 0040 039  0.003
[113] Biomass 45 0001 0038 0021 0205  0.002
Nuclear 29 <103 0024 0013 0132  0.001
Water 26 <103 0022 0012 0119  0.001
Wind 26 <1073 0022 0012 0119  0.001

TEGS = Electricity Generation Source. 2 in CO, emission in g/kWh.

However, energy consumption of AGVs depends on both the length of routes and loading of
AGVs, but within the frame of our model, we calculate with an average loading. As previous research
results highlight, energy consumption minimization is regarded as the optimal object to planning
efficient routes for heterogeneous AGVs. The energy consumption of electric AGVs is between 40 and
150 Wh/km depending on the loading weight [115].

Tables 11-13 shows the calculated virtual GHG emission in the case of lignite, oil, and photovoltaic
based electricity generation.

Table 11. Calculated GHG emission in the case of lignite-based electricity generation.

Emission
Scenario !
CO, SO, co HC NOx PM
Extended scheduling of known supply-demands 8600 0.26  7.1808 39168 38.841 0.3264
Real-time scheduling with added new supply-demand 9106 0.27 7.6032 4.1472 41.126 0.3456
Separated route for new supply-demand 1264 004 1.056 05760 5.7120 0.0480
Emission reduction with real-time scheduling 8432  0.03 0.7004 0.3840 3.808. 0.0320

1 We are calculating with 100 routes.

Table 12. Calculated GHG emission in the case of oil-based electricity generation.

Emission
CO, SO, co HC NOx PM

Extended scheduling of known supply-demands 5981.2 0.1795 5.0184 2.7336 27.123 0.2285
Real-time scheduling with added new supply-demand  6333.1 0.1901 53136 2.8944 28.719 0.2419
Separated route for new supply-demand 879.6 0.0264 0.7380 0.4020 3.9883 0.0336
Emission reduction with real-time scheduling 586.4 0.0176 0.4920 0.2680 2.6592 0.0022

1 We are calculating with 100 routes.

1

Scenario
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Table 13. Calculated GHG emission in the case of photovoltaic-based electricity generation.

Emission
CO, SO, co HC NOx PM

Extended scheduling of known supply-demands 693.6 0.0163 0.5957 0.3264 3.2314 0.0245
Real-time scheduling with added new supply-demand 7344 0.0173 0.6307 0.3456 3.4214 0.0259
Separated route for new supply-demand 102.0 0.0024 0.0876 0.0480 0.4752 0.0036
Emission reduction with real-time scheduling 68.0 0.0016 0.0584 0.0320 0.3168 0.0024

1 We are calculating with 100 routes.

1

Scenario

The above-described scenario validated the presented model based on extended and real-time
routing, scheduling, and assignment and justifies the fact that in matrix production the enhanced
logistics performance must be optimized in order to increase energy efficiency and decrease GHG
emission. Figure 19 demonstrates the physical appearance of a matrix production system, where the
flexible manufacturing and assembly cells are arranged in a grid layout.

My &

Figure 19. Industry 4.0—matrix production by KUKA [2].

To summarize, the proposed optimization model including a black hole algorithm-based
clustering and a floral pollination-based routing and assignment makes it possible to analyze the
impact of real-time routing in a complex, flexible cyber-physical manufacturing environment, where
manufacturing and logistics are separated and the supply of categorized, standardized manufacturing
and assembly cells is performed with autonomous electric vehicles.

As the findings of the literature review show, the articles that addressed the in-plant supply of
manufacturing processes are focusing on conventional production environments, but none of the
articles aimed to identify the challenges of matrix production. The comparison of our results with
those from other studies shows that the optimization of in-plant supply processes in a cyber-physical
environment still needs more attention and research. The reason for this is that, in the case of large-sized
stochastic production systems, where the supply-demand can be scheduled both an extended way
(production planning) and a real-time way (supply-demands caused by malfunction of technology,
waste product, or customer demand) heuristic algorithms must be used in the case of these NP-hard
optimization problems. In spite of the small size of the demonstrated problems, these results show
that the proposed method using black hole and floral pollination algorithms performs better than
the conventional formal models. The proposed model and algorithm can obtain different objectives
(time frame deviance, energy consumption, route length, GHG emission) and various constraints (time
frame and capacity related) of the matrix production.
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5. Conclusions

Within the frame of this research work, the authors developed a mathematical model and a
black hole and floral pollination algorithms-based optimization method, which makes it possible to
optimize the in-plant supply of a cyber-physical production environment called matrix production
suggested by KUKA robotics. More generally, this paper focused on the mathematical description
of the framework of in-plant supply of matrix production including time frame, capacities, energy
consumption, and emissions and shows the impact of optimization on the performance of the system.
Why is so much effort being put into this research? The role of in-plant supply has changed in the last
few years from the conventional material handling to a highly flexible, responsive supply, where IoT
solutions like gentelligent products, intelligent tools, networking manufacturing and assembly cells
and digital twin applications influence the operation of the whole cyber-physical environment.

The added value of the paper is the description of the in-plant supply model of matrix production,
which makes it possible to describe the time, capacity, energy, and emission-related impacts of the
operation. The scientific contribution of this paper for researchers in this field is the mathematical
modelling and the heuristic optimization including clustering, assignment, routing, and scheduling.
The results can be generalized because the model can be applied for different production environments
from small and middle-sized enterprises to multinational production companies. The described
method makes it possible to support managerial decisions; not only the manufacturing but also the
logistics and supply chain strategy can be influenced by the results of the above-described contribution.

However, there are also limitations of the study. The inventory of components and tools are not
taken into consideration and the parameters of the matrix production systems are given as deterministic
parameters. These limitations show the directions for further research. In further studies, the model
can be extended to a more complex model including inventory optimization for components and tools.
Second, this study only considered time, capacity, and energy consumption as deterministic parameters.
Fuzzy models can be also suitable for the description of a stochastic environment (uncertain capacity,
time window, availability of resources) because Fuzzy models are based on degrees of truth. This
should be also considered in future research.
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