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Abstract: Visible Light Positioning (VLP) is widely recognized as a cost-effective solution for indoor
positioning with increasing demand. However, the nonlinearity and highly complex relationship
between three-dimensional world coordinate and two-dimensional image coordinate hinders the
good performance of image-sensor-based VLP. Therefore, there is a need to develop effective
VLP algorithms to locate the positioning terminal using image sensor. Besides, due to the high
computational cost of image processing, most existing VLP systems do not achieve satisfactory
performance in terms of real-time ability and positioning accuracy, both of which are significant
for the performance of indoor positioning system. In addition, the accurate identification of the
ID information of each LED (LED-ID) is important for positioning, because if the LED-ID is not
recognized well, the positioning can only be achieved in a particular positioning unit and cannot be
applied to a large scene with many LEDs. Therefore, an effective image-sensor-based double-light
positioning system is proposed in this paper to solve the above problems. We also set up relevant
experiments to test the performance of the proposed system, which utilizes the rolling shutter
mechanism of the Complementary Metal Oxide Semiconductor (CMOS) image sensor. Machine
learning was used to identify the LED-ID for better results. Simulation results show that the proposed
double-light positioning system could deliver satisfactory performance in terms of both the real-time
ability and the accuracy of positioning. Moreover, the proposed double-light positioning algorithm
has low complexity and takes the symmetry problem of angle into consideration, which has never
been considered before. Experiments confirmed that the proposed double-light positioning system
can provide an accuracy of 3.85 cm with an average computing time of 56.28 ms, making it a promising
candidate for future indoor positioning applications.

Keywords: visible light positioning (VLP); image processing; Complementary Metal Oxide
Semiconductor (CMOS) image sensor; real-time ability and positioning accuracy; low complexity

1. Introduction

Due to the growing demand for accurate Location-Based Services (LBS), indoor positioning has
been a hot research direction for the past few years. With the increase of large constructions, such as
shopping malls and underground parking lots, the requirements for indoor positioning accuracy are
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getting higher and higher. Nevertheless, traditional indoor positioning systems such as WLAN, Zigbee,
Ultra-Wideband (UWB), Bluetooth and Radio-frequency Identification (RFID) can only achieve tens of
centimeters to a few meters of precision [1]. To meet the needs of high accuracy and instantaneity, a
high-precision LED-based indoor positioning system using VLC technology is proposed. Visible light
positioning (VLP) systems have the following advantages: First, multipath is more significant in VLP
based on phase of arrival, however VLP based on angle of arrival or image sensors are more immune
to multipath effects. Second, in some situations, such as hospitals and airplanes, VLC-based methods
can still be used because LEDs do not generate radio frequency (RF) interference, and RF radiation is
limited or even prohibited. Finally, as long as lighting infrastructures exist, VLC technology can be
used to minimize hardware costs [2]. The indoor positioning method based on VLC can be divided
into two categories: photodiode (PD)-based VLC [3,4] and image sensor-based VLC.

Since the direction of the light beam can affect PD to a large extent, the mobility of the positioning
terminal is extremely limited. Another drawback of PD-based positioning is that a large error is usually
generated due to the angular measurements, the measuring of received signal strength, varying
intensities of light, and the solving of quadratic equations for position estimation jointly determining
the result of the positioning [5]. In addition, it requires high-precision devices when it exploits phase
difference of arrival (PDOA) or phase of arrival (POA), and time difference of arrival (TDOA) or time
of arrival (TOA) to estimate the position of terminal [1]. Therefore, a promising alternative is using an
image sensor as a receiver, which, according to the coordinates of LEDs in the real world and in the
image, determines the location of the positioning. Unlike PD, we can use the image sensor not only in
experimental conditions but also in practice without peripheral because of the combination of image
sensor and commercial mobile phone. At the same time, it is immune to reflected light and generally
able to provide a capture rate of 30 frames per second [6].

Thus far, there have been many image sensor-based VLC methods proposed, but few of them are
practically available due to the lack of consideration for the actual scene and there is no preparation
for high-speed indoor positioning in practical applications. For example, in [7], an additional six-axis
sensor is used to determine the direction of the receiver and its position. This scheme uses collinearity
condition to relate the 3-D coordinates of the LEDs to the 2-D coordinates of the image sensor.
Simulation results show that the position of the receiver can be accurately estimated within 1.5 m if the
pixel size is 36 × 10−6 m. In [8], the 3-D coordinate information is transmitted by at least three LEDs
from the LED lighting array. The 2-D image sensor receives the spatially separated lights by a lens
and demodulates the 3-D coordinate information of each LED. Then, by solving two sets of quadratic
equations that may lead to calculation errors, the position of the receiver is calculated. Analysis of
those works shows that the accurate angle measurement and the solution of the quadratic equation
for position estimation may lead to the positioning error of the original scheme. In [9–11], two image
sensors near the unknown position receive and demodulate the 3-D coordinate information transmitted
by at least four LEDs from an LED array. Then, from the geometric relations of the LED images that are
created on the image sensor plane, the unknown position is calculated using a combination of vector
estimation methods and least-square with the accuracy of decimeter level. Under the assumption that
the image center is at the center of the pixel, this method does not require angular measurement. In
practice, however, the center of the LED image rarely appears at the center of the pixel, so quantization
errors are unavoidable. In addition, the separation between image sensors will largely determine the
accuracy of positioning. Meanwhile, because of the existence of two image sensors, the complexity
and quantization error of the two image sensors are at a high level. Therefore, in Luxapose [12], an
AOA localization algorithm based on three or more LEDs is proposed, where a camera is regarded as
an angle-of-arrival sensor.

In [13], the authors put forward an indoor positioning algorithm using at least three LEDs, which
realized an accuracy of 0.001 m in simulation. However, there are certain limitations: (i) The FOV of
most smartphone cameras is very limited. As for 3-D positioning, with the increase of Rx’s position,
it would fail to position when there are fewer than three LEDs in the view. (ii) LED signal may be
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blocked by some objects such as walls and furniture in indoor environment, which causes the failure
of positioning because the obstacles can lead to a situation where there are fewer than three LEDs in
the visual of image sensor, as in the former case. Positioning may be interrupted or fail if fewer than
three LEDs occur in the FOV of the camera, which greatly reduces the robustness and flexibility of the
system. To reduce the number of required LEDs, in [14], the authors used two LED luminaires and an
image sensor of camera as a receiver to realize the positioning accuracy of several cm in 3-D system.
However, when only one LED is captured, the positioning fails. In [15], the authors adopted the
localization algorithm from [14], and, if only one LED luminaire is captured, the position of the receiver
would be simply located at the position of corresponding LED luminaires. In other words, it is just
proximity. Hence, it causes great error of at least 82.5 cm in the 2-D positioning system of Reference [15]
and the authors could not handle the situation where only one LED luminaire is captured. Meanwhile,
the positioning algorithm of References [14,15] seems to be collinear, but they are only adapted to the
occasion such as corridor with straight line distribution of LEDs instead of indoor environment with
four square lamps. Besides, the authors did not demonstrate their positioning method based on two
LEDs, let alone how they obtained the coordinate of Rx. Their work also left some unresolved issues
for follow-up research. Meanwhile, the authors of [14,15] did not take the symmetry problem of angle
into consideration.

Employing angular sensors is another straightforward way to measure the receiver’s orientation
information, thereby “compensating” for the missing information caused by the reduced number of
LED lamps. In [16,17], the authors provided single LED based localization by employing angular
sensors or gyro. However, the use of angle sensors poses another problem. Previous studies have
shown that a major source of positioning and navigation errors is inaccuracy of azimuth angles or
measurement by magnetometers and gyroscopes [18]. In [19,20], the authors provided the techniques
for position of the collinearity condition using single camera and LED street lights. In [19], the authors
used the direct linear transformation and single value decomposition to solve the equation system for
positioning. However, the robustness of the system is poor, and the algorithms are complicated where
the scene is not collinear. In [20], the camera receives the visual information while the photodiode
receives the visible light information, and the error of 3-D positioning is controlled at the decimeter
level. In [21], a single LED positioning system based on circle projection using single image sensor
is proposed and demonstrated. The LED image is no longer treated as a point in the actual scene,
and the expressions for determining the orientation and position of the receiver are derived from the
geometric parameters of the LED circle projection in the image. However, this method can only apply
in a very short scope. According to our experiment, when the perpendicular distance between camera
and LED increases (especially in a large indoor environment), the LED image on the image sensor
plane can only be seen as a point. Otherwise, the geometric parameters of the LED circle projection
will deliver a large percentage of error and cause a larger error in the positioning. Moreover, the
marginal marker point mentioned in the paper can only be applied in a short range. Once the distance
increases, it would be difficult to recognize and lead to a large error. Moreover, the algorithm in [21]
is not suitable for practical application because of its complexity and large amount of computation.
Finally, all above-mentioned studies (except Reference [15]) do not pay much attention to real-time
ability, but only focus on static positioning and the positioning accuracy. However, both accuracy and
real-time ability are crucial for indoor positioning systems.

The contribution of our work can be listed as follows. In this paper, firstly we propose an
image-sensor-based double-light positioning system and set up relevant experiments to test the
performance of the proposed system. Although the authors of [14,15] used a double-light positioning
algorithm, the work in [14] does not consider the LED-ID recognition problem. If the LED-ID
recognition is unsuccessful, the positioning would fail. In [15], there is a LED-ID recognition defect. If
the LED-ID recognition is deviated, the positioning algorithm is difficult to exert a normal effect. This
paper considers the problem of LED-ID recognition. Under the premise of accurate identification of
LED-ID, the double-light positioning algorithm is used for accurate positioning. Accurate LED-ID
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recognition is the basis for the success of the positioning algorithm. If the LED-ID is not recognized
correctly, the positioning would fail and the positioning algorithm would be meaningless. Secondly,
we utilize the rolling shutter mechanism of the CMOS image sensor and combine machine learning
algorithm to identify the LED-ID. Thirdly, in the proposed double-light positioning algorithm with low
complexity, we take the symmetry problem of angle into consideration, which has not been considered
before. Finally, the proposed double-light positioning system delivers satisfactory performance in
terms of the real-time ability and the accuracy of positioning, and experimental results show that the
proposed system could achieve an accuracy of 3.85 cm with an average computing time of 56.28 ms.
The rest of the paper is organized as follows. Section 2 presents system principle and the double-light
positioning algorithm. Section 3 shows the experiments and results of the proposed system. Section 4
provides concluding remarks.

2. System Principle

2.1. The LED-ID Detection and Recognition

The VLP system is mainly comprised of two processes: LED-ID recognition and the positioning
algorithm. The recognition of LED-ID is realized by using the image sensor-based VLP, which utilizes
the rolling shutter mechanism of the CMOS image sensor. The working principle of CMOS sensors
and Charge Coupled Devices (CCD) sensor are shown in Figure 1. With a CCD sensor in Figure 1a, all
pixels on the sensor are simultaneously exposed, thus, at the end of each exposure, the data of all pixels
are simultaneously read out. This mechanism is often referred to as the global shutter of a CCD sensor.
However, CMOS has a completely different working mechanism than CCD sensor. For a CMOS sensor,
the data of this row are immediately read out whenever the exposure of one row is completed, which
means that the exposure and data reading are performed row by row. This working mechanism is
called the rolling shutter mechanism of the CMOS sensor. The image captured by the CMOS sensor
would produce bright and dark stripes while turning the LED on and off during a period of exposure
due to the rolling shutter mechanism of CMOS sensor [6,22].
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CMOS sensor.

For the same LED project, the change in distance from the CMOS sensor does not affect the width
of light and dark stripes, because the scanning frequency of the CMOS sensor is fixed. However,
the area of the LED project on the CMOS sensor will decrease as the distance between the LED and
the camera increases, and this will also result in a reduction in the number of light stripes and dark
stripes. Therefore, the area of the LED project, the number of bright stripes and the duty-ratio of the
bright stripe were selected as the features of each LED, and a classifier was used to identify different
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LEDs. Our method is different from the traditional modulation and demodulation method, which
introduces the classification algorithm from the field of machine learning to solve the problem of
LED-ID detection and recognition. We modulate each LED using a varying frequency and duty-ratio
Pulse-Width Modulation (PWM) method to enable the LED-ID to overproduce three identifiable
features: the area of the LED project on the CMOS sensor, the number of the bright stripes, and the
ratio of the width of the light stripe to the width of the light stripe and the dark stripe (the duty-ratio of
the bright stripe). To identify LED-IDs using features that would be extracted by the image processing
method, we use the Fisher classifier and the linear support vector machine through off-line training for
the classifiers and online recognition of LED-ID. Experiments show that the proposed scheme could
improve both the speed and accuracy of LED-ID identification and make the system more robust. The
detail process of LED-ID detection and recognition has been deeply discussed in our prior work [22]
and it can be seen in Figure 2. For the readers that are interested in the LED-ID modulation and
recognition, please refer to our previous reports.
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2.2. Double-Light Positioning Algorithm

Based on the above LED-ID image recognition, this section mainly introduces the double-light
positioning algorithm in the positioning system. To the best of our knowledge, in the existing reports,
only Jae-Yoon Kim et al. [14] realized VLC positioning on the base of two LEDs with one camera.
However, unfortunately, the authors of [14] did not describe their proposed positioning scheme
properly. Thus, we propose a new double-light positioning algorithm, as shown below:

The system model of the proposed double-light positioning algorithm is shown in Figure 3.
The coordinates of LEDs are (x1, y1, z1), (x2, y2, z2) and, in general, the ceiling height is the same
throughout, thus z1 = z2. Point P is the midpoint of the lens in the image sensor, which is estimated
for the 3-D coordinate of the terminal. The distances from P to the LED anchors are dkP, k = 1, 2 for
the two LED lamps. dkP is calculated by the geometrical relationship between the focal length of the
lens and the position of the LED pixel on the image sensor. Geometric relationship of the proposed
double-light positioning scheme is detailed in Figure 3. The focal length of the lens f is the intrinsic
parameter of the camera. The distance between the center of the LED pixel and the center of the image
sensors is pk, k = 1, 2 for the two LED lamps. The pixel coordinate system and image coordinate
system are both located on the imaging plane of image sensor, but they have different origin and
different units of measurement. The relationship between the pixel coordinate system and image
coordinate system is presented in Figure 4.
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Figure 4. (x, y) is the pixel coordinate system, (u, v) is the Image coordinate system, (Xc, Yc) is the
Camera coordinate system and (Xw, Yw, Zw) is the world coordinate system.

The origin of image coordinate system is the point of intersection of camera’s optical axis and the
image sensor imaging plane, i.e., the center of midpoint of the image sensor imaging plane. The unit
of the mentioned image coordinate system is mm, which belongs to physical unit. The unit of the pixel
coordinate is pixel, which is described by its row and line. Firstly, after obtaining the pixel coordinates
of the two LEDs, according to the relationship between the pixel coordinate system and the image
coordinate system, the coordinates of the two LEDs in the image coordinate system can be calculated:

u =
i

di
+ u0 (1)

v =
j

dj
+ v0 (2)

Equations (1) and (2) can be rewritten in matrix form as: u
v
1

 =


1
di 0 u0

0 1
dj v0

0 0 1


 i

j
1

 (3)

where di and dj represent the unit conversion of two coordinate system, i.e., 1 pixel = dj mm, i, j is the
coordinate in the image coordinate system, u, v is the coordinate in the pixel coordinate system, and
(u0, v0) is the midpoint of image sensor’s imaging plane in pixel coordinate system. Therefore, we can
obtain the conversion of the image coordinate system and the pixel coordinate system. Furthermore,
we can get the distance between the midpoint of image sensor and the image of LED on the sensor pk:
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pk =
√

i2k + j2k (4)

The distance between the LED pixels is:

p12 =

√
(i1 − i2)

2 + (j1 − j2)
2 (5)

The physical distance between the two LEDs can be expressed as:

d12 =

√
(x1 − x2)

2 + (y1 − y2)
2 (6)

The vertical distance between the LED and the lens plane can be expressed as:

H = f
d12

p12
(7)

The Zc coordinate of the terminal can be located:

Zc = z1 − H = z2 − H (8)

Thus, when the image coordinate system and the world coordinate system are parallel and have
the same direction, the coordinate of the terminal in the camera system can be obtained according to
the geometric relationship of similar triangles:

Xc − x1+x2
2

H
=

i1+i2
2
f

(9)

Yc − y1+y2
2

H
=

j1+j2
2
f

(10)

However, Equations (9) and (10) only present the relationship between the image coordinate and
the world coordinate. If the image coordinate system and the world coordinate system are parallel and
have the same direction, (Xc, Yc, Zc) = (Xw, Yw, Zw). However, under normal circumstances, there is
no parallel relationship between the camera coordinate system and the world coordinate system. When
the positioning image coordinate and the world coordinate system are not parallel, the results solved
from Equations (9) and (10) cannot be used as the final result. Thus, a rotation angle θ, which is the
angle between the world coordinate system and the camera coordinate system, should be introduced
to solve the problem. Without loss of generality, as shown in Figure 5, we assume that the vector from
the centroid of light source A to that of light source B is parallel to the axis Xc. Thus, the vector from
the projective point B’ to the projective point A’ is also parallel to axis Xc, and the orientation θ of
the receiver can be estimated by calculating the angle θ between the vector of B’A’ and the axis Xw.
Rotation angle of the positioning terminal can be obtained from a captured image of the LED lightings
and it can be expressed as

θ = atan2
(

j1 −
j1 + j2

2
, i1 −

i1 + i2
2

)
= atan2(j1 − j2, i1 − i2) (11)
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In our proposed algorithm, we put forward a method to find the true rotation angle ϕ by classified
discussion. Figure 6 shows the different situations when the rotation angle ϕ change from 0 to 360◦

respectively, and θ is in a range of [0, 90◦]. In Figure 6a–e, ϕ are 0, θ, θ + 90◦, θ + 180◦ and 360◦ − θ,
respectively. Then, by rotating the image according to the obtained rotation angle, the image can be
made parallel and equal to the coordinate axis. Therefore, we can rotate the coordinate by Equation
(12) and realize positioning under any azimuth. Xw

Yw

Zw

 =

 cosϕ −sinϕ 0
sinϕ cosϕ 0

0 0 1


 Xc

Yc

Zc

 (12)

where (Xc, Yc, Zc) is the coordinate in the image sensor coordinate system and (Xw, Yw, Zw) is the
coordinate in the world coordinate system.
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Although the authors of [16] proposed a positioning method based on two LEDs, they did
not offer a specific positioning progress, which causes much confusion and suspicion. Meanwhile,
we specifically explain how we determine the receiver’s position in the above introduction of our
algorithm. Besides, they did not take the symmetry problem of angle into consideration, which we
have explained. In another double-light positioning method mentioned in [16], confusion remains
as to the process used. In addition, there are limitations of their method when the rotation angle is
calculated because they did not take the symmetry problem of angle into consideration. Based on the
above comparisons, we believe that our algorithm is superior to the previous methods.

3. Experiment and Analysis

We conducted experiments to verify the effectiveness of the proposed double-light positioning
algorithm. As shown in Figure 7, there are five LEDs mounted on top of the frame. Since the proposed
algorithm requires two LEDs, two of the LEDs are illuminated. Each LED luminaire is embedded



Appl. Sci. 2019, 9, 1238 9 of 15

with an 8-bit microcontroller unit (MCU) that encodes the unique identifier (UID) as a codeword
that is not only suitable for optical transmission but also for flicker mitigation and dimming support.
Using on–off keying intensity modulation (OOK IM), the LED driver can convert the codeword into
modulated digital signals to drive the LED luminaire to emit the optical signals. We use the machine
learning to detect and recognize LED-ID. Different from the traditional LED-ID encoding and decoding
methods, we treat the LED-ID detection and recognition problem as a classification problem in machine
learning filed. Once the LED image is captured by a CMOS image sensor, an image processing method
is used to extract the features of LED-ID. To use the extracted features to identify the LED-ID, a Fisher
classifier and a linear support vector machine are used. By off-line training for the classifiers and online
recognition of LED-ID, the scheme proposed could improve the speed of LED-ID identification and
improve the robustness of the system [22]. The drive circuit board is shown in Figure 8. Furthermore,
we measured the time efficiency of our algorithm with the CMOS industrial camera (as the positioning
terminal) and the computer Acer Aspire VN7-593G, Intel (R) Core (TM) i7-7700HQ CPU@ 2.8GHz,
Ubuntu 16.04 LTS (as the software platform). Table 1 shows all important system parameters.
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Table 1. Parameter of the camera in this paper.

Parameter Value

Indoor space unit size (L × W × H)/m3 0.8 × 0.8 × 2
The focal length/mm 3

Height of the camera/m 0 to 0.3 (resolution: 0.1)
Plan range of the camera/m 1.1 to 0.7 (resolution: 0.2)

Voltage of each LED/V 28.43
Current of each LED/A 0.1

Camera resolution 2048 × 1536
Camera exposure time/ms 0.05

Computer parameter Acer Aspire VN7-593G, Intel (R) Core (TM)
i7-7700HQ CPU@ 2.8GHz, Ubuntu 16.04 LTS

As shown in Figure 7, the performance of double-light algorithm was tested by an experiment, in
which the coordinates (in cm) of the LEDs were (−33, −33, 200), (33, 33, 220). There were 16 evenly
distributed test points at the height of 0 m, 0.1 m, 0.2 m and 0.3 m, respectively. Each position was
tested six times, and the experiment tested a total of 384 positions. The positioning results are shown
in Figure 9a–d, and Figure 9e–h shows the horizontal view of them.
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Figure 9. The positioning results of double-light positioning system: (a–d) the 3-D positioning results
at the height of 0 m, 0.1 m, 0.2 m and 0.3 m, respectively; and (e–h) the horizontal view of the 3-D
positioning results at the height of 0 m, 0.1 m, 0.2 m and 0.3 m, respectively.

As shown in Figure 9, the estimated positions matched well with the real positions, which proved
that the proposed double-light positioning algorithm could achieve high positioning accuracy. The
spots in Figure 10 prove that, with different height of the camera, the positioning mean error barely
changed. To better analyze the performance, Figure 11 gives the cumulative distribution function
(CDF) of positioning error. CDF is defined as the probability that a random positioning error is less
than or equal to the positioning accuracy. As observed in Figure 11, the CDF of over 90% of the
positioning error was within 3 cm. The histogram of the errors in Figure 12 shows that the average
error was about 1.99 cm, and all the positioning errors were within 3.85 cm. Therefore, it is obvious
that the proposed double-light positioning algorithm could accomplish highly accurate positioning.
Finally, the average positioning computing time of double-light positioning algorithm was 56.28 ms.
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Through the experiment above, it can be clearly seen that the proposed double-light positioning
algorithm not only achieved a high positioning accuracy, but was also fully real-time capable.
Compared with the methods in [16,17], as representative for the existing research on two LEDs
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in the VLP, the proposed double-light positioning algorithm had higher positioning accuracy (6.5 cm
in [16] and 7.5 cm in [17]). Moreover, neither of the methods [16,17] takes the symmetry problem of
angle into consideration. As for the positioning accuracy, the errors of the experiment were caused by
the following reasons. First, some errors were caused by human measurement. The coordinates of the
receiver position were determined by artificially drawing the grid, which easily caused the position
coordinates of the receiver on the grid to deviate from the true position coordinates of the receiver.
Second, the installation of LEDs and the placement of the camera could also cause some errors, i.e.,
the position of the luminaire had a certain coordinate deviation between the reality and the measured
value. Finally, additional errors were generated by the algorithm itself. These errors in measurement,
lamps installation, and camera placement were not available, but our algorithm ensured that good
positioning accuracy could be achieved in the presence of these errors. In the case of considering all
experimental errors, the positioning error was within 3.85 cm, indicating that the error of our algorithm
was theoretically lower.

As for the real-time ability, most of the research on VLP only describes the positioning accuracy of
their positioning algorithms, but does not express the real-time ability of their positioning algorithms.
The proposed double-light positioning algorithm could realize positioning 17 times in 1 s, which
represents good real-time performance. Moreover, the double-light positioning algorithm could be
applied to robot positioning, as 17 positions in 1 s is sufficient.

4. Conclusions

This paper proposes a double-light positioning system based on image sensor and set up relevant
experiments to test the performance of the proposed system. We utilize the rolling shutter mechanism of
the CMOS image sensor and combine machine learning to identify the LED-ID. It is worth mentioning
that the proposed double-light positioning system has satisfactory performance in real-time capability
and positioning accuracy. In addition, the proposed double-light positioning algorithm has low
complexity and takes the symmetry problem of angle into consideration, which is never not considered
by other studies.

Compared with the existing work, the proposed double-light positioning algorithm is innovative
and achieves high precision. A relevant experiment was conducted to demonstrate the positioning
performance. Experiments showed that the proposed double-light positioning algorithm could
provide an accuracy of 3.85 cm. Meanwhile, in terms of the real-time ability, the computational
time of the proposed double-light positioning algorithm was reduced to 56.28 ms and could realize
positioning 17 times in 1 s, which represents good real-time performance. Therefore, it can be concluded
that the proposed double-light positioning algorithm delivers satisfactory performance in terms of
real-time ability and positioning accuracy, which makes it a promising candidate for future indoor
positioning applications.
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