
applied  
sciences

Article

Dynamics of Double-Beam System with Various
Symmetric Boundary Conditions Traversed by a
Moving Force: Analytical Analyses

Jing Yang 1,2,3, Xuhui He 1,2,3,* , Haiquan Jing 1,2,3,*, Hanfeng Wang 1,2,3 and
Sévérin Tinmitonde 1,2,3

1 School of Civil Engineering, Central South University, Changsha 410075, China;
jingyang06@csu.edu.cn (J.Y.); wanghf@csu.edu.cn (H.W.); roisev@yahoo.fr (S.T.)

2 National Engineering Laboratory for High Speed Railway Construction, Changsha 410075, China
3 Joint International Research Laboratory of Key Technology for Rail Traffic Safety, Changsha 410075, China
* Correspondence: xuhuihe@csu.edu.cn (X.H.); hq.jing@csu.edu.cn (H.J.)

Received: 15 February 2019; Accepted: 18 March 2019; Published: 22 March 2019
����������
�������

Abstract: Dynamics of the double-beam system under moving loads have been paid much attention
due to its wide applications in reality from the analytical point of view but the previous studies
are limited to the simply supported boundary condition. In this study, to understand the vibration
mechanism of the system with various boundary conditions, the double-beam system consisted of
two general beams with a variety of symmetric boundary conditions (fixed-fixed, pinned-pinned,
fixed-pinned, pinned-fixed and fixed-free) under the action of a moving force is studied analytically.
The closed-form frequencies and mode shapes of the system with various symmetric boundary
conditions are presented by the Bernoulli-Fourier method and validated with Finite Element results.
The analytical explicit solutions are derived by the Modal Superposition method, which are verified
with numerical results and previous results in the literature. As found, each wavenumber of the
double-beam system is corresponding to two sub-modes of the system and the two sub-modes
associated with the first wavenumber of the system both contribute significantly to the vibration of
the system under a moving force. The analytical solutions indicate that the mass ratio, the bending
stiffness ratio, the stiffness ratio of contact springs and the speed ratio of the moving force are the
factors influencing the vibrations of the system under a moving force. The relationships between these
dimensionless parameters and the displacement ratio of the system are investigated and presented in
the form of plots, which could be referred in the design of the double-beam system.

Keywords: double-beam; symmetric boundary conditions; frequencies; mode shapes; moving force;
analytical solutions

1. Introduction

The double-beam system has wide applications in reality, such as floating-slab railway tracks [1],
track-bridge systems [2,3], sandwich beams composed of an interconnected layer [4], vibration
absorbers [5,6] and carbon nanotubes [7]. Studying modal properties (frequencies and mode shapes)
of such a system contributes to understanding the mechanism of the system dynamics and lays
the foundation for working out its dynamic response under external excitations by using Modal
Superposition (MS) method. Seelig and Hoppmann II [8] presented the analytical frequencies and
associated mode shapes of the elastically connected double-beam system consisting of two identical
beams for the first time. Rao [9] studied the free vibrations of elastically connected parallel bars
considering the effects of rotary inertia and shear deformation. Tadatake et al. [5] presented the natural
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frequencies and mode shapes of double-beam systems with two general beams by using a generalized
method of finite integral transformation and the Laplace transformation. The same problem was
also studied by Oniszczuk [10] by using the classic Bernoulli-Fourier method. Mirzabeigy et al. [11]
presented explicit expressions for natural frequencies of double-beam systems with arbitrary boundary
conditions. Han et al. [12] applied the dynamic stiffness method to establish the exact dynamic stiffness
matrix and frequency equation for an axially-loaded double-beam system with arbitrary boundary
conditions. The transcendental frequency equation was solved by an improved Wittrick-Williams
algorithm. Hao et al. [13] investigated the free vibrations of double-beam systems with arbitrary
boundary conditions by a modified Fourier-Ritz approach.

Compared with the vibrations of a single beam under moving loads [14–17], the vibrations
of double-beam systems excited by moving loads are more complicated and have drawn much
attention recently. The vibrations of a simply supported double-beam system with two identical
beams interconnected by an elastic layer under the action of a fixed harmonic force were solved in
the closed-form solutions by Vu et al. [18]. The connecting damping between two beams was ignored.
The vibrations of the same system subjected to a moving constant force [19], a moving harmonic
force [20] were studied analytically. The system under the action of a moving oscillator [21] was also
studied numerically. Zhang and Ma [22] investigated the influence of compressive axil loads on the
vibration of the system. Kessel [23] studied the resonances of a simply supported double-beam system
with two general beams excited by a cyclic moving load. The connecting damping between two beams
was ignored, which was then considered in Reference [24]. The analytical solutions for the forced
vibrations of the same system were presented by Oniszczuk [25]. Chonan [26] investigated the vibration
of a double-beam system interconnected by elastic springs subjected to an impulse load considering
the mass of the springs. Pavlović et al. [27] investigated the stability of a double-beam system subjected
to random compressive axil forces. The forced vibration and buckling of a Rayleigh and Timoshenko
double-beam system subjected to arbitrary continuous load with the effect of compressive axil loads
were studied by Stojanović and Kozić [28]. Kozić et al. [29] analyzed the free vibration and buckling of
a double-beam system under axial loading joined by a Kerr-type layer. It should be noticed that all
these studies regarding forced vibrations of double-beam systems are restricted to simply supported
double-beam systems.

Hamada et al. [5] pointed out the similarity between an elastically connected multi-beam
system with same boundary conditions for all the beams (symmetric boundary conditions) and
a multi-degree-of-freedom mass-spring system. The free vibrations of an elastically connected
double-beam system, taking account of the axial forces on the beams were studied in References [30,31].
Li and Sun [32] presented a semi-analytical method to study the transverse vibration of an undamped
elastically connected double-beam system with arbitrary boundary conditions. The transverse
vibrations of a double-beam system interconnected by a viscoelastic layer were studied numerically [33].
The two beams can be restricted with different boundary conditions. Şimşek and Cansız [34] studied the
vibrations of elastically connected double-functionally graded beam systems with different boundary
conditions under the action of a moving harmonic load by a numerical method. Zhang et al. [35]
developed an analytical framework to study the transverse vibrations of double-beam systems made
of two parallel Timoshenko beams connected by springs and coupled with various discontinuities.

The free vibration, dynamic response and static buckling of an axially-loaded double-beam
system with a viscoelastic layer were investigated by Chen and Sheu [36]. Li and Hua [37] introduced
a spectral Finite Element method to study the vibrations of double-beam systems considering
shear deformation and rotary inertia of the beams. The modal properties of the system were
determined by applying the Muller root search algorithm. Palmeri and Adhikari [38] presented
a Galerkin-type state-space approach for studying vibrations of a double-beam system interconnected
by a viscoelastic layer. Various element matrixes for the double-beam systems were established,
for example, in References [2,3,6,39,40].
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In spite of the above studies about the forced vibrations of double-beam systems with various
boundary conditions under the action of moving loads, to the author’s best knowledge, only analytical
solutions for the forced vibration of simply supported double-beam system are available in the
literature. To understand the vibration mechanism of the system with various boundary conditions,
the vibrations of double-beam system with five general kinds of symmetric boundary conditions
(fixed-fixed, pinned-pinned, fixed-pinned, pinned-fixed and fixed-free) excited by a moving force
are investigated by an analytical approach in this paper. The closed-form expressions to the modal
properties of the double-beam system with the various symmetric boundary conditions are presented
in Section 2. Parametric studies are also conducted to investigate the influences of the order of basic
modes, contact stiffness ratio, mass ratio and beam stiffness ratio on the modal properties of the
double-beam systems in this section. The analytical solutions to the vibrations of the double-beam
system with the various boundary conditions subjected to a moving force are derived in Section 3.
The effects of speed ratio, contact stiffness ratio, mass ratio and beam stiffness ratio on the dynamic
responses of the system are also studied in a dimensionless form in this section. Conclusions are drawn
in Section 4.

2. Frequencies and Mode Shapes of the Double-Beam System

2.1. Mathematical Formulation

The double-beam system considered in this study is consisted of a primary beam (w1) and an
equal-length secondary beam (w2) as shown in Figure 1. Both beams are taken to be Euler-Bernoulli
beams. The two beams are interconnected with uniformly distributed springs of stiffness ke.
The boundary conditions for the primary beam are the same as for the secondary beam (symmetric
boundary conditions). Five general kinds of symmetric boundary conditions are considered in this
section: fixed-fixed, pinned-pinned, fixed-pinned, pinned-fixed and free-free.
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The equations of motion of the secondary beam and the primary beam can be expressed as:

E2 I2w′′′′2 + ρ2 A2
..
w2 − ke(w1 − w2) = 0 (1)

skE2 I2w′′′′1 + smρ2 A2
..
w1 + ke(w1 − w2) = 0 (2)

where sk = E1 I1
E2 I2

and sm = ρ1 A1
ρ2 A2

are the beam stiffness ratio and mass ratio of the primary beam to the
secondary beam, respectively.

Using the Bernoulli-Fourier method [41], the displacement of the two beams can be expressed as{
w2(x, t) = ϕ2(x)eiωt

w1(x, t) = ϕ1(x)eiωt (3)
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where ϕ1 and ϕ2 are mode shapes of the primary beam and the secondary beam, respectively and ω is
the natural frequency of the double-beam system.

Substituting Equation (3) into Equation (1), one can obtain the relationship between ϕ1 and ϕ2 as

ϕ1 =
E2 I2

ke
ϕ
′′′′
2 +

(
1− ω2ρ2 A2

ke

)
ϕ2 (4)

Substituting Equation (4) into Equation (2) and removing the term eiωt result in

aϕVIII
2 + bϕIV

2 + cϕ2 = 0 (5)

where
a = Sk(E2 I2)

2

ke

b =
(

skE2 I2 − skE2 I2ω2ρ2 A2
ke

)
+
(
ke −ω2Smρ2 A2

) E2 I2
ke

c =
(
−ω2ρ2 A2 +

sm(ω2ρ2 A2)
2

ke
−ω2smρ2 A2

) (6)

The general solution of Equation (5) is

ϕ2(x) = C1er1x + C2er2x + C3er3x + C4er4x + C5er5x + C6er6x + C7er7x + C8er8x (7)

where Ci (i = 1, 2, . . . 8) are unknown coefficients and ri (i = 1, 2, . . . 8) are the roots of the
characteristic equation of Equation (5)

ar8 + br4 + c = 0 (8)

Substituting Equation (6) into Equation (8) and taking ω as the unknown result in

ω
(1)
n

=
ω̃2,n√

2

√√√√(1 + sk
sm

)
+
(

1 + 1
sm

)
se

(r(n) l)
4 −

√[(
1− sk

sm

)
+
(

1− 1
sm

)
se

(r(n) l)
4

]2
+ 4s2

e

sm(r(n) l)
8

ω
(2)
n

=
ω̃2,n√

2

√√√√(1 + sk
sm

)
+
(

1 + 1
sm

)
se

(r(n) l)
4 +

√[(
1− sk

sm

)
+
(

1− 1
sm

)
se

(r(n) l)
4

]2
+ 4s2

e

sm(r(n) l)
8

(9)

where se is the contact stiffness ratio which is a dimensionless stiffness ratio defined as follows:

se =
kel4

E2 I2
(10)

and

ω̃2,n = (r(n))
2
√

E2 I2

ρ2 A2
(11)

r(n)l represents the nth wavenumber of the double-beam system and it is a constant depending on
the boundary conditions of the double-beam system. It will be shown below that the wavenumbers
of the double-beam systems are the same as those for a single beam if the boundary conditions of
the primary beam are the same as the secondary beam (symmetric boundary conditions). Therefore,
Equation (11) also represents the nth natural frequency of a single secondary beam.

It can be seen from Equation (9) that two sub-modes of the double-beam system are corresponding
to one wavenumber of the double-beam system. The order of the wavenumber of the double-beam
system is defined as the basic mode number in the following context.
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The following relationship can be obtained from Equation (8){
r2 = −r1, r3 = r1i, r4 = −r1i
r6 = −r5, r7 = r5i, r8 = −r5i

(12)

Substituting Equation (12) into Equation (7) results in

ϕ2(x) = C1er1x + C2e−r1x + C3eir1x + C4e−ir1x + C5er5x + C6e−r5x + C7eir5x + C8e−ir5x (13)

2.1.1. Fixed-Fixed Boundary Conditions

The boundary stiffness is {
kv,1 = kv,2 = ∞
kr,1 = kr,2 = ∞

(14)

The boundary conditions of the fixed-fixed double-beam system are
ϕ1(0) = 0
ϕ′1(0) = 0
ϕ1(l) = 0
ϕ′1(l) = 0

,


ϕ2(0) = 0
ϕ′2(0) = 0
ϕ2(l) = 0
ϕ′2(l) = 0

(15)

Substituting Equation (15) into Equations (4) and (13) results in an equation in a matrix form as

ΦX = 0 (16)

where
X = (C1, C2, C3, C4, C5, C6, C7, C8)

T (17)

Φ =



1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
1 −1 i −i 0 0 0 0
0 0 0 0 1 −1 i −i

er1l e−r1l eir1l e−ir1l 0 0 0 0
0 0 0 0 er5l e−r5l eir5l e−ir5l

er1l −e−r1l ieir1l −ie−ir1l 0 0 0 0
0 0 0 0 er5l −e−r5l ieir5l −ie−ir5l


(18)

To make the homogeneous Equation (16) have nontrivial solutions, the determinant of Φ should
be zero, which results in {

cos(r1l) cosh(r1l)− 1 = 0
r5 = 0

(19)

or {
r1 = 0

cos(r5l) cosh(r5l)− 1 = 0
(20)

Equations (19) and (20) would result in the same solution for Equation (13). For example, if
Equation (19) is chosen, the nonlinear equation of r1l is solved numerically and shown in Table 1.

Table 1. First six solutions of r1l for fixed-fixed double-beam systems.

Mode 1 2 3 4 5 6

r1l 4.73 7.8532 10.9956 14.1372 17.2788 20.4204
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It is noticed that the wavenumber equation for r1l in Equation (19) or for r5l in Equation (20) are
the same as that for a single beam with fixed-fixed boundary conditions.

Then, the mode shape of the secondary beam is obtained by solving Equation (16)

ϕ2,n(x) = C[(cos r(n)1 x− cosh r(n)1 x)−
cos r(n)1 l − cosh r(n)1 l

sin r(n)1 l − sinhr(n)1 l
(sin r(n)1 x− sinhr(n)1 x)] (21)

where C is a coefficient set to be one in the analyses in Section 3 and r(n)1 l is the value of r1l in the nth
basic mode.

It is shown in Equation (21) that the mode shapes of the secondary beam are the same as the
mode shapes of a single beam with fixed-fixed boundary conditions. Substituting Equation (21) into
Equation (4) results in the mode shape amplitude ratios between the primary beam and the secondary
beam in the two sub-modes

ϕ
(i)
1,n =

1 +
1−

(
ω
(i)
n

ω̃2,n

)2

se

(
r(n)1 l

)4

ϕ2,n i = 1, 2 (22)

It is seen from Equation (22) that the mode shape of the primary beam is a multiple of the
secondary beam. In fact, Equation (22) is valid for the mode shapes of the primary beam of any
double-beam systems with symmetric boundary conditions except that the values of r(n)1 l are different
for different boundary conditions.

2.1.2. Pinned-Pinned Boundary Conditions

The boundary stiffness is {
kv,1 = kv,2 = ∞
kr,1 = kr,2 = 0

(23)

The boundary conditions can be written as
ϕ1(0) = 0
ϕ
′′
1 (0) = 0

ϕ1(l) = 0
ϕ
′′
1 (l) = 0

,


ϕ2(0) = 0
ϕ
′′
2 (0) = 0

ϕ2(l) = 0
ϕ
′′
2 (l) = 0

(24)

Equation (18) becomes

Φ =



1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1

er1l e−r1l eir1l e−ir1l 0 0 0 0
0 0 0 0 er5l e−r5l eir5l e−ir5l

er1l e−r1l −eir1l −e−ir1l 0 0 0 0
0 0 0 0 er5l e−r5l −eir5l −e−ir5l


(25)

The solution for det [Φ] = 0 is {
r1l = nπ, n = 1, 2, 3 . . .

r5 = 0
(26)
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or {
r1 = 0

r5l = nπ, n = 1, 2, 3 . . .
(27)

It is noticed again that the solutions for r1l in Equation (26) or the solutions for r5l in Equation (27)
are the same as the wavenumbers for a single beam with pinned-pinned boundary conditions.

Equations (26) and (27) result in the same solution for Equation (13) as

ϕ2,n(x) = C sin
(nπ

l
x
)

(28)

Substituting Equation (28) into Equation (4) results in

ϕ
(i)
1,n(x) = C

1 +
1−

(
ω
(i)
n

ω̃2,n

)2

se
(nπ)4

 sin
(nπ

l
x
)

i = 1, 2 (29)

where ω
(i)
n is obtained from Equation (9) and ω̃2,n is

ω̃2,n =
(nπ

l

)2
√

E2 I2

ρ2 A2
(30)

2.1.3. Fixed-Pinned Boundary Conditions

The boundary stiffness is 
kv,1 = kv,2 = ∞

kr,1 = ∞
kr,2 = 0

(31)

The boundary conditions can be described as
ϕ1(0) = 0
ϕ′1(0) = 0
ϕ1(l) = 0
ϕ
′′
1 (l) = 0

,


ϕ2(0) = 0
ϕ′2(0) = 0
ϕ2(l) = 0
ϕ
′′
2 (l) = 0

(32)

Equation (18) becomes

Φ =



1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
1 −1 i −i 0 0 0 0
0 0 0 0 1 −1 i −i

er1l e−r1l eir1l e−ir1l 0 0 0 0
0 0 0 0 er2l e−r2l eir2l e−ir2l

er1l e−r1l −eir1l −e−ir1l 0 0 0 0
0 0 0 0 er2l e−r2l −eir2l −e−ir2l


(33)

Det [Φ] = 0 results in {
tan(r1l)− tanh(r1l) = 0

r5 = 0
(34)

or {
r1 = 0

tan(r5l)− tanh(r5l) = 0
(35)
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Equations (34) and (35) result in the same solution for Equation (13). If Equation (34) is chosen,
the solutions of r1l in the first six modes are as in Table 2.

Table 2. First six solutions of r1l for fixed-pinned double-beam systems.

Mode 1 2 3 4 5 6

r1l 3.9266 7.0686 10.2102 13.3518 16.4934 19.6350

It should be noticed that the wavenumber equation for r1l in Equation (34) or for r5l in
Equation (35) are the same as that for a single beam with fixed-pinned boundary conditions.

By solving Equation (16), the mode shapes of the secondary beam are obtained from Equation (13)
to be

ϕ2,n(x) = C

[(
cos r(n)1 x− cosh r(n)1 x

)
−

cos r(n)1 l − cosh r(n)1 l

sin r(n)1 l − sinhr(n)1 l

(
sin r(n)1 x− sinhr(n)1 x

)]
(36)

It is noticed that Equation (36) is the same as Equation (21) except that the values of r1l are
different. The mode shapes of the primary beam are obtained by substituting Equation (36) into
Equation (4), which results in the same as Equation (22) except the values of r1l.

The frequencies of the fixed-pinned double-beam systems can be worked out by substituting the
values of r1 in Table 2 into Equation (9).

2.1.4. Pined-Fixed Boundary Conditions

The boundary stiffness is 
kv,1 = kv,2 = ∞

kr,1 = 0
kr,2 = ∞

(37)

The boundary conditions can be described as
ϕ1(0) = 0
ϕ
′′
1 (0) = 0

ϕ1(l) = 0
ϕ′1(l) = 0

,


ϕ2(0) = 0
ϕ
′′
2 (0) = 0

ϕ2(l) = 0
ϕ′2(l) = 0

(38)

Equation (18) becomes

Φ =



1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1

er1l e−r1l eir1l e−ir1l 0 0 0 0
0 0 0 0 er2l e−r2l eir2l e−ir2l

er1l −e−r1l ieir1l −ie−ir1l 0 0 0 0
0 0 0 0 er2l −e−r2l ieir2l −ie−ir2l


(39)

Det [Φ] = 0 results in the same equations as Equations (34) and (35), so the solutions of r1l, r5l and
frequencies of the pinned-fixed double-beam systems are the same as the fixed-pinned double-beam
systems. The mode shapes of the secondary beam of the pinned-fixed double beam systems are
obtained by solving Equation (16) to be
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ϕ2,n(x) = C(sin r(n)1 x−
sin r(n)1 l

sinhr(n)1 l
sinhr(n)1 x) (40)

The mode shapes of the primary beam can be worked out by Equation (22).

2.1.5. Fixed-Free Boundary Conditions

The boundary stiffness is {
kv,1 = kv,2 = ∞
kr,1 = kr,2 = 0

(41)

The boundary conditions are
ϕ1(0) = 0
ϕ′1(0) = 0
ϕ
′′
1 (l) = 0

ϕ
′′′
1 (l) = 0

,


ϕ2(0) = 0
ϕ′2(0) = 0
ϕ
′′
2 (l) = 0

ϕ
′′′
2 (l) = 0

(42)

Equation (18) becomes

Φ =



1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
1 −1 i −i 0 0 0 0
0 0 0 0 1 −1 i −i

er1l e−r1l eir1l e−ir1l 0 0 0 0
0 0 0 0 er5l e−r5l eir5l e−ir5l

er1l −e−r1l ieir1l −ie−ir1l 0 0 0 0
0 0 0 0 er5l −e−r5l ieir5l −ie−ir5l


(43)

Det [Φ] = 0 results in {
1 + cos(r1l) cosh(r1l) = 0

r5 = 0
(44)

or {
r1 = 0

1 + cos(r5l) cosh(r5l) = 0
(45)

Equations (44) and (45) are the same as that for a single beam with fixed-free boundary conditions.
The solutions of the two equations are the same. If Equation (44) is chosen, the solutions of r1l in the
first six modes are as in Table 3.

Table 3. First six solutions of r1l for fixed-free double-beam systems.

Mode 1 2 3 4 5 6

r1l 1.8751 4.6941 7.8548 10.9955 14.1372 17.2788

Solving Equation (16) results in the mode shapes of the secondary beam

ϕ2,n(x) = C

[(
cos r(n)1 x− cosh r(n)1 x

)
−

cos r(n)1 l + cosh r(n)1 l

sin r(n)1 l + sinhr(n)1 l

(
sin r(n)1 x− sinhr(n)1 x

)]
(46)

It can be found that Equation (46) is similar to Equation (21). The mode shapes of the primary
beam can be worked out by Equation (22).
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2.2. Verification of the Analytical Solutions in Section 2.1

To be concise, only the verifications for the frequencies and mode shapes of the fixed-fixed
double-beam system are demonstrated in this section.

The material properties of the two beams are obtained from the rail and the bridge in the
reference [2]. The properties of the bridge are: Ib = 3.81 m4, ρb Ab = 34088 kg/m, Eb = 2.943× 1010 Pa,
Lb = 20 m. The properties of each rail are: Er Ir = 4.3× 106 Nm2, ρr Ar = 51.5 kg/m. The length of
each rail is set to be the same as the bridge. In the discrete spring model, the contact stiffness of each
spring underlying one rail is 4.1125× 107 N/m and the regular spacing between two neighboring
contact springs is 0.625 m. In the distributed spring model, the contact stiffness under one rail is
equivalent to be 4.1125× 107 ÷ 0.625 = 6.58× 107 N/m2. In the 2D model, all the rail properties are
doubled to account for the presence of both rails. The non-dimensional parameters are calculated to
be: sk = 7.67× 10−5, sm = 0.003 and se = 0.0343.

The discrete spring model for the rail-bridge system is established by the FE method and the
numerical frequencies and mode shapes of the system are obtained. They are compared with the
analytical counterparts calculated from the formulae for the distributed spring model in Section 2.1.
The rail and the bridge are modeled by 256 beam elements in the FE model. 31 discrete spring elements
having the stiffness of 8.225× 107 N/m and the space of 0.625 m are created to model the discrete
springs. The first 16 frequencies of the double-beam system are obtained by the FE method and
compared with the analytical results as shown in Table 4. The differences between the two kinds
of results are very small. To save page, only the first 8 mode shapes are depicted for comparison
in Figure 2. The differences between the mode shapes obtained by the two methods cannot be
distinguished. The above comparisons verify the analytical formulae in Section 2.1. It is interesting
to find that the 5th mode shape is similar to the 1st except that the amplitude and direction of the
bridge mode shape are different. The similarities can also be found between the 6th and the 2nd,
the 7th and the 3rd and the 8th and the 4th mode shapes. In fact, the two similar modes are the two
sub-modes corresponding to the same basic mode with the same wavenumber. The four sets of similar
modes are corresponding to the first four basic modes. More studies about sub-modes are presented in
Section 2.3.

Table 4. Modal frequencies for the fixed-fixed double-beam system.

Mode Number
Frequency (Hz) Difference

FE Analytical (%)

1 16.12 16.12 0
2 44.44 44.44 0
3 87.08 87.08 0
4 143.66 143.68 0
5 179.90 180.72 0.5
6 180.03 180.85 0.5
7 180.49 181.31 0.5
8 181.77 182.59 0.5
9 182.20 183.01 0.4

10 185.72 186.57 0.5
11 190.52 191.38 0.5
12 197.36 198.23 0.4
13 206.69 207.61 0.4
14 216.22 216.24 0
15 218.82 219.77 0.4
16 233.99 234.96 0.4
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Figure 2. Mode shapes of the first 8 modes for the fixed-fixed double beam system.

2.3. Parametric Studies

To conduct the parametric study in the dimensionless form, the frequency ratios and mode shape
amplitude ratios in two sub-modes are defined as follows

ω0,i =
ω
(i)
n

ω̃2,n
i = 1, 2 (47)

φ0,i =
ϕ
(i)
1,n

ϕ2,n
i = 1, 2 (48)

The frequency ratios in Equation (47) and mode amplitude ratios in Equation (48) can be obtained
analytically from Equations (9) and (22), respectively. The effects of the order of the basic mode (n),
the contact stiffness ratio (se), mass ratio (sm), stiffness ratio (sk) on the frequency ratios and the mode
amplitude ratios in two sub-modes are investigated.

2.3.1. The Order of Basic Mode

Figure 3 shows the effect of the order of the basic mode (n) on the frequency ratios in two
sub-modes (ω0,i, i = 1, 2) for different boundary conditions when se = 100, sm = 1 and sk = 2. It can
be seen from the figure that ω0,1 and ω0,2 vary obviously with boundary conditions in the 1st basic
mode. The effect of n on the frequency ratios is small when n is large. Figure 4 shows the effect of
n on the mode amplitude ratios in two sub-modes (φ0,i, i = 1, 2). φ0,1 is always positive and φ0,2 is
always negative, which indicates that the modes of two beams are always in-plane with each other in
the 1st sub-mode, whereas the modes of the primary beam are always anti-plane with the modes of
the secondary beam in the 2nd sub-mode. φ0,1 tends to be very small with the increase of n and φ0,2

decreases dramatically after the 4th basic mode, which means that the double-beam system tends to
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behavior like two individual beams. While φ0,1 varies a lot with boundary conditions in the 1st basic
mode, φ0,2 differs obviously with boundary conditions when n is larger than 5.
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2.3.2. Contact Stiffness Ratio

The effect of the contact stiffness ratio (se) on the frequency ratios (ω0,i, i = 1, 2) in the 1st basic
mode for different boundary conditions when sm = 1 and sk = 2 is plotted in Figure 5. It can be seen
from the figure that ω0,1 and ω0,2 increase monotonically with se. ω0,1 increases dramatically when
se is small. The increasing rates of ω0,1 and ω0,2 are larger for looser boundary conditions when se

is smaller. Boundary conditions have a bigger influence on ω0,2 than ω0,1. Figure 6 shows that both
φ0,1 and φ0,2 increase with se and the increasing rates of φ0,1 and φ0,2 are very large when se. is small.
In addition, the increasing rates of φ0,1 and φ0,2 are larger for looser boundary conditions when se

is smaller.
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2.3.3. Mass Ratio

The effect of the mass ratio (sm) on the frequency ratios (ω0,i, i = 1, 2) in the 1st basic mode for
different boundary conditions is depicted in Figure 7. Both ω0,1 and ω0,2 decrease with sm and the
decreasing rate of ω0,2 is very large when sm is small. Figure 8 shows the effect of sm on the mode
amplitude ratios (φ0,i, i = 1, 2) in the 1st basic mode for different boundary conditions. Both φ0,1 and
φ0,2 increase with sm and the increasing rates are large when sm is small. φ0,1 is smaller than 1 when
sm is smaller than 1 and φ0,1 is larger than 1 when sm is larger than 1. φ0,2 is smaller than −1 when sm

is smaller than 1 and φ0,2 is larger than −1 when sm is larger than 1. φ0,1 and φ0,2 are closer to 1 for
looser boundary conditions, which means that the modes of two beams are closer to each other for
looser boundary conditions.
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2.3.4. Beam Stiffness Ratio

The effect of the beam stiffness ratio (sk) on the frequency ratios (ω0,i, i = 1, 2) in the 1st basic
mode for different boundary conditions is shown in Figure 9. Both ω0,1 and ω0,2 increase with sk.
The influence of boundary conditions on ω0,1 is big when sk is large. Figure 10 shows the effect of sk
on the mode amplitude ratios (φ0,i, i = 1, 2) for different boundary conditions in the 1st basic mode.
Both φ0,1 and φ0,2 decrease with sm and the decreasing rates are large when sm is small. φ0,1 is larger
than 1 when sm is smaller than 1 and φ0,1 is smaller than 1 when sm is larger than 1. φ0,2 is larger than
−1 when sm is smaller than 1 and φ0,2 is smaller than −1 when sm is larger than 1. φ0,1 and φ0,2 are
closer to 1 for looser boundary conditions, which means that the modes of two beams are closer to
each other for looser boundary conditions.
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Figure 10. Mode amplitude ratios in two sub-modes corresponding to the 1st basic mode versus beam
stiffness ratio for different boundary conditions when se = 100 and sm = 1.

3. Double-Beam System Traversed by a Moving Force

The vibrations of the double-beam system with five general kinds of symmetric boundary
conditions subjected to a moving force are studied in this section. The force is considered to move at a
constant speed of v on the primary beam, as shown in Figure 11.
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3.1. Mathematical Formulation

The equations of motion of the secondary beam and the primary beam can be expressed as

E2 I2w′′′′2 + ρ2 A2
..
w2 − ke(w1 − w2) = 0 (49)

skE2 I2w′′′′1 + smρ2 A2
..
w1 + ke(w1 − w2) = − f δ(x− vt) (50)

The sum of Equations (49) and (50) is

E2 I2(skw′′′′1 + w′′′′2 ) + ρ2 A2
(
sm

..
w1 +

..
w2
)
= − f δ(x− vt) (51)

Applying the MS method to Equation (51), one can obtain the following ordinary differential
equation regarding modal coordinates [42,43]

..
q(i)n (t) +

(
ω
(i)
n

)2
q(i)n (t) = −

f ϕ
(i)
1,n(vt)

M(i)
nn

, n = 1, 2, 3 . . . , i = 1, 2 (52)

where

M(i)
nn =

∫ l

0
smρ2 A2

[
ϕ
(i)
1,n(x)

]2
dx +

∫ l

0
ρ2 A2[ϕ2,n(x)]2dx (53)

3.1.1. Fixed-Fixed and Fixed-Pinned Boundary Conditions

It is found in Section 2.1 that the mode shapes of the double beam system for fixed-fixed boundary
conditions have the same mathematical formulae as those for fixed-pinned boundary conditions except
that the values of r1l are different, so the solutions of Equation (52) would have the same formulae for
the two kinds of boundary conditions except the values of r1l. The following derivations are based on
double-beam systems with fixed-fixed boundary conditions.

Substituting Equations (21) and (22) into Equation (53) and setting C to be one result in

M(i)
nn = ρ2 A2l

[
1 + sm

(
A(i)

n

)2
]

(54)

where

A(i)
n = 1 +

1−
(

ω
(i)
n

ω̃2,n

)2

se

(
r(n)1 l

)4
(55)

and ω
(i)
n and ω̃2,n are obtained from Equations (9) and (11), respectively.
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Substituting Equation (22) into Equation (52) and setting C to be one result in

..
q(i)n +

(
ω
(i)
n

)2
q(i)n = − f A(i)

n

M(i)
nn

[
cos
(

r(n)1 vt
)
− cosh

(
r(n)1 vt

)
− Bn

(
sin
(

r(n)1 vt
)
− sinh

(
r(n)1 vt

))]
(56)

where

Bn =
cos(r(n)1 l)− cosh(r(n)1 l)

sin(r(n)1 l)− sinh(r(n)1 l)
(57)

The solution of Equation (56) is

q(i)n = p(i)n

 cos
(

r(n)1 vt
)
−Bn sin

(
r(n)1 vt

)
1−
(

s(i)n

)2 −
cosh

(
r(n)1 vt

)
−Bnsinh

(
r(n)1 vt

)
1+
(

s(i)n

)2 −
2
(

s(i)n

)2[
cos
(

ω
(i)
n t
)
−Bns(i)n sin

(
ω
(i)
n t
)]

[
1−
(

s(i)n

)2
][

1+
(

s(i)n

)2
]

 (58)

where 
s(i)n =

r(n)1 v

ω
(i)
n

p(i)n = − f A(i)
n

M(i)
nn

(
ω
(i)
n

)2

(59)

The displacements of the primary beam and the secondary beam are

w1(x, t) =
m

∑
n=1

[
ϕ
(1)
1,nq(1)n (t) + ϕ

(2)
1,nq(2)n (t)

]
(60)

w2(x, t) =
m

∑
n=1

ϕ2,n(x)
[
q(1)n (t) + q(2)n (t)

]
(61)

where m is the number of basic modes used in the MS method.
To conduct parametric studies in Section 3.3, two dimensionless displacements for the primary

beam and the secondary beam are defined as follows

wi =
wi
(
xmax, t

)
ws

, i = 1, 2 (62)

where xmax represents the location where maximum static deflection takes place; ws is the maximum
static deflection of a single secondary beam with the same boundary conditions as the double-beam
loaded by a concentrated force f at xmax of the single beam and t is a dimensionless time

t =
vt
l

(63)

For a fixed-fixed beam, xmax = 0.5l and ws is

ws = −
f L3

192E2 I2
(64)

For a fixed-pinned beam, xmax = 0.55l and ws is

ws = −
f L3

48
√

5E2 I2
(65)

The speed ratio is defined as

α =
v

vcr
(66)
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where vcr is the critical speed at which the single secondary beam is excited into resonance in the first
mode by the moving force

vcr =
ω̃2,1L

π
(67)

and the first frequency of the single secondary beam ω̃2,1 can be obtained by

ω̃2,1 =
(

r(1)1

)2
√

E2 I2

ρ2 A2
(68)

3.1.2. Pinned-Pinned Boundary Conditions

Substituting Equations (28) and (29) into Equation (53) and setting C to be one result in

M(i)
nn =

1
2

ρ2 A2l
[

1 + sm

(
A(i)

n

)2
]

(69)

where

A(i)
n = 1 +

1−
(

ω
(i)
n

ω̃2,n

)2

se
(nπ)4 (70)

and ω
(i)
n and ω̃2,n are obtained from Equations (9) and (30), respectively.

Substituting Equation (29) into Equation (52) and setting C to be one result in

..
q(i)n +

(
ω
(i)
n

)2
q(i)n = − f A(i)

n

M(i)
nn

sin
(nπv

l
t
)

(71)

It is noticed that Equation (71) has the same form as that of a pinned-pinned single beam excited
by a moving force. The solution of Equation (71) is

q(i)n (t) =
p(i)n

1−
(

s(i)n

)2

[
sin
(nπv

l
t
)
− s(i)n sin

(
ω
(i)
n t
)]

(72)

where p(i)n is the same expression as that in Equation (59) and s(i)n is

s(i)n =
nπv

lω(i)
n

(73)

The displacements of the primary beam and the secondary beam are

w1(x, t) =
m

∑
n=1

sin
(nπ

l
x
)[

A(1)
n q(1)n (t) + A(2)

n q(2)n (t)
]

(74)

w2(x, t) =
m

∑
n=1

sin
(nπ

l
x
)[

q(1)n (t) + q(2)n (t)
]

(75)

For a pinned-pinned beam, xmax = 0.5l and ws becomes

ws = −
f L3

48E2 I2
(76)

3.1.3. Pinned-Fixed Boundary Conditions

Substituting Equations (40) and (22) into Equation (53) and setting C to be one result in
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M(i)
nn =

1
2

ρ2 A2l
[

1 + sm

(
A(i)

n

)2
]

(77)

where A(i)
n has the same form as Equation (55).

Substituting Equation (22) into Equation (52) and setting C to be one result in

..
q(i)n +

(
ω
(i)
n

)2
q(i)n = − f A(i)

n

M(i)
nn

[sin(r(n)1 vt)−
sin r(n)1 l

sinhr(n)1 l
sinh(r(n)1 vt)] (78)

The solution of Equation (78) is

q(i)n (t) = p(i)n

[
sin
(

r(n)1 vt
)

1−
(

s(i)n

)2 −
sin r(n)1 l

sinhr(n)1 l

sinh
(

r(n)1 vt
)

1+
(

s(i)n

)2 + (
sin r(n)1 l

sinhr(n)1 l1

s(i)n

1+
(

s(i)n

)2 − s(i)n

1−
(

s(i)n

)2 ) sin
(

ω
(i)
n t
)]

(79)

where p(i)n and s(i)n have the same form as Equation (59).
The displacements of the double beam systems can be worked by Equations (60) and (61).
For a pinned-fixed beam, xmax = 0.45l and ws is

ws = −
f L3

48
√

5E2 I2
(80)

3.1.4. Fixed-Free Boundary Conditions

Substituting Equations (46) and (22) into Equation (53) and setting C to be one result in the same
formula as Equation (54). It is found in Section 2.1 that the mode shapes of the fixed-free double-beam
systems have similar formulae as those for fixed-fixed double-beam systems. The solution to Equation
(52) for fixed-free double beam systems is the same as Equation (58) except

Bn =
cos(r(n)1 l) + cosh(r(n)1 l)

sin(r(n)1 l) + sinh(r(n)1 l)
(81)

For a fixed-free beam, xmax = l and ws becomes

ws = −
f L3

3E2 I2
(82)

3.2. Verification of the Analytical Solutions in Section 3.1

An example of the double-beam system with two identical beams (sm = 1, sk = 1) subjected to
a moving force is used firstly to verify the analytical solutions in Section 3.1. To be concise, only the
formulae for fixed-fixed and pinned-pinned boundary conditions are verified.

3.2.1. Fixed-Fixed Boundary Conditions

The Newmark-Beta integration method is adopted to obtain numerical solutions of Equation (52)
and compared with its analytical solutions. It is found in computations that using only the first
basic mode (m = 1) is good enough to reach satisfied accuracies for the fixed-fixed double-beam
system. For comparison, only the first basic mode is used in the following analyses for other kinds of
boundary conditions. Figure 12 shows the comparisons between the results by the two methods for
the dimensionless speed (α) of 0.5 and contact stiffness ratios (se) of 10 and 100. It can be seen from
the figure that the two kinds of results have very good agreements. In addition, it can be found that
the maximum displacement of the secondary beam (w2,max) is smaller than that of the primary beam



Appl. Sci. 2019, 9, 1218 19 of 24

(w1,max) and the instants for w2,max lag behind those for w1,max. When se becomes larger, the difference
between w1,max and w2,max is smaller.
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3.2.2. Pinned-Pinned Boundary Conditions

The obtained analytical results by MS method are compared with those by the Equation Decoupled
(ED) method in Reference [19]. Figure 13 shows the comparisons between the results by the two
methods for the dimensionless speed (α) of 0.5 and contact stiffness ratio (se) of 10 and 100. The two
groups of results agree with each other very well. It can also be seen from the figure that the difference
between w1,max and w2,max becomes smaller with the increase of se. More detailed study about the
relationship between wi,max (i = 1, 2) and se will be shown in Section 3.3.

3.3. Parametric Studies

The dimensionless displacements of the primary beam (w1) and the secondary beam (w2) are
affected by four dimensionless parameters: speed ratio (α), contact stiffness ratio (se), mass ratio
(sm) and beam stiffness ratio (sk). The effects of these parameters on the maximum dimensionless
displacements of the primary beam (w1,max) and the secondary beam (w2,max) are investigated for five
kinds of boundary conditions.
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3.3.1. Speed Ratio

Figure 14 shows the maximum dimensionless displacements of the primary beam (w1,max) and
the secondary beam (w2,max) versus the speed ratio (α) for different boundary conditions (se) when
se = 100, sm = 1 and sk = 1. It can be found from the figure that the difference between w1,max and
w2,max is smaller for looser boundary conditions.Appl. Sci. 2019, 9, x FOR PEER REVIEW 20 of 24 
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3.3.2. Contact Stiffness Ratio

Figure 15 shows maximum dimensionless displacements (w1,max) and (w2,max) versus the contact
stiffness ratio (se) for different boundary conditions when α = 0.5, sm = 1 and sk = 1. Several
characteristics can be found from the figure:

1. w1,max generally decreases with se and the opposite trend is true for w2,max;



Appl. Sci. 2019, 9, 1218 21 of 24

2. The varying rates of wi,max (i = 1, 2) are very large when se is below a turning point and become
much smaller when se is beyond the turning point;

3. With the increase of se, w1,max and w2,max tend to be the same value which is half of that for a
single beam with the same boundary conditions and at the same values of α, sm and sk;

4. The difference between w1,max and w2,max is generally smaller for looser boundary conditions.
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3.3.3. Mass Ratio

Figure 16 shows maximum dimensionless displacements (w1,max) and (w2,max) versus the mass
ratio (sm) for different boundary conditions when α = 0.5, se = 50 and sk = 1. It can be seen from the
figure that wi,max (i = 1, 2) increases firstly and then decreases with sm. In addition, the difference
between w1,max and w2,max is smaller for looser boundary conditions.Appl. Sci. 2019, 9, x FOR PEER REVIEW 21 of 24 
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3.3.4. Beam Stiffness Ratio

Figure 17 shows maximum dimensionless displacements (w1,max) and (w2,max) versus the beam
stiffness ratio (sk) for different boundary conditions when α = 0.5, se = 50 and sm = 1. It can be seen
from the figure that both w1,max and w2,max decrease with sk and the decreasing rate is large when sk is
small. The influence of boundary conditions on wi,max (i = 1, 2) is basically bigger when sk is smaller.
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4. Conclusions

The vibrations of the double-beam system with five general kinds of symmetric boundary
conditions traversed by a moving force are studied analytically by using the Modal Superposition
(MS) method in this paper. Main conclusions can be drawn as below:

(1) Each wavenumber corresponds to two sub-modes of the system. The mode shapes of one beam
of the system are the same as those for the single beam with the same boundary condition.
The amplitudes of the mode shapes for one beam of the double-beam system are the multiple of
those for the other beam of the system.

(2) The two sub-modes corresponding to the first wavenumber both make significant contributions
to the dynamics of the system under a moving load, which is different from the case for a
single beam.

(3) The maximum dynamic displacement of the primary beam generally decreases with the stiffness
of the contact springs. The opposite trend is true for the maximum dynamic displacement of
the secondary beam. The two beams vibrate together when the contact springs are very stiff.
With the increase of the ratio between the mass of the primary beam and the secondary beam,
the maximum dynamic displacement ratios of both beams increases first and then decreases.
The maximum dynamic displacement ratios of both beams are smaller for a larger bending
stiffness ratio of the primary beam to the secondary beam.

(4) The primary beam tends to vibrate together with the secondary beam when the boundary
condition of the system is looser.
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