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Abstract: A low-cost, simple, and fast method utilizing micellar electrokinetic chromatography for
the simultaneous determination of seven biogenic amines and two amino acids was developed.
A background electrolyte containing 5 mM phosphate buffer (pH 3.7) and 20 mM sodium dodecyl
sulfate was used. The optimal separation of nine investigated analytes was achieved in 11 min,
with limits of detection (S/N = 3) ranging from 0.11 to 0.61 µM. The linear ranges for all analytes
were observed between 0.55 and 10.0 µM (R2 > 0.990). The developed approach was extended to the
analysis of analytes in commercial wine and beer samples. The recoveries of the proposed method
ranged from 98.8% to 115.6%.

Keywords: biogenic amines; micellar electrokinetic chromatography; sodium dodecyl sulfate; wines

1. Introduction

Biogenic amines (BAs) are low-molecular-weight organic bases comprising an aliphatic (including
methylamine, ethylamine, putrescine, and cadaverine), an aromatic (including 2-phenylethylamine
and tyramine), or a heterocyclic (e.g., tryptamine and 5-hydrotryptoamine) structure, which exhibit
important biological activities [1]. BAs are also classified as mono- or polyamines according to their
amine content, which are mainly synthesized or degraded during cellular metabolism activities in
animals, plants, and microorganisms. These reactions involve the conversion of amino acids to
BAs after the removal of the carboxyl group using decarboxylase enzyme or the transamination of
aldehydes and ketones using amino acid transaminases [2,3].

Meanwhile, the presence of BAs in food is crucial from the viewpoints of safety and quality,
given their relation to toxic incidents. Various fermented, seasoned, or conserved foodstuffs (including
cheese, wine, beer, and meat) may contain BAs, and their concentrations are reportedly considered
as markers for freshness and hygiene during storage and food processing [4–6]. In addition, BAs are
important compounds of bioorganic bodies and play important physiological roles. However, the
excess intake of BAs can cause various symptoms, including headaches, heart palpitations, edema,
hypotension, and nausea, among other symptoms [7]. BAs are not equally toxic, and histamine is the
most toxic compound among the BAs. In addition, BAs have been reported to be precursor species
during the formation of carcinogenic N-nitrous compounds [8].

Several methods have been developed for the quantitative analysis of BAs, including gas
chromatography [9–11], liquid chromatography [12–14], and capillary electrophoresis (CE) [15–18]
coupled with UV–Vis, fluorescence, and mass spectrometry. Gas chromatography and liquid
chromatography are powerful methods, but they exhibit disadvantages, such as long analysis time,
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tedious sample pretreatment procedures, and consumption of large volume of organic solvents.
Owing to the minimized consumption of sample and reagent, high speed and separation efficiency,
CE is becoming an alternative analytical approach [19–21]. Different modes of CE, such as capillary
zone electrophoresis [22–24], micellar electrokinetic chromatography (MEKC) [25,26], and capillary
electrochromatography [27] have been employed to analyze BAs in various samples. Among these
modes, MEKC with high separation efficiency has become a powerful technique for the separation
of neutral and ionic compounds in complicated mixtures [28]. With the advantages of high
separation efficiency and resolution and short analysis time, MEKC was chosen for the simultaneous
determination of BAs. Sodium dodecyl sulfate (SDS) is a typical surfactant added to the background
electrolytes at a concentration greater than its critical micellar concentration (CMC). The basic principle
of MEKC is based on the differential partitioning of analytes between the pseudo-stationary micellar
phase and the mobile aqueous phase.

In this study, a simple, cost-effective, and rapid method for the quantitative determination of nine
analytes using MEKC is described. Several experimental parameters that affect the separation efficiency,
including the concentration and pH of the phosphate buffer and SDS concentration, were investigated.
The approach performance was evaluated in terms of its ability to obtain accurate and precise
qualitative and quantitative data over a relevant concentration range. The approach was satisfactorily
used to analyze BAs in wines.

2. Materials and Methods

2.1. Chemicals and Reagents

Nine analytes, i.e., dopamine hydrochloride (DA), tryptophan (Trp), epinephrine (E),
norepinephrine (NE), 5-hydroxytryptophan (5-HTP), tyrosine (Tyr), tryptamine (T), tyramine (TA),
5-hydroxytryptamine hydrochloride (5-HT), and SDS, were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Sodium dihydrogen phosphate and sodium hydroxide were purchased from Riedel-de
Haën (Seelze-Hannover, Germany). Phosphoric acid was purchased from J.T. Baker (Phillipsburg, NJ,
USA). All aqueous solutions were prepared with 18 MΩ cm deionized water (Barnstead Nanopure
Ultrafiltration unit, Boston, MA, USA). Stock solution (1.0 mL) of 10 mM of the analytes were prepared
in deionized water individually and stored in the dark at 4 ◦C, while sample solution (1.0 µM for each
analyte) was prepared daily by appropriate dilution of the stock solution of the standards in deionized
water (1.0 mL).

2.2. Instrumentation

The CE equipment was a laboratory-made CE unit, similar to our previous study [29],
consisting of a −20-kV high-voltage power supply (ES20N–20W/DAM; Gamma High Voltage
Research Inc., Ormond Beach, FL, USA) and a UV–Vis detector (SAPPHIRE 600 detector; ECOM,
Prague, Czech Republic). Electropherograms were recorded and processed using DataApex Software
(DataApex, Prague, Czech Republic). A 75-µm i.d. and 365-µm o.d. fused-silica capillary was
purchased from Polymicro Technologies (Phoenix, AZ, USA). The experiments were carried out using
a 50-cm capillary with 40-cm effective length. All measurements were repeated three times.

2.3. CE Conditions

New capillaries were preconditioned by rinsing with 0.5 M NaOH at 1 kV for 60 min,
and deionized water for 5 min, respectively. The capillary was equilibrated with a background
electrolyte (5 mM phosphate buffer at pH 3.7 containing 20 mM SDS) for 5 min before each run and
rinsed with deionized water for 5 min, followed by the background electrolyte for 3 min after each run.
Samples were injected by hydrodynamic injection for 10 s, with a height difference of 20 cm between
the capillary inlet and outlet. The analysis was performed at −15 kV and monitored at 200 nm.
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2.4. Sample Pretreatment

Wine samples including two types of white wine (A and B), beer (C), and rice wine (D) were
purchased from local supermarkets (Taitung, Taiwan). Beer sample was degassed by sonication for
20 min. Samples (2 mL) were subjected to centrifugation at 12,000 rpm for 10 min, and the supernatant
was filtered through a 0.22-µm filter membrane. Next, the solution was diluted with deionized water
to a suitable volume (10-fold for white wine A, 16-fold for white wine B, 50-fold for beer, and no
dilution for rice wine) prior to CE analysis. The recovery tests were carried out by spiking the wine
samples with a known amount of analyte mixture.

3. Results and Discussion

In our experiments, low-pH buffers and SDS were used. The magnitude of the EOF was
determined by the surface charge on the capillary wall, and a small EOF was observed at low pH owing
to the suppressed dissociation of silanol groups. Owing to the suppressed EOF, negatively charged
SDS micelles migrated toward the anode. Under these conditions, analytes strongly partitioning
into the micelles (lipophilic compounds) migrated to the detector more rapidly compared to the less
partitioned compounds (hydrophilic solutes). Scheme 1 shows the illustration of the experiment.
Three experimental parameters that affect the separation efficiency of analytes include the phosphate
buffer concentration and pH and SDS concentration, respectively. These three factors were utilized to
improve the MEKC separation efficiency.
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3.1. Effect of the Concentration and pH of the Buffer Solutions

Resolution and selectivity are strongly affected by the pH and concentration of the running buffer.
To investigate the ionic strength of the phosphate buffer, a constant SDS concentration (20 mM) was
added to different concentrations of phosphate buffer (1–15 mM, pH 3.5). Results revealed that with
increasing phosphate concentration, the analysis time increases (Figure 1). Each peak was identified
individually by spiking known concentration of standard in the sample solution and the increased
intensity of peak was used to confirm the standard of the peak. The increase in the ionic strength of
the phosphate buffer leads to an increase in the EOF. With the application of a high voltage across
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the capillary, EOF corresponded to the movement of the buffer solution. However, at high phosphate
concentrations (≥15 mM), high Joule heating was observed, leading to band broadening (Figure 1D).
DA and Trp were not separated using 10 mM phosphate (Figure 1C). Furthermore, the sharpest peaks
were observed using 5 mM phosphate. Hence, the optimum phosphate concentration is selected as
5 mM.
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Figure 1. Effect of the concentrations of the phosphate buffer (pH 3.5) containing 20 mM SDS on the
separation of the nine analytes: (A) 1, (B) 5, (C) 10, and (D) 15 mM. Sample (1.0 µM) injection was
performed at a height of 20 cm for 10 s. A 50-cm capillary with an effective length of 40 cm was used.
Separation was conducted at −15 kV. Peak identities: (1) T, (2) 5-HT, (3) TA, (4) DA, (5) Trp, (6) E,
(7) 5-HTP, (8) NE, and (9) Tyr.

In addition, pH of the buffer is an important parameter for regulating EOF and mobilities of ionic
analytes. Thus, it is vital to select the most suitable pH for the phosphate buffer. The pKa value of T,
5-HT, TA, DA, Trp, E, 5-HTP, NE, and Tyr were 10.20, 9.97, 9.77, 8.93, 9.39, 8.59, 9.18, 8.58, and 10.46,
respectively. The pH was optimized by increasing it from 3.0 to 4.0, all analytes were protonated
at this pH interval. With increasing pH, the migration time of the analytes obtained using a 5 mM
phosphate buffer containing 20 mM SDS increased (Figure 2). 5-HTP, NE, and Tyr co-migrated with
a long migration time (>11 min) at pH 4.0 (Figure 2D). At pH 3.7, the best separation was achieved.
Therefore, the optimum pH is selected at 3.7 and the RSDs of the migration time of the analytes were
less than 10%.

3.2. Effect of SDS Concentration

In MEKC, the SDS concentration is significant for separation. To evaluate the effect of SDS
concentration on the separation of analytes, the SDS concentration was varied from 15 to 30 mM in
5 mM phosphate buffer at pH 3.7. The CMC of SDS in water is ~8.2 mM [30]. The positive charged
analytes interacted with negative charged SDS micelles to form ion pairs. The migration time of each
analyte decreased with increasing SDS concentration because of the strong interaction with micelles
(Figure 3). The log Kow values of T, 5-HT, TA, DA, Trp, E, 5-HT, NE, and Tyr were 1.55, 0.21, 0.86,
−0.98, −1.05, −1.24, −1.37, −1.70, and −2.26, respectively [31]. The order of migration is related
to the polarity of the ion pair formed with SDS which, in turn, is strongly related to the polarity of
the different analytes. With the addition of 20 mM SDS, analytes were baseline separated (Figure 3).
Optimum MEKC conditions were 5 mM phosphate buffer containing 20 mM SDS at pH 3.7. Figure 3B
shows the electropherogram for 1.0 µM analytes standards using the optimum MEKC conditions. All
analytes were successfully detected within 11 min.
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3.3. Performance of the Proposed Approach

To verify the performance of the proposed CE approach, the calibration graph was constructed in
the range of 0.5 to 10.0 µM. Table 1 summarizes the analytical characteristics and method validation
including linear range, linearity, LOD (S/N = 3), LOQ (S/N = 10), repeatability (intraday precision),
and reproducibility (interday precision). A good linear response was observed in all cases (R2 > 0.990).
To evaluate the reproducibility of our approach and ensure acceptable precision in terms of peak
heights, the relative standard deviations (RSD, n = 3) for intraday and interday analyses were
carried out. The results were revealed to be less than 2.90% and 4.61%, respectively. The LODs
and LOQs of the analytes ranged from 0.11 to 0.61 µM and 0.38 to 2.03 µM, respectively. Table 2
summarizes the comparison of the analytical characteristics of different CE methods from previous
literature. The advantages of the proposed approach include high efficiency, fast analysis time
and cost-effectiveness.
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Table 1. Linearity, precision, accuracy, LOQs, and LODs of the proposed method.

Analyte Linear Range (µM) Regression Equation R2 Repeatability (%) a Reproducibility (%) a LOQ (µM) LOD (µM)

T 1.0–10.0 y = 0.147x − 0.048 0.9904 1.93 4.12 2.03 0.61
5-HT 1.0–10.0 y = 0.195x − 0.031 0.9921 0.68 3.46 1.50 0.45
TA 0.8–10.0 y = 0.348x − 0.111 0.9917 1.23 2.10 0.91 0.27
DA 0.55–10.0 y = 0.437x − 0.059 0.9959 1.99 2.90 0.48 0.15
Trp 1.0–10.0 y = 0.176x − 0.047 0.9936 1.56 3.24 1.58 0.48
E 0.55–10.0 y = 0.478x − 0.111 0.9964 2.90 4.61 0.41 0.12

5-HTP 0.8–10.0 y = 0.223x − 0.044 0.9956 0.70 3.33 1.04 0.31
NE 0.55–10.0 y = 0.500x − 0.105 0.9924 1.89 4.29 0.38 0.11
Tyr 0.55–10.0 y = 0.275x + 0.028 0.9954 1.86 3.14 0.45 0.13

a RSD for three replicate injections on the same day (repeatability) or over successive days (reproducibility) of migration time.

Table 2. Comparison of the developed method with previously reported capillary electrophoresis (CE) methods for the determination of biogenic amines.

Method Analytes Time (min) LODs Reference

CE-ECL Spd, His, Tyr, Phe, Put 30 6.0 × 10−4 − 9.6 × 10−2 mg/L [22]
CE-C4D Spd, Put, His, Cad, Tyr 6 4.1 × 10−2 − 9.8 × 10−2 mg/L [23]
CE-UV Spd, Put, His, Cad, Phe, TA, Try, DA, 5-HTP, OA, NE, E 8.5 0.4 − 0.6 µM [17]
CE-LIF Hist, Put, Cad, Spd, Spe, Tyr, Phe, Try 28 0.5 − 10 nM [32]

CEC-UV 3-MT, HVA, DOPAC, 5-HIAA, NE, 5-HTP, DA, Trp, DHBA, Tyr, NA, DOPA 40 N.P. [27]
MEKC-UV T, 5-HT, TA, DA, Trp, E, 5-HTP, NE, Tyr 11 0.11 − 0.61 µM This work

3-MT: 3-methoxytyramine; 5-HIAA: 5-hydroxyindole-3-acetic acid; 5-HT: 5-hydroxytryptamine; 5-HTTP: 5-hydroxytryptophan; C4D: capacitively coupled contactless conductivity
detection; Cad: cadaverine; CD: cyclodextrin; CE: capillary electrophoresis; CEC: capillary electrochromatography; DA: dopamine; DOPA: 3,4-dihydroxyphenylalanine; DOPAC:
3,4-dihydroxyphenlacetic acid; E: epinephrine; ECL: electrochemiluminescence; His: histamine; HVA: homovanillic acid; MEKC: micellar electrokinetic chromatography; MS: mass
spectrometry; NE: norepinephrine; N.P.: not provided; OA: octopamine; Phe: phenylethylamine; Put: putrescine; Spd: spermidine; Spe: spermine; T: tryptamine; TA: tyramine;
Trp: tryptophan; Try: tryptamine; Tyr: tyrosine; UV: ultraviolet detector.



Appl. Sci. 2019, 9, 1193 7 of 11

3.4. Application to Wine Samples

The selected nine analytes in four wine samples were identified and quantified to verify the
applicability of our proposed method. As described in Section 2.4, analytes in four wine samples
(i.e., white wine A and B, beer; and rice wine, respectively) were analyzed by CE-UV, as shown in
the electropherograms in Figure 4A–D, respectively. All unidentified peaks were corresponding to
compounds with absorbance at 200 nm. Table 3 summarizes the qualitative and quantitative analyses
achieved by spiking with nine standard analyte mixtures in the rice wine sample. Two BAs (i.e., TA
and Trp, respectively) were detected in white wine samples, and Trp and Tyr were detected in beer,
but the concentrations of some analytes were extremely low for quantification (Table 3). The recoveries
for the beer sample were 98.8–115.6%.
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Table 3. Analytical results in wine samples (n = 3).

White Wine A White Wine B Beer Rice Wine

Analyte Original
(µM)

Recovery a

(%)
RSD
(%)

Original
(µM) Recovery (%) RSD

(%)
Original

(µM) Recovery (%) RSD
(%)

Original
(µM)

Recovery
(%)

RSD
(%)

T N.D. N.D. N.D. N.D. 111.6 2.89
5-HT N.D. N.D. N.D. N.D. 101.5 2.32
TA 3.52 105.7 4.66 3.57 96.8 4.60 N.D. N.D. 115.6 5.54
DA N.D. N.D. N.D. N.D. 111.1 3.17
Trp N.D. N.D. 1.52 96.5 7.01 N.D. 98.8 1.25
E N.D. N.D. N.D. N.D. 107.4 2.65

5-HT N.D. N.D. N.D. N.D. 104.2 3.67
NE N.D. N.D. N.D. N.D. 104.2 3.67
Tyr 2.23 99.6 2.65 3.59 104.0 5.02 3.95 104.8 8.29 N.D. 104.4 4.81

N.D.: not detected. a The recovery results were calculated by spiking 4.0 µM standards to each sample.
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4. Conclusions

In this study, nine analytes were quantified by MEKC-UV, and this approach afforded a high
efficiency, fast analysis time, and cost-effectiveness, as well as convenience of analysis. A background
electrolyte containing 5 mM phosphate (pH 3.7) and 20 mM SDS achieved the satisfactory separation
of the selected analytes. Under optimum conditions, nine analytes were completely separated within
11 min with good linearity, repeatability, reproducibility, and efficiency. This approach afforded LODs
of 0.11–0.61 µM for 9 analytes. In addition, this CE approach was successfully applied to the analysis
of the selected analytes in wine and beer samples.
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