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Abstract: In this paper, a kernel-based robust disturbance dictionary (KRDD) is proposed for face
recognition that solves the problem in modern dictionary learning in which significant components
of signal representation cannot be entirely covered. KRDD can effectively extract the principal
components of the kernel by dimensionality reduction. KRDD not only performs well with
occluded face data, but is also good at suppressing intraclass variation. KRDD learns the robust
disturbance dictionaries by extracting and generating the diversity of comprehensive training
samples generated by facial changes. In particular, a basic dictionary, a real disturbance dictionary,
and a simulated disturbance dictionary are acquired to represent data from distinct subjects to
fully represent commonality and disturbance. Two of the disturbance dictionaries are modeled by
learning few kernel principal components of the disturbance changes, and then the corresponding
dictionaries are obtained by kernel discriminant analysis (KDA) projection modeling. Finally,
extended sparse representation classifier (SRC) is used for classification. In the experimental results,
KRDD performance displays great advantages in recognition rate and computation time compared
with many of the most advanced dictionary learning methods for face recognition.

Keywords: face recognition; dictionary learning; kernel discriminant analysis (KDA);
sparse representation classifier (SRC)

1. Introduction

Face recognition is a significant research area in image processing, pattern recognition and
computer vision [1] with a very wide scope, especially in the context of information security [2,3].
Face recognition is tremendously challenging due to the influence of various factors such as
environment, illumination, expression, and posture when the face image is acquired. In addition,
some facial disturbance components, such as wearing hats and glasses, need to be further addressed
and improved. Therefore, the accuracy and speed of computer face detection and recognition by the
computer are the key elements in current face recognition technology.

In recent years, several major successful face recognition algorithms have been widely applied.
Munawar et al. [4] proposed a data-driven unconstrained face recognition method. This method
can simultaneously characterize learning and joint registration. Parkhi et al. [5] proposes a method
and program for deep face recognition that traverses the complexity of deep networks by assembling
large data sets. Munawar et al. [6] proposes a simplified binary single representation method that does
not use images. This method proposes a classification strategy for multiple image sets classifying.
Xie et al. [7] proposed a multi-column network that uses images as input to obtain feature descriptors.
This network implemented a new visual and content-based neural network architecture. Lacey et al. [8]
applied a mixed-effects regression model to quantify various aspects of the subject and used
longitudinal analysis to study the persistence of automatic face recognition. Duan et al. [9] proposed a
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binary unsupervised feature learning method for face recognition using context-aware localization by
shifting numbers, and its experimental results are superior to other facial descriptors.

Currently, feature extraction and classifier selection are the two most important components
in face recognition research. Feature extraction-based algorithms that have been successfully used
for face recognition [10–13]. However, the feature vectors extracted by these methods have a high
dimensionality probably leading to causing dimensionality disasters. In order to deal with the problem
of high dimensionality, the linear discriminant analysis (LDA) [14] and the principal component
analysis (PCA) [15] of the dimensionality reduction method on projecting high-dimensional features
onto low-dimensional subspaces are proposed. Nevertheless, due to the face images in the real
world are mostly non-linear and the faces have disturbance items, these conventional methods cannot
handle the face occlusion problem well. Classifier-based algorithms, such as support vector machine
(SVM) [16], AdaBoost [17], nearest subspace (NS) [18] and nearest neighbor (NN) [19], have been
successfully adopted to face recognition. However, since the significant differences between testing
and training samples, these methods are always subject to universal problems [20].

2. Related Works

Wright et al. proposed a classification method based on sparse representation classifier (SRC) [21],
which has been experimentally proven to have better performance than classifier-based algorithms for
partially occluded samples. Due to their satisfactory performance, various extensions of the SRC have
been proposed [22–25]. Deng et al. [26] also put forward the superposition of SRC (SSRC). However,
ESRC and SSRC are slow in classification due to the large number of atoms. The work of robust kernel
representation with statistical local features (SLF-RKR) [27] and regularized robust coding (RRC) [28]
is based on extended SRC, which improves the performance of occluded samples, but they also reduce
the performance of non-occluded samples due to overfitting problems. Liu et al. [24] developed a face
recognition method that uses a multiscale retinex(MSR) to obtain a similarity matrix and construct
a weighted kernel sparse representation. Lin et al. [23] developed a new robust, discriminative
and comprehensive dictionary that can learn commonality, class specialty and interference, which
effectively strengthens the classification effect of the dictionary. Ou et al. [25] proposed a linear
representation classifier based on superposition through the centroid and internal association of
the class.

Kernel discriminant analysis (KDA) [29] is a kernel-based face recognition method that
projects data into nondiscriminant subspaces. KDA has seen many improvements in recent years.
Ren et al. [30] developed a multiple orientation and scale transforms (MOST) algorithm based on Gabor
kernel transform. Wu et al. [31] proposed a multicore discriminative dictionary learning method that
combines multifeature kernel learning with dictionary learning techniques to improve the recognition
rate. Mustafa et al. [32] proposed a face recognition system that combines k-NearestNeighbor (kNN)),
KDA and SVM. Fan et al. [33] presented a virtual dictionary that can automatically generate new
training samples in the training set to construct a model, which solves the problem of small training
samples. It is noted that KDA performs better in handling nonoccluded samples, but for an occluded
face image, the performance of KDA is worse than SRC.

Huang et al. [34] proposed a kernel extend dictionary(KED) to solve the problem that KDA
cannot suppress occlusion variations well. KED has similarities with KRDD, but there are also essential
differences. First of all, KED also uses KDA and SRC algorithms, which makes KED and KRDD models
have similarities. However, the KRDD model has one more layer structure than KED, so it is more
complicated. Secondly, the KED model has only the extended dictionary besides the basic dictionary,
and the KRDD model has the real disturbance dictionary and the simulated disturbance dictionary in
addition to the basic dictionary. Finally, and the most importantly, KRDD has a series of processed
alternative training samples in addition to original training samples. This allows KRDD to process a
larger amount of noisy data and make the layering of the data clearer.
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Since KDA and SRC have their advantages in different aspects, in this paper, a kernel-based
robust disturbance dictionary (KRDD) is proposed for face recognition, which is an effective approach
to combine KDA, SRC, and KPCA. It is noteworthy that the KRDD is not a simple addition of these
algorithms, as it constructs two species disturbance dictionaries to effectively cope with variations in
the occlusion samples, which makes the disturbance dictionary more robust. The image in the gallery
sample is not the same as the image in the training sample. KRDD has better adaptability as it can
handle various situations according to the actual conditions.

The contributions of this paper are summarized below:

1. A kernel-based robust disturbance dictionary (KRDD) is proposed. The KRDD consists of two
types of disturbance dictionaries that can effectively represent more types of occlusion variations.

2. KRDD effectively combines SRC, KDA and KPCA to exploit the respective advantages of these
three algorithms. In the case of a small feature dimension, both nonoccluded samples and
occluded samples can be processed.

3. A diverse sampling, which includes obtaining real face changes and acquiring virtual samples, is
utilized for kernel-based robust disturbance dictionary learning.

4. The dictionary that the KRDD learned includes a basic dictionary, a real disturbance dictionary
and a simulated disturbance dictionary to comprehensively represent the data.

5. The experimental results of KRDD are superior to those of other advanced methods.

In the Section 3, SRC, ESRC, and KDA are introduced briefly. In Section 4, the algorithm is stated
in detail. In Section 5, several different experiments using 4 face data sets are conducted. KRDD
is compared with deep learning on face recognition in Section 6. Finally, the proposed method is
summarized in Section 7.

3. Fundamental Techniques

Since SRC and ESRC have an efficient processing capability for image recognition, and the KDA
algorithm is also a very important factor to the proposed algorithm in this paper, they are briefly
introduced here.

3.1. Sparse Representation Classifier

Given a set of gallery samples with c classes of subjects, X = [x1, x2, . . . , xc]∈ Rd×n, where d is the
feature dimension, n = ∑c

i=1 ni represents the number of all training samples, xi represents the xi class
label set to ci, the spare representation coefficient β ∈ Rn×1 for a given test sample y ∈ Rd×1 can be
computed by calculating the following equation:

min
β
‖y− Xβ‖2

2 + λ‖β‖1. (1)

where λ is a scalar constant.
Set δc(β) ∈ Rn×1 is a vector of zero except for items related to class c. y is assigned to the subject

which minimizes the residual by SRC as follows:

rc(y) = ‖y− Xδc(β)‖2. (2)

SRC uses the minimized residual C related to each subject to perform classification.

identity(y) = arg min
c

rc(y). (3)

y is represented collaboratively by the SRC through all classes of samples and affected by the conditions
of the sparse coefficients. If y comes from a subject, then it is probably that a few samples of this subject
can be used to indicate y. However, in numerous actual face recognition activities, the testing sample y
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may be fractionally occluded or disturbed. Under such circumstances, the sparse coefficient can be
computed by the following formula:

min
β,β̃
‖y− [X, I]

[
β

β̃

]
‖2

2 + λ‖
[

β

β̃

]
‖1. (4)

where the identity matrix I ∈ Rd×d is introduced.

3.2. Extended Sparse Representation Classifier (ESRC)

Let x̃i be the ith sample in the training data used to obtain the intraclass variations, µ̃i be a natural
sample relevant to x̃i or the mean value of the class, then Ẽ can be obtained from the following equation:

Ẽ = [x̃1 − µ̃1, x̃2 − µ̃2, . . . , x̃ñ − µ̃ñ]. (5)

In ESRC, the gallery set X and intra-class variant bases Ẽ can be sparsely coded to obtain the
testing sample y. Consequently, the coding coefficient can be acquired by the following formula:

min
β,β̃
‖y− [X, Ẽ]

[
β

β̃

]
‖2

2 + λ‖
[

β

β̃

]
‖1. (6)

where β is the coding coefficient of y over X, and β̃ is the coding coefficient of y over Ẽ.
The minimized residual of every subject is indicated as follows:

rc(y) = ‖y− [X− Ẽ]

[
δc(β)

β̃

]
‖2. (7)

3.3. Kernel Discriminant Analysis

The following formula of KDA is given according to Baudat et al. [29], where zi and zj denote the
training samples. First, the feature space F is an issue of nonlinear mapping: φ : Rd −→ F. According
to a proper φ, an inner product 〈·, ·〉 can be obtained on F as follows:

〈φ(z), φ(z
′
)〉 = k(z, z

′
) (8)

where Z̃ = [z̃1, z̃2, . . . , z̃n] ∈ Rd×n̂ be n̂ samples are used to calculate the KDA projection vector. On the
basis of Baudat et al. [29], the projection vector of KDA is learned as follows: pφ = ∑n̂

i=1 aiφ(z̃i). Then,
the samples z were projected to the vector. The formula is as follows:

〈pφ, φ(z)〉 =
n̂

∑
i=1

ai〈φ(z̃i), φ(z)〉 = aTK(:, z) (9)

where K(:, z) = [k(z̃1, z), k(z̃2, z), . . . , k(z̃n̂, z)].

4. Model of Robust, Comprehensive Dictionary Learning

KDA is a desirable method to inhibit intraclass compilation and maximize the disparity between
different subjects. However, when dealing with facial occlusion problems, SRC performs better
than KDA. KPCA can extract several effective kernel principal components of occlusion variables
on the basis of dimensionality reduction. To improve the performance of dictionary learning in face
recognition, a new kernel-based robust disturbance dictionary (KRDD) model for face recognition
is proposed by combining KDA, SRC and KPCA. The KRDD model learns a basic dictionary D, a
simulated disturbance dictionary Ds, and a real disturbance dictionary Dr. D represents the data
commonality of all the subjects, while the disturbance dictionaries can represent data from disturbance
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components of noise, occlusion, etc. In reality, face images have various kinds of disturbances, such
as noise, expression, occlusion and illumination variations. The basic dictionary cannot recover the
identity of the face image well, and the relevant representation coefficients are destroyed. They play a
vital role in restoring face images.

Figure 1 shows the basic structure of the proposed KRDD. First, KDA is trained from the training
samples and get D from the gallery set of the KDA projection. Secondly, the discrepancy between
the disturbance sample and the normal sample are utilized to learn r principal components and to
further obtain the actual perturbation model, and the real disturbance dictionary is obtained from the
r principal components of the KDA projection. Third, a series of processing steps are performed on
the alternative samples. KPCA [35] are also used to learn r principal components to form a simulated
disturbance model, and a KDA projection of the model is utilized to obtain a simulated disturbance
dictionary. Finally, the testing sample is classified as the subject that minimizes the residual.
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Figure 1. The structure of the proposed kernel-based robust disturbance dictionary (KRDD).

4.1. Learning the Real Disturbance Model in Kernel Space

Although KDA can suppress intraclass variables, it does not suppress occlusion variables well.
For the purpose of dealing with this problem, the real disturbance model is obtained using KPCA.
The principle of KPCA is to effectively represent possible changes by a few principal components,
which are mainly composed of several principal components. In this way, the first n samples are
utilized to obtain the real disturbance model. The covariance matrix of disturbance changes is acquired
from the following equation:

S̃φ =
m

∑
i=1

(φ(Xi)− φ(γ̃i))(φ(Xi)− φ(γ̃i))
T =

m

∑
i=1

Φ(i)ΦT(i) (10)

where Φ(i) = φ(Xi)− φ(γ̃i), Xi is the disturbance sample, and γ̃i is the corresponding natural sample
or class mean.

Then the optimal projection q̃φ that maximizes the covariance after projection could be calculated
from the following equation:

max
qφ

(qφ)T S̃φqφ s.t.〈qφ, qφ〉 = 1 (11)

where the principal component of S̃φ is qφ, and it can be seen from the following equation:

S̃φqφ = λqφ (12)
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According to Baudat et al. [29], the solution is qφ = ∑m
i=1 ãiΦ(i), where ã = [ã1, . . . , ãm]T satisfies

the following formula:

K̃i,j = 〈Φ(i), Φ(j)〉
= 〈φ(Xi)− φ(γ̃i)〉, 〈φ(Xj)− φ(γ̃j)〉
= 〈φ(Xi), φ(Xj)〉 − 〈φ(Xi), φ(γ̃j)〉
− 〈φ(γ̃i), φ(Xj)〉+ 〈φ(γ̃i), φ(γ̃j)〉

(13)

Then, the top r kernel principal components q̃φ = [q̃φ
1 , q̃φ

2 , . . . , q̃φ
r ] constitute the real

disturbance model.

4.2. Learning the Simulated Disturbance Model in Kernel Space

Huang et al. [34] proposed an occlusion model to solve the problem that KDA cannot suppress
occlusion variations well. However, such an occlusion model uses only real disturbance and does
not take more simulated disturbance conditions into consideration. In this regard, the simulated
disturbance dictionary in the new kernel-based robust disturbance model is generated. To make
the learning dictionary comprehensive and robust to lighting conditions, disguises, facial gestures
and facial expressions, a series of processing steps are performed on Z to obtain alternative training
samples Zi, i = 1, 2, 3.

4.2.1. Speckle Noise Addition

Z1 can be obtained by adding noise items to the original face image using speckle noise.
The specific implementation method is the MATLAB function “imnoise”. Figure 2 shows the
comparison of two samples.

Figure 2. Original Training Sample (Upper) & Samples after Speckle Noise Processing (Lower).

4.2.2. Mirror Conversion

The mirror conversion of the original training sample is used as Z2. The mirror image t∗ of the
original training image t can be obtained by the following formula:

t∗(k, l) = t(k, h− l + 1), (k = 1, . . . , p; l = 1, . . . , h) (14)

where p and h denote the rows and columns of the image matrix respectively, t(k, l) represent the
pixels located in the k-th row of t, and t∗(k, l) is the pixels located in the l-th column of t∗. Figure 3
shows the comparison of two samples.
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Figure 3. Original Training Sample (left) & Samples after Mirror Processing (right).

4.2.3. Random Square Block Processing

Random square block processing is performed on the original training sample as Z3. The position
of the square is not subject to human control and it is completely random. Figure 4 shows the
comparison of two samples. Z1, Z2, Z3 are then reorganized to obtain the alternative training samples
from the above methods. The specific method is to divide each training sample into three groups
randomly, from each of the three alternative training samples, to extract a group and reconstitute the
new Z̃.

Figure 4. Original Training Sample (Upper) & Samples after Random Square Block Processing (Lower).

4.3. Concise Steps of KRDD

The steps of KRDD are concisely generalized below:

1. KDA projection was performed on the training sample X to get pφ = [pφ
1 , pφ

2 , . . . , pφ
C−1], where C

is the quantity of subjects.
2. The gallery samples can be outside the training samples. The gallery samples X̃ = [x̃1, x̃2, . . . , x̃n]

were projected to obtain the basic dictionary D by KDA through Formula (9):

D = (pφ)Tφ(X̃) (15)
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3. KPCA projection was performed on the training sample X to obtain qφ = [qφ
1 , qφ

2 , . . . , qφ
r ], then

the r principal component of disturbance variations in the kernel space was used as the kernel
real disturbance model.

4. KDA was used to project the kernel principal component qφ = ∑m
i=1 ãiΦ(i) with the following

equation without having to explicitly know the nonlinear mapping by (9).

(pφ)Tqφ = 〈pφ, qφ〉 = 〈
m

∑
i=1

aiφ(Xi),
m

∑
j=1

ãjΦ(j))〉

= 〈
m

∑
i=1

aiφ(Xi),
m

∑
j=1

ãj(φ(Xj)− φ(γ̃j))〉

= aTKã− aTKγ ã

(16)

where a and ã are the coefficient vectors of KDA and the real disturbance model, respectively.
Ki,j = 〈φ(Xi), φ(Xj)〉, Kγ

i,j = 〈φ(z̃i), φ(γ̃j)〉. pφ was projected by KDA to obtain the kernel real
disturbance dictionary:

Dr = (pφ)Tqφ (17)

5. Three special schemes were used on Z to obtain alternative training samples Z̃, the sample in Z
can be different from the sample in X.

6. The r principal components of disturbance changes were trained in kernel space as the
simulated disturbance model, i.e., lφ = [lφ

1 , lφ
2 , . . . , lφ

r ], from the set of Z̃, as the kernel simulated
disturbance model.

7. lφ was projected by KDA to obtain the kernel simulated disturbance dictionary via (17) as follows:

Ds = (pφ)T lφ (18)

8. A testing sample y was projected by KDA:

yKDA = (pφ)Tφ(y) (19)

9. The sparse representation of yKDA was found according to the basic dictionary D, the real
disturbance dictionary Dr and the simulated disturbance dictionary Ds:

min
β,βr ,βs

‖yKDA − [D, Dr, Ds]

 β

βr

βs

 ‖2
2 + λ‖

 β

βr

βs

 ‖1. (20)

10. y was classified to the subject that minimizes the residual as follows:

rc(yKDA) = ‖yKDA − [D, Dr, Ds]

 δc(β)

βr

βs

 ‖2. (21)

5. Experimental Results

In the experiment, several large data sets are applied to verify the performance of KRDD algorithm.
The programming environment is MATLAB R2012b, 2.50 GHz CPU and 8G RAM. In terms of data sets,
the training samples and testing samples are augmented with alternative training samples and gallery
samples to evaluate performance. The alternative training samples are processed sample. As the
face recognition system in reality usually obtains a single sample of each subject, Deng et al. [36,37]
designed an equidistant circular embedding method to solve the single-sample face recognition for
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each subject. The training set is applied to establish a model first, then the gallery samples and the
testing samples are matched to each other through this recognition model. All methods were tested
using LBP features.

5.1. Experiment on AR Dataset

The AR dataset contains over 4000 pictures of 126 objects. Figure 5 shows a diagram of some
examples from the AR face database. The dimension of each face image is 165× 120. Each person
had 26 photographs taken in two separate sessions, except 17 people had fewer than 26 images. Here,
the nonoccluded image training set from session 1 and all images of the 17 people are selected for
training. There are two cases in the gallery set. One gallery sample is equal to the training samples,
which means each theme has multiple samples, and the other gallery set has only one sample per
subject, which is a collection of neutral samples for each subject in session 1. The alternative training
samples are generated by mirroring, with added noise and random square block occlusion of the
original training samples. Finally, all images in session 2 are chosen as the testing samples, the test
samples are divided into three subsets: expression, lighting, occlusion. The proposed KRDD method
learned from the real occlusion variations in the 17 subjects and the stimulated disturbance from the
alternative training samples.

Figure 5. Example Images of one Subject on the AR Dataset.

Table 1 shows the recognition results and classification time of the KRDD algorithm and the six
comparison methods using the AR dataset. Each person in the gallery set used in this experiment has
multiple gallery samples. From Table 1, it can be noted that KRDD achieved the highest recognition
rate. The KED is the second-best algorithm. In addition, the KRDD recognition rate is 1.3% higher
than that of the KED in the occlusion subset. All these results show that the KRDD performs better
than KED in both disturbance and nondisturbance samples. The fastest classification method is MOST
because it is not based on the sparse method. KRDD is much faster than the other methods. Table 2
differs from Table 1 because each person in the gallery set uses a single gallery sample. Based on
the experimental results, it is obvious that the performance of KRDD is virtually unchanged, and
the classification speed is faster, which proves the robustness of KRDD. From Tables 1 and 2 we can
conclude that the recognition rate of KRDD in the three subsets is higher than those of KED. Especially
in the occlusion subset, KRDD has more obvious improvement. This is because the KRDD model has
two different types of disturbance dictionary, which have one more disturbance dictionary than the
KED model has, to cope with more noisy data.
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Table 1. Recognition accuracy and classification time for advanced methods on AR Database with
multiple gallery samples per subject.

Method Expression Lighting Occlusion Classification Time (s)

SRC [21] 86.4 90.3 45.4 144
ESRC [22] 90.8 92.4 58.1 392
RRC [28] 92.2 94.6 60.7 954

SLF-RKR [27] 96.8 97.7 85.5 7427
MOST [30] 97.1 96.6 81.9 64
KED [34] 98.4 98.2 94.2 81

KRDD 99.2 99.0 95.5 78

Table 2. Recognition Accuracy and Classification Time for Advanced Methods on AR Database with A
Single Gallery Sample Per Subject.

Method Expression Lighting Occlusion Classification Time (s)

SRC [21] 62.4 91.4 20.8 73
ESRC [22] 87.5 91.6 68.1 171
RRC [28] 72.6 66.7 42.5 295

SLF-RKR [27] 33.8 26.9 21.4 1682
MOST [30] 96.8 96.3 87.9 44
KED [34] 98.6 98.2 94.0 52

KRDD 99.3 99.0 95.2 49

5.2. Experiment on LFWA Dataset

The second personal face database chosen is the largest database—the aligned labeled face in
the wild (LFWA), which has unconstrained changes in posture, lighting, expression, misalignment,
occlusion, etc. The LFWA face data set has a total of 13,233 images of 5749 people. Figure 6 shows a
face image of a subject in the LFWA database. A subset of 5500 images is selected for this experiment.
The training sample consists of 9 samples per person (or more than 9 samples per person) and the
remainder are used as a testing sample. Similarly, the alternative training samples are generated using
the same methods used for the AR dataset. PCA is utilized to reduce the feature dimensions to 300,
400, and 500 to compare these advanced methods.

Figure 6. Example Images of one Subject on the LFWA Dataset.

From Table 3 it is noted that KRDD achieves the highest recognition rate, and the classification
time is almost the same as MOST. The recognition rate of KED is the second-best after KRDD. When
the feature dimension is at 500, KRDD is 1.7% higher than KED in the recognition rate. MOST is also
a KDA-based approach, so it handles suppressing intraclass variations better than other methods.
To observe the performance of KRDD more intuitively, the experiment is repeated 10 times with a
feature dimension of 600. As shown in Figure 7 among KDA-based methods, KRDD has the best
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performance. Compared with SRC, ESRC, RRC, SLF-RKR, MOST and KED, KRDD was improved by
an average of 50.5%, 40%, 36.7%, 35.0%, 19.2%, and 2.7%, respectively.

Table 3. The Recognition Rates and Computing Time for Training Dictionaries and Classifying A
Testing Sample on the LFWA Database.

Method 300 400 500 Classification Time (s)

SRC [21] 38.7 39.6 40.3 152
ESRC [22] 49.6 51.3 50.8 376
RRC [28] 50.1 52.7 53.4 829

SLF-RKR [27] 53.6 54.7 56.6 6844
MOST [30] 70.4 71.3 71.8 62
KED [34] 88.5 89.2 89.8 74

KRDD 90.1 90.8 91.5 70
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Figure 7. Face Recognition Results for Advanced Methods and the Proposed Methods on the
LFWA Dataset.

We also compare the proposed method with deep learning-based algorithms that require a large
amount of additional training data. Such as, ConvNet-RBM [38], GaussianFace [39], DeepID3 [40].
There are also methods that do not require additional training data, such as VMRS [41], Sub-SML [42],
and high-dim LBP [43].

Table 4 lists the average recognition rates of advanced algorithms in the LFWA data set.
The proposed method achieves a recognition rate of 92.46%, which is better than some advanced
methods. Although the proposed method has a lower recognition rate than the deep learning based
method, KRDD does not need to collect a large amount of additional training data.
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Table 4. Mean recognition accuracy for Advanced Methods on LFWA Dataset.

Method Mean Accuracy

VMRS [41] 92.05
Sub-SML [42] 90.75

high-dim LBP [43] 93.18
KRDD 92.46

ConvNet-RBM [38] 91.75
GaussianFace [39] 98.52

DeepID3 [40] 99.53

5.3. Experiment on CAS-PEAL Dataset

5.3.1. Experimental Results without Subset

The CAS-PEAL dataset is a wide-ranging Chinese face database. The progress of face recognition
is facilitated by providing face images from different sources with differences in gestures, expressions,
lights, and accessories. The CAS-PEAL databset includes 99,594 faces images of a total of 1040 people,
595 men and 445 women. In this experiment, 10,311 face images from 1040 people are selected. Figure 8
shows a facial image of a subject in the CAS-PEAL database.

Figure 8. Example Images of one Subject on the CAS-PEAL Database.

Several classes are randomly selected from the lighting, expression, and subset to constitute a
training set, and the alternative training samples are obtained in the same way. One image of per
subject is used to compile a gallery set. The test set comprises the remaining face images. For the sake
of fairness, all methods use the same LBP features.

Since KRDD combines three algorithms: SRC, KDA, and PCA, it is not a simple stack of the three
algorithms. To prove that KRDD is fundamentally different from SRC and KDA, KRDD is compared
with PCA, SRC, ESRC, KDA, KDA + SRC, KDA + ESRC and KED. All methods were tested using LBP
features. Again, PCA is applied to reduce the feature dimensions to 600, 700, and 800 to compare these
advanced methods. In this experiment, KRDD learned from the first 10, 15 and 20 components of the
real disturbance variable and the simulated disturbance variable in kernel space.

It can be seen in Table 5 that the recognition rate of the simple association of KDA and SRC is
indeed nearly 20% higher than the rate of KDA and SRC alone. However, KRDD is not a simple
addition of KDA and SRC. The recognition rate of KRDD is approximately 5.8% higher than that of
KDA plus SRC and KDA plus ESRC. KRDD also achieves higher recognition accuracy than taht of
KED. Among all the methods, KRDD achieved the best results. Figure 9 shows the classification time
for several algorithms. Although ESRC has a higher recognition accuracy than SRC, it takes a much
longer time because it expands the quantity of atoms in the dictionary. D in KRDD is based on low
dimensions and only adds a small number of atoms, which is faster than SRC. It is remarkable that
KRDD has a higher recognition rate and takes less time than KED for the same number of selected
occlusion components. Additionally, a positive correlation could be observed between selected
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occlusion components and the recognition rate of KRDD. Nevertheless, selecting more occlusion
components results in longer time computation times.

Table 5. Comparison of Related Methods on the CAS-PEAL Database.

Method 600 700 800

PCA [15] 70.6 71.4 71.7
SRC [21] 71.5 72.6 73.5

ESRC [22] 86.3 86.8 87.8
KDA [29] 75.1 75.7 76.4

KDA + SRC 89.7 89.9 90.1
KDA + ESRC 89.9 90.2 91.0

KED 95.0 95.2 96.0
KRDD(10) 95.5 95.6 96.3
KRDD(15) 95.6 95.9 96.7
KRDD(20) 95.8 96.3 97.1

SRC ESRC KED KRDD(10)KRDD(15)KRDD(20)
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Figure 9. The Classification Time for Different Algorithms on the CAS-PEAL Database.

5.3.2. Experimental Results with Subset

For the purpose of verifying the degree of interference of each change on the recognition rate, the
CAS-PEAL dataset in the subset created by Deng et al. [34] is applied in this experiment. This dataset
is the same as the one used in the previous section, and the training samples and the gallery samples
are created in a similar way. The difference is that the data set of Deng et al. [34] contains 9 testing
sets and 9 corresponding subsets: accessory, lighting, expression, time, background, distance, glasses,
sunglasses and hat. Six subsets are selected for experimental comparison. To ensure the recognition
rate of the results are consistent, the experiment is repeated 10 times for every algorithm.

Figures 10 and 11 show the recognition rates of KRDD and the other advanced algorithms on
different subsets. By observing the changes in recognition rates over six subsets, illumination variations
are the most challenging for these algorithms. Among all the algorithms, it is significant that ESRC,
MOST, KED and KRDD are more robust than the other algorithms. ESRC is relatively more stable than
SRC because ESRC benefits from an intraclass variant dictionary. Although the recognition rates of
both MOST and KED are satisfying, KRDD still achieves the highest recognition rate in each subset.
This proves that KRDD is not only effective in dealing with nonoccluded samples, but also it will not
be over fit when processing occluded samples since it is sparse.
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Figure 10. The Recognition Accuracy for Different Algorithms on the CAS-PEAL Database.
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Figure 11. The Recognition Accuracy for Different Algorithms on the CAS-PEAL Database.
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5.4. Experiment on FERET Dataset

The last experiment was executed on the largest face database FERET. The image is taken in a
semicontrolled condition. There is a large difference among the images of the same subjects in the
FERET dataset in terms of expressions, lighting, gesture, and time variation. In this experiment, an
image of each class is selected in subset A of the dataset as the gallery set. The test set consists of four
subsets of expression, lighting, and time variation. The remaining images constitute a training set and
an alternative training set. Figure 12 shows some example images from the FERET data set.

Figure 12. Example Images of one Subject on the FERET Database.

Figure 13 displays the recognition accuracy of several advanced algorithms with the FERET
database. It can be observed that two subsets separating by 2 present a huge challenge for these
algorithms, because people’s facial features change slightly over time. In summary, KRDD achieved
the highest recognition accuracy in all subsets. For the four subsets, KRDD displayed an increased
average recognition rate by 33.5% compared with SRC, 24.6% compared with ESRC, 18.3% compared
with RRC, 13.5% compared with SLF-RKR, 13.4% compared with MOST.

SRC ESRC RRC SLF-RKR MOST KED KRDD

Methods

0

10

20

30

40

50

60

70

80

90

100

R
ec

og
ni

tio
n 

ac
cu

ra
cy

expression
illumination
time1
time2

Figure 13. The Recognition Accuracy for Different Algorithms on the FERET Database.

6. Comparison between KRDD and Deep Learning

In recent years, deep learning has been widely used in pattern recognition to extract deep
features of face images. Sun et al. [40] proposed two deep neural network architectures built by
stacked convolution and pilot layers for face recognition (DeepID3). Ding et al. [44] proposed a new
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end-to-end CNN model and a new loss function, which can share the convolutional layer to extract
features and improve the robustness and discriminability of the model. Masi et al. [45] proposed an
attitude-aware unconstrained model using several deep convolutional neural networks, which can
solve the problem of posture changes.

Undoubtedly, the KRDD proposed from the original training sample and the alternative training
sample using the convolutional neural network may achieve higher recognition accuracy. The model
of KRDD with deep learning will be developed in the future. However, face recognition algorithms
involving deep features require very complex models and a large number of parameters to adjust,
especially the higher the accuracy of the model is, the worse the general robustness will be. They also
require a large amount of outside training data that needs to be collected in the same circumstances as
the data set used. In a fast-developing society, recognition accuracy is not the only important factor to
be considered, since computing time is a factor that cannot be ignored. Therefore, the proposed KRDD
model is a robust classifier based on hand-craft features. It has fewer parameters and is easier to be
adjusted. Its computation time is much shorter than that of deep learning algorithms. KRDD will be
further improved in the future.

7. Conclusions

In this paper, a novel kernel-based robust disturbance dictionary (KRDD) learning model is
proposed. Three types of samples are extracted to generate a robust and comprehensive dictionary
for KRDD, including training samples extracted from real disturbance variations, alternative training
samples generated by several different schemes, and gallery samples. KRDD has learned to include
the basic dictionary, the real disturbance dictionary and the simulated disturbance dictionary, which
fully considers the integrity of the data. KRDD combines KDA, SRC and KPCA in an efficient way,
which significantly enhances the recognition performance of occluded samples. Experiments on the
AR, FLWA, CAS-PEAL and FERET face databases show that KRDD has a higher recognition rate than
some of the most advanced methods, and it can also cope with more realistic situations.
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