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Featured Application: The model presented in this paper can be applied in production systems
composed of unreliable machines subject to deterioration whose production rates can be
controlled. Examples include the systems found in important industries including: Automotive,
aircraft, machine tools, semiconductor, and electronics manufacturing. Therefore, given the
trade-offs related with deterioration and the strong interactions between the important functions
of production planning, quality, and maintenance, advanced engineering scheduling methods
such as the model presented in this paper are required to keep industries profitable.

Abstract: We study the optimal production planning and major maintenance scheduling for
an unreliable manufacturing system. We assume that the production unit experiences progressive
deterioration that negatively influences product quality. For the production policy, we extend
improve traditional threshold policies with a superior alternative, based on a just-in-time (JIT) strategy.
The paper brings a new vision on the importance of implementing more effective production strategies
based on JIT methods, instead of traditional threshold policies. When a failure occurs, the production
unit is minimally repaired, and when the major maintenance is selected, the machine is restored to
brand-new conditions. The objective of the model is to determine the simultaneous JIT production
and major maintenance strategy that minimizes the total cost. Due to the stochastic features of the
system, a simulation-based optimization approach is proposed, which combines the descriptive
capabilities of simulation modeling with analytical models, statistical analysis, and optimization
techniques. The results verify that the proposed simulation–optimization approach provides new
and coherent results that highlight the strong influence of quality deterioration on the determination
of the control parameters. A sensitivity analysis and a comparative study are conducted to illustrate
that significant cost savings could be obtained with the proposed approach.

Keywords: production planning; maintenance; quality deterioration; simulation

1. Introduction

With the current global manufacturing context, the quality of products has become a critical
factor to succeed in industrial markets. Moreover, the high variability of demand leads manufacturers
to devise robust production and maintenance strategies to ensure delivery reliability. However,
the current context is posing serious challenges on companies to continually reduce their costs.
To cope with these challenges, advanced manufacturing systems need to be operated with balanced
solutions, considering simultaneously the three key functions of production logistics, product quality,
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and equipment maintenance. This joint problem is particularly important in manufacturing systems
prone to progressive deterioration. Nevertheless, there is a limited amount of literature dedicated to
this critical problem and several important issues remain unsolved.

In this section, we discussed contributions on the production–quality connection and the
production–maintenance link, since they have been the base in recent years for the development of
more integrated models simultaneously addressing the functions of production–quality–maintenance.
Furthermore, we present some papers on the deterioration field, because progressive degradation
may considerably alter the control policy. Additionally, contributions of simulation techniques are
discussed, since they are attractive solution alternatives given that analytical solutions are not available
for the production systems under study because of their high stochastic complexity.

The progress in technology has allowed production managers to exercise a better control and
analysis of product quality and production logistics performance. For example, a number of different
kinds of analytical models focusing on the production–quality relationship have been developed in
recent years, such as the paper of Kim and Gershwin [1], where numerical studies were conducted for
a production system with defective production. They also successfully determined several indexes such
as the total production rate, the effective production rate of conforming units, and the yield. Kim and
Gershwin [2] presented an approximation method for the performance analysis of manufacturing
lines with defective production. They also analyzed different versions of a production line that differs
in the locations of the inspection stations and in the sets of machines that each inspection station
monitors. Moreover, the results of the research carried out by Colledani and Tolio [3] have taken
into account the impact of the quality control action on the production flow of parts in a system.
In their model, the behavior of the production system is monitored by statistical control charts.
Another analytical model has been introduced by Colledani et al. [4], where they analyzed the
production rate of conforming parts for manufacturing systems with progressively deteriorating
machines. In their model, they incorporated preventive maintenance. As can be noted from these
papers, most of the studies have focused in the determination of performance indexes. However,
the present paper aims to provide decision-makers with an integrated policy which adequately
manages their production, quality, and maintenance operations in response to disruptive random
events such as failures, increasing defectives, and deterioration. In particular, for the production policy,
we seek to extend traditional threshold policies with superior manufacturing practices in the form of
just-in-time (JIT) production strategies.

There are many studies in the literature dealing with the association between production and
quality control strategies. For instance, Hajji et al. [5] studied the joint production control and product
specifications with decision making. They also observed that the profit under joint production–quality
and product design could increase considerably compared with the case where decisions are completely
dissociated. In Bouslah et al. [6], the authors dealt with the problem of joint determination of the
optimal lot sizing and production control for an unreliable production system, where the quality control
of lots produced was conducted using an acceptance sampling plan. Mhada et al. [7] addressed the
problem of optimal joint assignment of buffer sizes and inspection station placement for an unreliable
transfer line. In their model, the location of one station is fixed to inspect finished parts, while the
location of the other station is chosen to optimize the total per unit time average cost. More recently,
Rivera-Gómez et al. [8] presented a model for the joint production and repair activity planning for
a manufacturing system which produces defectives. In their formulation, they used an intensity control
model that allowed them to implement different types of repairs, such as imperfect and minimal repairs.
It is evident that quality and production modeling has been demonstrated to provide considerable
advantages, as seen in these papers. Nevertheless, maintenance strategies must also be considered in
these models, since these three key functions are highly coupled and optimal decisions can only be
reached when these functions are captured and addressed simultaneously.

The coupling of production and maintenance strategies has been the subject of several studies
in recent years. For instance, Kumar-Sharma et al. [9] proposed a framework based on failure mode
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effect analysis and Petri nets to analyze and predict the uncertain behavior of an industrial system.
The authors aim to understand the behavioral dynamics of the system and adapt maintenance practices
to improve system reliability and maintainability aspects. The control of production systems subject to
maintenance was addressed by Hajej et al. [10], where a preventive maintenance plan was provided
in order to decrease the failure rate. They took into account the influence of delivery time, and they
obtained the optimal delivery and production plans with the corresponding preventive maintenance
periods. Nourelfath et al. [11] studied the problem of integrating imperfect preventive maintenance
and production planning. They considered the existence of nonconforming items in the produced
lots and machine inspection for maintenance and restoration purposes. Dellagi et al. [12] developed
an analytical model in order to determine an integrated maintenance and production plan under
a required service level which takes into consideration the influence of the production rate on the
failure rate. As can be noted, one drawback of these papers is that their focus has only been on
production and maintenance strategies. Nonetheless, manufacturing companies must manage several
functional areas successfully in order to ensure efficient coordination and effective decision-making,
according to Callahan et al. [13]. Furthermore, given the repercussions of deterioration processes on
the control strategy, their effects must be minded.

In a manufacturing environment, deterioration is a common phenomenon which impacts not
only the production system but also may influence the product quality. Therefore, to ensure a rational
exploitation of production systems, integrated models must assess the effects of degradation to keep
high product quality and performance. Recent years have seen considerable growth in interest
in deteriorating systems. For instance, Dehayem et al. [14] presented a method to determine the
optimal production, repair/replacement, and preventive maintenance policies for a deteriorating
manufacturing system. In their model, preventive maintenance is available to improve the reliability
of the machine. In the same vein, Hajej et al. [15] dealt with the combined production and maintenance
plans for a deteriorating manufacturing system. They took into account the deterioration of the
failure rate according to the production rate of the machine to derive an optimal maintenance schedule.
Khatab et al. [16] proposed an imperfect maintenance optimization model, where the system considered
was assumed to be continuously monitored and subject to stochastic degradations. The objective of
their model consisted of finding the optimal number of preventive maintenance actions to maximize
the average availability of the system. In Ayed et al. [17], an optimal production plan considering
the degradation of a manufacturing system following its production rate and its availability was
introduced. To ensure the satisfaction of the demand, a second manufacturing system with a stochastic
service level was available as production support. Indeed, the growing importance of deteriorating
systems has led to an increasing interest in the development of optimization models in this domain,
as observed in the presented papers. It should be highlighted that the literature has traditionally
addressed availability deterioration. Nevertheless, the industrial reality shows that deterioration also
impacts product quality and so it must be integrated into the decisions. Unfortunately, given the
complexity of these stochastic degrading systems, alternative resolution methods such as simulation
techniques are justified, since analytical solutions are cumbersome to obtain.

A significant branch of the literature has applied simulation techniques to analyze unreliable
manufacturing systems, since they allow us to reproduce their set of dynamics and stochastic behavior,
and also because such techniques permit us to include more realistic considerations of industrial
production units. For example, Gharbi et al. [18] proposed a simulation modelling approach to
address the production control problem of an unreliable manufacturing system, where, due to
availability fluctuations, such machines fall short of meeting the long-term demand rate. Thus,
a reserve machine is called upon for support if the finished product inventory level drops below
a specific degree. In the same direction, Berthaut et al. [19] proposed a simulation model for the
joint preventive maintenance and production control policy of an unreliable production system.
They compared different maintenance strategies. Another simulation model was introduced by Hlioui
et al. [20] who dealt with simultaneous production, replenishment, and raw material quality control.
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They compared two quality control policies, an acceptance sampling plan, and 100% inspection for
lots of raw material. Tolio and Ratti [21] developed an analytical and simulation model for evaluating
the performance of a production line. With their method, it is possible to model different cases
such as machines having phase-type failure time distributions, serial/parallel machines, and quality
control machines. A common feature of the above situation is that simulation modelling has been
applied successfully in several studies, since it allows for the relaxation of unrealistic assumptions
and reproduction of complex real dynamics. Nonetheless, despite the contributions of these papers,
important problems remain unsolved in the interaction of production–quality–maintenance functions.
More precisely, for production planning, we aim to enhance company competitiveness at implementing
a JIT production strategy to improve performance through lower inventory levels and reduce the total
incurred cost. The potential economic cost savings that could be obtained with the proposed joint
control policy are highlighted in the comparative study section.

The main research tasks devised in this paper are aligned with the extension of existing models
in the production–quality–maintenance domain and the concurrent extension of analysis for these
models. In particular, this paper has three objectives: (i) To combine issues that have been studied
separately such as production planning, quality, and maintenance scheduling; (ii) to demonstrate
how additional cost savings can be obtained by implementing a JIT production strategy rather than
classical production threshold policies; and (iii) to propose a robust feedback control comprising of
a detailed model of the manufacturing system dynamics and effective countermeasures that limit
the effects of disruptive random events that occur in production, such as failures, repairs, defectives,
wear, and decay of production capacity. Some research about these issues has been done, but more is
needed to have a fundamental understanding of the behavior of such systems. In particular, the set of
characteristics proposed in this paper has not been treated in the literature before. Advanced simulation
techniques have been used to simulate, optimize, and analyze an integrated model associated with the
aforementioned objectives. Additionally, an extensive sensitivity analysis and a comparative study are
discussed to illustrate the effectiveness of the proposed approach.

The remainder of the paper is organized as follows. In Section 2, we review the industrial context
that motivates the research. Section 3 describes the model proposed, as well as the production and
major maintenance policies implemented. The simulation–optimization approach adopted in the paper
is detailed in Section 4. Additionally, in this section, we validate our simulation model. In Section 5,
the paper presents a numerical example. A sensitivity analysis and a comparative study are conducted
in Sections 6 and 7, respectively, to show the capabilities of the proposed integrated model. Finally,
Section 8 concludes the paper.

2. Industrial Motivation

In manufacturing, the intense competition in the current marketplace has forced companies to
reexamine their methods of operation management, since their stability and survival in an increasingly
competitive market depend on their ability to produce higher-quality products at a lower cost and in
allowable delivery times, according to Green et al. [22]. One of the most successful strategies to reach
these objectives is based on JIT strategies, which have shown salient presence according to Fullerton
et al. [23]. In fact, JIT strategies have become more important than in previous years because of the
impact of globalization in the manufacturing sector, as noted by García-Alcaraz et al. [24].

The integrated model presented in this paper has many applications to several industries in
which machines are unreliable and subjected to random failures, for which the production rates can be
controlled and whose components stochastically deteriorate over time. The deterioration phenomenon
is common in several sectors, such as the automobile, aircraft engine, and machine tools sectors,
according to Kouedeu et al. [25].

The joint analysis of production, maintenance, and quality in JIT environments is an attractive
alternative for industries for the continuous improvement of waste reduction, and is a means for
improving inventory management, reducing the inventory of finished products, and shortening
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customer response time. Additionally, a JIT production plan must be supported with an appropriate
quality and maintenance strategy, since with the increasing adoption of JIT processes, lean,
agile, and flexible manufacturing, and the growth of mechanization and automation, reliability,
and availability, are crucial for the company profitability, according to Amendola et al. [26]. Below,
we introduce an integrated model and apply appropriated techniques for its solution.

3. Problem Statement

Let us introduce the manufacturing system under study that consists of an unreliable production
unit producing one part type. Due to the random availability of the unit, its uptimes and downtimes
are assumed to follow Markov dynamics, with states in Ω “ t1, 2, 3u and generator matrix Qp¨q such
that Qp¨q “ tqαα1u, where qαα1 denotes the transition rates from state α to α1, qαα1 ě 0, qαα “ ´

ř

α1‰α

qαα1 ,

and α, α1 P Ω. Thus, αptq denotes a continuous-time discrete space stochastic process that describes the
modes of the production unit, such that: αptq “ 1, the production unit is operational; αptq “ 2, the unit
is at failure, where a minimal repair is conducted, leaving the unit in as-bad-as-old (ABAO) conditions;
and αptq “ 3, the unit is under major maintenance that restores the system to as-good-as-new (AGAN)
conditions. The major maintenance implies a perfect repair that serves to mitigate all the effects of the
deterioration process. In this case, after the conduction of a major maintenance, the rate of defectives is
restored to initial conditions.

The dynamic behavior of the inventory level xptq can be described by the following differential
Equations:

Bxptq
Bt

“ uptq ´
d

p1´ βpaqq
(1)

where uptq represents the production rate at time t, d is the demand rate, and βpaq denotes the defectives
rate at age a. Note that in Equation (1) the demand rate is adjusted by 1{p1´ βpaqq, since the production
unit must produce more to compensate for the increasing presence of defective units originated by the
deterioration process. The production rate at any instant in time must satisfy the capacity constraint
0 ď uptq ď umax, where umax denotes the maximum production rate.

When processing parts, it is assumed that the production system progressively ages. Thus,
we define aptq as the age of the production unit at time t. This age aptq is measured by the cumulative
number of parts produced at time t since the last conduction of a major maintenance, and it is calculated
using the following Equation:

Baptq
Bt

“ η0¨uptq (2)

apTq “ 0 (3)

where η0 is a given positive constant and T refers to the last restart time of the production unit.
One noteworthy feature of the model is the incorporation of the effects of a deterioration process in its
formulation. In this regard, we assume that the rate of defectives increases as the machine ages [3],
as denoted in the following Equation:

βpaq “ b0 ` b1

”

1´ e´η1θaptqη2
ı

(4)

More formally, b0 is the rate of defectives at AGAN conditions, b1 is the upper limit considered
in the deterioration process, and η1 and η2 are non-negative constants. θ is an adjustment parameter
with value in 0 ď θ ď 1, which is useful to adjust the pace of increment of the defectives rate for
a particular production system. Equation (4) allows us to model the quality deterioration phenomenon,
which in this case implies that the rate of defectives β increases as the machine ages. Due to the random
availability of the production unit, its steady state availability π1 can be calculated as follows:
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πi¨Qp¨q “ 0 and
3
ÿ

i“1

πi “ 1 (5)

In view of Equations (5), for the operational mode we have:

π1 “
1

1` q12{q21 ` q13{q31
(6)

Additionally, when considering the effects of the deterioration process on the rate of defectives,
the decision-maker must ensure that the productions system is able to satisfy product demand at high
levels of deterioration. Thus, the following feasibility condition must be satisfied:

umax¨π1 ě
d

p1´ βpaqq
(7)

The above equation ensures that the production system will be able to meet the demand, even in
extreme cases of severe deterioration.

3.1. Production Inventory Control Problem

The central premise of the approach is the incorporation of a JIT production strategy into the
production control policy, where such JIT strategy consists of a zero-inventory policy. The aim of such
an approach is to enhance company competitiveness through lower inventory levels and to reduce
the total incurred cost. To make things concrete, the JIT strategy is combined with a derivation of the
so-called Hedging Point Policy, where the production rate at any instant of time t is controlled with
the following expressions:

If aptq ď BJ IT :

u˚p1, x, aq “

$

’

’

&

’

’

%

umax i f xptq ă 0

d{p1´ βpaqq i f xptq “ 0

0 i f xptq ą 0

(8)

If aptq ą BJ IT :

u˚p1, x, aq “

$

’

’

&

’

’

%

umax i f xptq ă Zp

d{p1´ βpaqq i f xptq “ Zp

0 i f xptq ą Zp

(9)

The critical point of the proposed production policy is to implement a JIT production strategy
when the production unit is under the age BJ IT , since at such age the effects of deterioration are
considered to be non-significant. Thus, there is no need to maintain stock as protections against
shortages and defectives, justifying a zero-inventory policy. Then, as the machine ages and surpasses
age BJ IT , a threshold inventory strategy is implemented to maintain an amount of inventory Zp

as a protection to mitigate the effect of increasing defectives and other disruptions encountered
in production.

3.2. Major Maintenance Policy

Upon defining the production policy, we state that the production unit is restored to AGAN
conditions based on a deterioration-based maintenance policy. In this case, a major maintenance is
scheduled when the production unit age surpasses the critical value A0. Thus, the major maintenance
policy is given by:

w˚p1, x, aq “

#

1 i f aptq ě A0

0 otherwise
(10)



Appl. Sci. 2019, 9, 1180 7 of 17

where A0 is the control parameter for the maintenance policy that defines the appropriate time to
trigger a major maintenance. The proposed feedback control policy depends on the control parameters
pZp, BJ IT , A0q, and determines the production and major maintenance rates pu˚, w˚q as functions of
the system state pα, x, aq.

3.3. Optimization Problem

Another aspect of the model development is the description of the optimization problem implied.
In this case, it consists of finding the optimal values of the production parameter BJ IT , the inventory
level Zp, and the critical age for major maintenance A0 which minimize the key performance measure
for this type of system. In this case, that is denoted by the expected total incurred cost TC, which is
subject to Equations (1)–(7). Furthermore, the total cost includes the inventory/backlog cost, the quality
cost, and the maintenance cost. For our discussion, the average inventory-holding and backlog cost
per unit of time IBptq during the interval r0, Ts is defined as:

IBptq “
1
T
¨

ż T

0

`

C`x`ptq ` C´x´ptq
˘

dt (11)

with
x` “ maxp0, xq

x´ “ maxp´x, 0q

where constants C` and C´ indicate the inventory and backlog cost, respectively. The average total
quality cost per unit of time QCptq during r0, Ts is defined by the defectives cost Cde f as follows:

Cptq “
1
T
¨

˜

Cde f

ż T

0
pβptq¨dqdt

¸

(12)

For convenience, the average maintenance cost per unit of time MCptq during r0, Ts includes the
minimal repair cost and the major maintenance cost such that:

MCptq “
1
T
¨pCR¨NRptq ` CM¨NMptqq (13)

where indexes NRptq and NMptq refer to the numbers of minimal repairs and major maintenances that
were conducted in the interval r0, Ts, respectively. In summary, the optimization problem is to solve
the following stochastic model:

Min TC
`

Zp, BJ IT , A0
˘

“ lim
tÑ8

pIBptq `QCptq `MCptqq (14)

subject to Equations (1)–(7) (dynamics of quality and inventory):

Zp, BJ IT , A0 ě 0

In a sense, the formulated optimization model merely confirms a non-linear and highly stochastic
problem. Therefore, classical mathematical programming methods cannot be used to solve the problem
(14). This is because it is not straightforward to derive a closed-form solution for the total incurred
cost, given the Markov dynamics of the transition rates and the progressive increment of the defectives
rate due to deterioration. In this context, a simulation–optimization-based approach is proposed to
determine an optimal solution for the objective function and define the respective control parameters.
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4. Simulation–Optimization Approach

This section discusses the simulation–optimization approach used to determine the optimal
control parameters. In particular, our approach combines simulation and optimization techniques
to accurately model the stochastic behavior of the production system. We combine an analytical
model with the descriptive capacities of simulation techniques, and statistical analysis based on
the design of experiments and response surface methodology. This approach has been successfully
applied in cases where analytical solutions are not available, such as in Rivera-Gómez et al. [27].
We adopted a simulation–optimization approach because it provides effective capabilities of modeling
and modifying complex systems, such as those studied in this paper. Additionally, such an approach is
closely related to stochastic systems and so they are appropriate when studying real-world phenomena,
as stated in Goti et al. [28] and Oyarbide-Zubillaga et al. [29]. With the proposed approach, we managed
to implement the stochastic nature of real production systems. The approach is applied to the control
problem of Section 3 and consists of the following sequential steps:

‚ Step 1-Mathematical model: In this step, we provide rigorous modeling to analytically formulate
the production system under study, and define the decision variables, the objective function to be
minimized, and the control parameters of the joint control policy.

‚ Step 2-Simulation model: We develop a combined discrete–continuous simulation model that
uses the control parameters pZp, BJ IT , A0q as inputs to evaluate the stochastic behavior and the
performance of the production system, defined in this case by the total incurred cost. The complete
description of the simulation model is provided in the next section.

‚ Step 3-Statistical analysis: In this step, we perform a design of experiments (DOE) to fit the
total incurred cost reported from the simulation model with a second-order regression model.
Additionally, the obtained regression model is statistically analyzed to determine the main effects
and significant interactions that must be included in the optimization phase.

‚ Step 4-Optimization: The obtained cost regression model is optimized in this step within the

feasible domain of the control parameters, defining the optimal values of
´

Zp
˚, B˚J IT , A˚0

¯

and
the optimal total cost. In this step, the optimal control policy is also analyzed extensively in
a sensitivity analysis to validate the obtained results.

4.1. Simulation Model

A combined discrete–continuous simulation model was developed and executed through the
Arena simulation software, as presented in the diagram of Figure 1. The simulation model seeks
to reproduce the material flow and the logic associated with the integrated production and major
maintenance policy, as presented previously in Section 3. In particular, the inputs of the simulation
model are defined by the control parameters pZp, BJ IT , A0q, and furthermore, the differential equations
(1) and (2) are integrated continuously using the Runge–Kutta–Fehlberg method. The discrete parts of
the simulation model reproduce the stochastic duration of minimal repairs and major maintenance.
Regarding the continuous parts, the simulation model is complemented with a C++ subroutine that
serves to instantly update the rate of defectives βp¨q, using Equation (4) and the age of the machine
ap¨q. The C++ subroutine also determines the inventory x` and backlog level x´. Both discrete and
continuous parts of the model work in synchrony to reproduce the interactions and stochastic behavior
of the production system. The production and major maintenance policies are performed according
to the logic defined in Equations (8)–(10), and so, detection mechanisms are implemented in the
simulation model to properly adjust the control rates. At the end of the simulation run, the model
provides indicators to calculate the average inventory-holding and backlog cost IBptq, the quality cost
QCptq, and the maintenance cost MCptq using Equations (11)–(13), respectively.
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4.2. Simulation Model

In order to ensure the accuracy of the simulation model, we conducted a validation analysis,
where we traced a set of key indicators representative of the system behavior. In Figure 2, we present
a simulation sample of the dynamics of the production system over a period of time where the control
parameters were set to Zp “ 20, BJ IT “ 100, and A0 “ 280. From observing Figure 2, we note that at
time t “ 0, the production unit is in brand-new conditions and so there is no need to maintain safety
stock, thus Zp “ 0 (see arrow 1 in Figure 2g). After that, we note the occurrence of several random
failures, as in time t “ 90, where we see the reduction of the stock level when the unit fails (see arrow 2
in Figure 2g). Failures are identified in Figure 2c, as marked by arrow 3. Then, at time t “ 160, the unit
reaches the critical age BJ IT “ 100, which indicates the change of the production policy, triggering the
increase of the stock level from Zp “ 0 to Zp “ 20 (see arrow 4 in Figure 2e). At this point (t “ 160),
the stock level will progressively increase until its optimal threshold value Zp “ 20 (see arrow 5 in
Figure 2g). The change of the production threshold indicates that given the accumulated effects of
deterioration on the machine, mainly observed in the increase of the rate of defectives, safety stock is
needed to ensure demand satisfaction with flawless parts. As the machine continues its deterioration
pattern, we note that at time t “ 240, the unit operates at rate d{p1´ βpaqq (see arrow 6 in Figure 2d)
to compensate for the increase in the rate of defectives, since its level of deterioration is considerably
high, as indicated by arrow 7 in Figure 2b. Then at time t “ 400, the unit reaches the critical age
A0 “ 280 that triggers a major maintenance (see arrow 8 in Figure 2f). Before the conduction of such
major maintenance, the production unit reaches its maximum level of deterioration, as noted by arrow
9 in Figure 2a. Additionally, we observe from arrow 10 in Figure 2g that the stock level decreases
considerably, since the conduction of a major maintenance requires more time than a minimal repair.
Furthermore, after the conduction of a major maintenance, we observe a considerable reduction in
the rate of defectives, as shown by arrow 11 in Figure 2a. This is because major maintenance restores
the production unit to AGAN conditions and eliminates the effects of deterioration. From this point,
the production threshold is set again to Zp “ 0, indicating the beginning of a new deterioration cycle.
Finally, based on the assessment of the dynamics of Figure 2, we verify that the production and major
maintenance policies operate properly: A safety stock is needed when the age of the unit reaches the
critical age BJ IT , and a major maintenance is triggered when such age surpasses the value of A0.
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5. Numerical Example

For illustrative purposes, this section provides a numerical example of the proposed integrated
model. In this numerical instance, we considered three independent variables pZp, BJ IT , A0q and one
dependent variable denoted by the total incurred cost. Simulation runs are conducted according to
a complete 33 factorial design. For each combination of independent factors pZp, BJ IT , A0q, the design
33 is replicated four times, denoting (33 ˆ 4q “ 108 simulation runs. The simulation run length of each
replication is set to 100,000 time units to ensure steady state conditions. The value of the parameters
used in the numerical example are provided in Table 1.

Table 1. Parameters for the numerical example.

Parameter: q12
(1/time units)

q21
(1/time units)

q13
(1/time units)

q31
(1/time units) θ

Value: 0.1 1.5 5 0.15 0.08

Parameter: umax
(product/time units)

d
(product/time units) η0 b0 b1

Value: 9 5.5 0.1 0.01 0.49

Parameter: η1 η2
Value: 15 ˆ 10´6.2 2.4

Table 2 presents the costs parameters used in the numerical example.
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Table 2. Cost parameters for the numerical example.

Parameter: C+

($/Products/Time Units)
C´

($/Products/Time Units)
CR

($/Repair)
CM

($/Major Intervention)
Cdef

($/Product)

Value: 1 50 100 3000 20

The levels of the independent variables pZp, BJ IT , A0q, presented in Table 3, are chosen from the
observation of the production unit given by preliminary runs made off-line. In what follows, to ensure
that BJ IT ă Ao, we define BJ IT “ k¨Ao, where k P r0, 1s.

Table 3. Cost parameters for the statistical analysis.

Factor Low Level High Level Description

Z0 10 150 Production threshold
k 0.1 0.9 Critical value for increasing the stock level to Zp

Ao 40 300 Critical age for triggering major maintenance

Using the data of Tables 1–3, the proposed model collects simulation data to fit the dependent
variable by a second-order regression function. The simulation results are handled using the statistical
software STATGRAPHICS in order to conduct an analysis of variance (ANOVA) and validate the
regression model obtained. In this case, the corresponding cost function is given as follows:

TCpZp, k, A0q “ 631.209´ 5.163¨Z0 ´ 351.679¨k´ 2.00021¨A0 ` 0.0144789¨Z2
o

`0.689607¨Z0k` 0.00763879¨Z0 A0 ` 339.941¨k2

`0.322369¨k¨A0 ` 0.00302754¨A2
o

(15)

Referring to the equation above, Table 4 presents the ANOVA analysis conducted. From this
table, we note that all main factors, quadratic effects, and interactions are statistically significant for the
response variable, since we note a P-value ď 5%. Furthermore, we observe a coefficient of correlation
of R2 “ 0.902. This value states that the second-order regression model (15) explains 90.20% of the
variability observed in the total incurred cost.

Table 4. ANOVA table.

Source Sum of Squares Df Mean Square F-Ratio P-Value

A:Zo 255,280.0 1 255,280.0 154.07 0.0000
B:k 55,583.3 1 55,583.3 33.55 0.0000

C:Ao 23,986.3 1 23,986.3 14.48 0.0004
AA 60,400.7 1 60,400.7 36.45 0.0000
AB 8,948.1 1 8,948.1 5.40 0.0249
AC 115,969.0 1 115,969.0 69.99 0.0000
BB 35,500.0 1 35,500.0 21.43 0.0000
BC 6,744.12 1 6,744.12 4.07 0.0499
CC 31,414.9 1 31,414.9 18.96 0.0001

blocks 1,348.02 1 1,348.02 0.81 0.3721
Total error 71,248.0 43 1,656.93
Total (corr.) 666,423.0 53

Figure 3 presents the projection of the cost regression model onto two-dimensional spaces.
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For our numerical example, the obtained optimal solution is presented in Table 5. The value
of k˚ “ 0.3136 yields to define BJ IT

˚ “ 46.12. The optimal values, presented in Table 5, are the
recommended parameters which should be applied to jointly control the production rate and the major
maintenance interventions.

Table 5. Optimal control parameters and cross-check validation.

Z*
0 k* A*

0 Total Cost Estimate Cross-Check
Confidence Interval (95%)

Factor 132.02 0.3136 147.084 88.13 r85.69, 91.22s

From 50 extra-replications of the simulation model, we validated the optimal solution by verifying
that the obtained total cost is within the confidence interval [85.69,91.22].

6. Sensitivity and Results Analysis

The primary objective of this section is to proceed with further analysis of a set of experiments
and analyze the sensitivity of several cost parameters. The aim of the analysis is to study the behavior
of the proposed integrated model, and compare the value of the control parameters and the total
incurred cost for different system conditions derived from a basic case. Table 6 presents ten different
configurations derived from the variation of five cost categories.
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Table 6. Sensitivity analysis for different cost variations.

Cost Variations

Cases Cost Parameter C+ C´ CR CM Cdef

Basic case ´ 1 50 100 3000 20
Case I C` 0.5 25 100 3000 20
Case II 2 150 100 3000 20
Case III C´ 1 20 100 3000 20
Case IV 1 70 100 3000 20
Case V CR 1 50 20 3000 20
Case VI 1 50 300 3000 20
Case VII CM 1 50 100 1000 20
Case VIII 1 50 100 5000 20
Case IX Cde f 1 50 100 3000 5
Case X 1 50 100 3000 50

The obtained results of the sensitivity analysis are presented in Table 7, and can be interpreted
as follows:

‚ Variation of the inventory cost: When the inventory cost C` increases (case II), the proposed
policy reacts by decreasing the production threshold Z˚p , since the inventory of products is more
penalized. With the increase of such penalization, we also notice that product inventory is
limited to the bare minimum, and so the system extends the JIT policy for a longer period of
time, thus increasing age B˚J IT . By examining the results, we observe that the increment of C`

promotes the conduction of more frequent major maintenance as a countermeasure to ensure the
production of flawless units. Thus, at increasing C`, the critical age for major maintenance A0

˚

reduces. When the inventory cost decreases, we note the opposite effects (case I).
‚ Variation of the backlog cost: When the backlog cost increases (case IV), the shortages of products

are more penalized, and thus the production threshold Z˚p increases as a protection against the lack
of product. Additionally, we note that product deficiency is also tackled by reducing the critical
age B˚J IT , and with this measure the unit applies less time the JIT policy, thus keeping product
inventory for a longer period of time. Upon further investigation, the increment of the backlog
cost exerts considerably more pressure to the unit performance, and hence major maintenance
is conducted more frequently to mitigate the presence of defective units. The decrement of the
backlog cost leads to the inverse effects (case III).

‚ Variation of the minimal repair cost: With the increment of the repair cost CR (case VI),
major maintenance must be performed more frequently, since the true usefulness of such
maintenance is its ability to mitigate the presence of defective units, so the critical age A0

˚ reduces.
Furthermore, we note that at reducing age A0

˚, the unit will remain operational for less time,
and thus the production threshold becomes less restricted, increasing Z˚p as a countermeasure
to ensure enough product availability to satisfy customers’ demand. Additionally, product
availability is increased by reducing the period of time where the JIT policy is applied, since we
note that at increasing CR, the critical age B˚J IT reduces. When the repair cost decreases, we observe
the inverse effects (case V).

‚ Variation of the major maintenance cost: The increase of the major maintenance cost CM (case
VIII) is expected to delay the conduction of major maintenance, thus increasing age A0

˚. This is
because the production unit must attain higher levels of deterioration to justify the expensive cost
of a major maintenance. Moreover, the intended consequence of delaying the major maintenance
is that the unit will be operational for more time, increasing its responsiveness to customers’
demand, and also reducing the need for inventory, decreasing the production threshold Z˚p .
Furthermore, with more time available for production, the JIT policy is implemented for a longer
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period of time, and this increases age B˚J IT . The reduction of the major maintenance cost has the
inverse effects (case VII).

‚ Variation of the defectives cost: When increasing the defectives cost Cde f (case X), it is logical to
observe that major maintenances are conducted more frequently to restore the unit faster and,
most importantly, reduce the amount of defective units that reach the final customer. Moreover,
a close examination of the increment of Cde f shows that the system opts to increase the production
threshold to ensure that customers are satisfied with flawless units. This previous measure is
complemented with the reduction of the critical age B˚J IT to limit the implementation of the JIT
policy to a shorter period of time. With this measure, more inventory is available to replace
defective units if necessary. The opposite occurs when the defective cost decreases (case IX).

Table 7. Sensitivity analysis for different cost variations.

Control Parameters Variations Total Cost
Variations

Par. Cases Z˚
p k˚ B˚

J IT A0
˚ C˚ Remark

- Basic case 132.04 0.3136 46.12 147.08 88.13 Base for the comparison
C` Case I 140.84 0.1978 29.63 149.83 55.78 Z˚

0 Ò, B˚
J IT Ó, A0

˚ Ò

Case II 122.17 0.4670 66.32 142.03 133.08 Z˚
0 Ó, B˚

J IT Ò, A0
˚ Ó

C´ Case III 117.52 0.5215 78.19 149.95 82.70 Z˚
0 Ó, B˚

J IT Ò, A0
˚ Ò

Case IV 136.92 0.2509 36.87 146.98 109.89 Z˚
0 Ò, B˚

J IT Ó, A0
˚ Ó

CR Case V 131.88 0.3135 46.28 147.65 80.88 Z˚
0 Ó, B˚

J IT Ò, A0
˚ Ò

Case VI 132.05 0.3137 45.67 145.60 106.28 Z˚
0 Ò, B˚

J IT Ó, A0
˚ Ó

CM Case VII 139.40 0.3178 37.13 116.85 77.63 Z˚
0 Ò, B˚

J IT Ó, A0
˚ Ó

Case VIII 127.25 0.3110 51.80 166.58 96.27 Z˚
0 Ó, B˚

J IT Ò, A0
˚ Ò

Cde f Case IX 126.58 0.3078 51.74 168.11 75.58 Z˚
0 Ó, B˚

J IT Ò, A0
˚ Ò

Case X 143.99 0.3256 32.74 100.56 107.35 Z˚
0 Ò, B˚

J IT Ó, A0
˚ Ó

The essence of the preceding analysis and the results of Table 7 is to illustrate the efficiency of our
resolution approach and confirm that the structure of the proposed joint control policy remains during
all the analysis.

7. Comparative Study

The final issue to be handled in this paper is the conduction of a comparative study which serves
to highlight the potential cost savings that can be obtained from our joint control policy. In particular,
we compare the performance of the integrated policy pZp, BJ IT , A0q, which we denoted as Policy-I,
with an alternative policy in order to remark the advantage of implementing a JIT policy for moderate
levels of deterioration. The second policy considered in the comparison is described as follows:

‚ Policy-II: This paper is derived from the results of Bouslah et al. [30], where the production
planning does not implement a JIT strategy. The production strategy consists only of the
determination of an optimal inventory threshold level Z˚po, which is constant during the entire
time horizon. In this Policy-II, the control parameter B˚J IT is disregarded. The control parameters
of Policy-II are then pZp, A0q, which are jointly optimized.

Fundamentally, a simplified version of the optimization approach described in Section 4 is used
to determine the optimal values of the control parameters pZp, A0q for Policy-II. In this case, we use
a two-factor experimental design for each combination of Zp and A0. A regression analysis was used
to fit the total expected cost by a quadratic model, using the data of the basic case of Tables 1 and 2,
and the ANOVA for Policy-II reported R2 “ 0.8863. Furthermore, the two design factors and their
interactions were significant, obtaining the following quadratic function:
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TCpZp, A0q “ 579.73´ 5.32303¨Z0 ´ 1.79105¨A0 ` 0.0165384¨Z2
o

`0.0088219¨Z0 A0 ` 0.00231366¨A2
o

(16)

When minimizing Equation (16), the cost function for Policy-II provides the results presented in
Table 8.

Table 8. Cost difference of the comparative study.

Control Parameters Total
Cost *

Cost Difference
∆-Cost (%)Description Z˚

po B˚
JIT A˚

0

Policy-I 132.02 46.12 147.08 88.13 -
Policy-II 117.38 - 163.26 121.09 +37.39%

According to Policy-II, the production threshold Z0 reduces when JIT policy is not implemented.
In contrast, Policy-I reported a threshold Z0 higher than in Policy-II, but the inventory level reaches Z0

after the age of the machine surpasses B˚J IT . Under Policy-II, the conduction of major maintenance
is delayed, increasing the critical age A˚0 to compensate for the decrease of the production threshold.
Herein, we note that a major difference between these policies is that Policy-I is 37.39% more economical
than Policy-II. The significant gap between the costs of both policies is due to the fact that first, Policy-II
generates extra inventory costs from implementing the production threshold Z0 since the beginning of
the considered time period. In contrast, Policy-I achieves important cost saving at implementing a JIT
policy during the period of time when machine is almost in brand-new conditions. Second, the delay
of major maintenances in Policy-II leads to extra defective costs due to the increase of the critical age
A˚0 . The obtained results of Table 8 confirm key advantages of our proposed control policy.

8. Conclusions

The practical implications of simultaneously addressing production, product quality,
and maintenance strategies for deteriorating production systems are immense. The proposed
new model contributes to the active field of research that studies the interactions of production,
quality, and maintenance in four ways. First, the strong interrelations of the three key functions
of production, quality, and maintenance were fully considered in the proposed joint control policy.
Second, we demonstrated through numerical instances that the deterioration process has a direct effect
on the production and maintenance policy, since the optimal control parameters of such policies are
determined in function of the level of deterioration of the machine. Third, we have found that a JIT
policy can be implemented before an optimal age B˚J IT , under which the production unit is considered
to operate in brand-new conditions, where the effects of the deterioration process are so negligible that
there is no need to maintain products in stock. Another important contribution of this paper is that the
maintenance strategy is based on quality information feedback that exploits the link between the level
of deterioration of the unit and the amount of defectives that it produces. Quality information can be
easily determined by the rate of defectives and interpreted to determine the appropriate maintenance
option. The integrated model proposed in this paper can be applied for stochastic production systems
subject to quality deterioration and where maintenance strategies are available to cope with such effects.
Managerial implications for implementing our integrated model in practice require real-time visibility
of the process conditions. In this case, for an appropriate control of operations, it is necessary to know
the level of product inventory and the level of product quality. Furthermore, product quality should
be properly supervised to monitor the production unit and determine an efficient schedule for major
maintenance. The sensitivity analysis and the comparative study conducted serve to highlight the
efficiency of our control policy compared with alternative strategies that disregard the implementation
of JIT polices in the production strategy. The critical point is that considerable cost savings could be
obtained from implementing our joint control policy. One limitation of our paper is to assume that the



Appl. Sci. 2019, 9, 1180 16 of 17

rate of defectives is known all the time. However, an inspection sampling plan could be implemented
instead of our approach. In summary, the results obtained so far are satisfactory and foster further
research into this domain. A possible extension of this paper is the consideration of more sophisticated
sampling plans in the quality control policy, such as the CSP-1 plan or multiple sampling plans.
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