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Abstract: ZnO is worth evaluating for chemical sensing due to its outstanding physical and chemical
properties. We report the fabrication and study of the gas sensing properties of ZnO nanomaterial for
the detection of hydrogen sulfide (H2S). This prepared material exhibited a 7400 gas sensing response
when exposed to 30 ppm of H2S in air. In addition, the structure showed a high selectivity towards
H2S against other reducing gases. The high sensing performance of the structure was attributed to its
nanoscale size, morphology and the disparity in the sensing mechanism between the H2S and other
reducing gases. We suggest that the work reported here including the simplicity of device fabrication
is a significant step toward the application of ZnO nanomaterials in chemical gas sensing systems for
the real-time detection of H2S.
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1. Introduction

Hydrogen sulfide (H2S) is a colorless, highly flammable and toxic gas [1]. It is produced due to
industrial activities including petroleum refineries, natural gas plants, paper milling, sewage treatment
plants and tanneries [2–5]. H2S remains in the atmosphere from 1–42 days, depending on the season [6].
Its presence causes eye irritation, fatigue, headache, poor memory, dizziness, olfactory paralysis and
respiratory distress. An increase in the concentration of H2S up to 700 ppm causes human death [7].
Consequently, the monitoring of ambient H2S levels, particularly in areas at hazardous waste sites, is
needed. The information obtained can be used in combination with the known body burdens of H2S
to evaluate the potential risk of adverse health effects in the population. H2S can also be released from
meat, seafood, egg and milk products during their cooking and storage, and its production increases
with the rise in temperature [8,9]. Thus, the detection of H2S can be useful for the identification of
food quality. The ingestion of food and water with high sulfur content increases urinary thiosulfate
concentrations [10]. Moreover, blood sulfide levels were proposed as a biomarker [11]. Therefore, the
development of small-size and portable H2S gas sensors is in high demand to provide environmental
and human health safety.

Metal oxides are very attractive materials for the fabrication of chemical sensors due to their
ability to interact with different gaseous compounds [8,12–14]. In this aspect, the preparation of
nanoscale oxide materials seems to be more efficient to improve their functional performance and
opens new perspectives for their application in chemical gas sensors [15–19]. Low-dimensional metal
oxide nanostructures with different shapes have been used to develop high-performance gas sensing
systems [20–26]. To date, the most-studied material for chemical sensing applications is SnO2 [27,28].
Other types of metal oxide nanostructures have been used as alternative materials to SnO2 [25,29–31].
In recent years, much attention has been devoted to ZnO owing to its high electron mobility and
thermal stability [16,32,33]. However, achieving a high response and selectivity of ZnO towards H2S
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is still a challenge. To enhance the gas sensing performance of ZnO it was functionalized with noble
metal nanoparticles [34–36]. The noble metals improve the interaction of gaseous molecules with the
sensing layer due to their catalytic activity [37–39]. Nevertheless, this is an expensive method and can
increase the self-cost of the final device. In addition, the metal nanoparticles can lose their catalytic
activity at relatively high operating temperatures due to the coagulation of particles on the support or
can be poisoned by sulfur-containing chemical compounds [40,41]. Recently, the sensing properties of
membrane-coated ZnO materials have been investigated. The obtained results have shown that it is
an effective strategy to improve the materials selectivity [42,43]. To enhance the interaction between
the gas molecules and sensing material, doped ZnO structures have been studied as well [15,16].
Some dopant materials decreased the optimal operating temperature of ZnO towards H2S [44,45].
However, the operation of metal oxide-based sensors below 200 ◦C can be affected by water molecules,
which worsen the material’s recovery abilities [18]. The surface morphology and the structure of
semiconductor materials have crucial effects on their sensing properties since the gas sensing process
relies on the adsorption/desorption reactions of gas molecules on the surface of a material [46–52].
The synthesis of metal oxide nanostructures, varying their morphologies, improves their response
towards specific gases [15]. In this regard, the synthesis of nanoscale oxide materials with special
morphologies is conducted for the enhancement of their ability to interact with the target gas [15–17].
The fabrication of hierarchical nanostructures composed of aggregates of nanoparticles, which can
act as reactive sites providing high surface area for the adsorption of gases, seems to be an effective
strategy for the aforementioned purposes [30,53,54].

In this work, we present the synthesis and study of the gas sensing properties of ZnO nanomaterial
for the detection of H2S. We analyzed the gas sensing mechanism of the structure towards H2S and
investigated the selectivity against other reducing gases. We demonstrated that the morphology of the
prepared ZnO is suitable to improve the absorption/desorption processes of oxygen and H2S on the
material, which affects the surface electronic structure of ZnO, enhancing its sensing response to H2S.
The operating temperature of the material and its interaction mechanism with the H2S have a crucial
effect on the response and selectivity of the sensing device. The results obtained show that the ZnO
nanostructure exhibits an excellent sensing performance for potential applications in H2S gas sensors.

2. Materials and Methods

ZnO nanomaterial was prepared based on our previously reported method with a few modifications,
namely the anodization time and the applied potential [55]. First, metallic zinc films were deposited
on 2 mm × 2 mm × 0.75 mm alumina substrates by means of radio-frequency (13.56 MHz) magnetron
sputtering. The sputtering target was metallic zinc (purity 99.99%, 101.6 mm diameter, 6 mm thick,
CAS number: 7440-66-6, Materion Advanced Chemicals Inc., Milwaukee, USA). The sputtering power
and the time were 75 W and 35 min, respectively. To improve the adhesion of metallic films, the
temperature of the alumina substrates was kept at 300 ◦C during the sputtering process. To perform
the crystalline analysis of the materials, metallic zinc films were deposited on silicon substrates using
the aforementioned sputtering regimes. Then, the metallic films were electrochemically anodized in a
Teflon cell using a two-electrode system. The electrolyte solution was 2 M oxalic acid dihydrate
(C2H2O4·2H2O, ACS reagent, ≥99.5%, CAS number: 6153-56-6, Sigma-Aldrich, Inc., Steimhem,
Germany) containing ethanol. A platinum foil was used as the cathode and the applied voltage
during the anodization procedure was 20 V. The anodic oxidation procedure was performed at room
temperature (RT) for 20 min. The anodized material was zinc oxalate dihydrate (ZnC2O4·2H2O).
As-prepared materials were transformed to crystalline ZnO nanostructures by thermal decomposition
process under a 50 vol% O2/50 vol% Ar atmosphere at 500 ◦C for 8 h. To perform the gas sensing
measurements, platinum electrodes with interdigital geometry were deposited onto the surface of
obtained structures by means of radio-frequency magnetron sputtering. To carry out the sensing tests
at different temperatures, a platinum heater was deposited on the backside of the substrates.



Appl. Sci. 2019, 9, 1167 3 of 10

The crystal structure of the prepared material was studied with the X-ray diffraction spectroscopy
(XRD) technique, using an Empyrean diffractometer (PANalytical, Almelo, The Netherlands) mounting
a Cu-LFF (λ = 1.5406 Å) tube operated at 40 kV and 40 mA. The morphologies of the materials were
examined by means of a LEO 1525 scanning electron microscope (SEM) equipped with a field emission
gun (Carl Zeiss SMT AG, Oberkochen, Germany).

The gas sensing properties of the material were studied by a flow-through technique in a
computer-controlled thermostatic test chamber. The detailed description of the experimental setup
for the gas sensing measurements has been reported [56]. The carrier gas was humid synthetic air
with a flow rate of 0.2 l/min and a relative humidity of 40%. Before the purging of analyte gas to the
test chamber, the samples were stabilized for 10 h at each operating temperature. The conductance of
samples was monitored by means of the volt-amperometric technique and the applied voltage was
1 V. The response (S) of structures was calculated according to the typical convention for the n-type

semiconductor material: S =
(G f−G0)

G0
= ∆G

G0
, where G0 is the sample conductance in air and G f is the

sample conductance in the presence of analyte gas [16,57].

3. Results and Discussions

3.1. Structural and Morphological Characterization

Figure 1a reports the XRD spectrum of the nanomaterial obtained on a silicon substrate. As can be
seen, the as-prepared structure transformed to crystalline ZnO after the thermal treatment procedure
at 500 ◦C. All the strong diffraction peaks in the spectrum were indexed to hexagonal wurtzite ZnO
with lattice constants of a = 0.325 nm and c = 0.520 nm (JCPDS files no. 36-1451). The relative
strength of the observed diffraction peaks perfectly matches with the hexagonal phase (JCPDS files no.
36-1451) [58,59]. Figure 1b shows the SEM images of the obtained ZnO nanomaterial with different
resolutions. The morphological analyses indicate that the prepared materials have a nanosized
structure, which consists of nanoparticles connected to each other and forming chains with lengths of
a few microns. The average thickness of nanoparticles is 30 nm. Furthermore, the nanostructuration of
metal oxide materials is an important issue, which determines their chemical sensing properties [16,46].
The synthesized ZnO material fully covered the surface of alumina substrates. Energy-dispersive
X-ray (EDX) analyses were performed on different areas of the structure. The obtained EDX results
confirmed the presence of Zn and O elements in the material with the Zn:O atomic ratio of 1:1 (Table 1).
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Table 1. Table of the quantitative analysis of the ZnO nanomaterial obtained by Energy-dispersive
X-ray (EDX).

Element Atomic % (±7%)

Zn 48
O 52

3.2. Gas Sensing Properties

In order to determine the optimal operating temperature of the obtained ZnO nanomaterials
towards H2S, we measured their gas sensing response at the operating temperatures of 200, 300, 400
and 500 ◦C. Figure 2a reports the relationship between the measured sensing response of the ZnO
and its operating temperature. The response of structures increased with the temperature until 400 ◦C
and decreased at 500 ◦C. The gas sensing mechanism of chemiresistive-type sensors is driven by
reactions of the gaseous compounds with chemi- and physisorbed surface oxygen species [18,60,61].
Furthermore, the charge carriers have insufficient energy to overcome the barrier height energy at low
working temperatures of the structure [13]. The sensing response of the oxide material at relatively
low operating temperatures is mainly dominated by the physical adsorption process, where the gas
molecules are adsorbed on the structure surface due to the van der Waals forces. The chemisorption
process of H2S is improved with the increase in the operating temperature of ZnO [18,62,63]. Thus, the
reaction of the H2S molecules with the ionosorbed oxygen species on the surface of ZnO was improved
due to the increase of the sensor operating temperature, leading to an enhanced gas sensing response
of the material. The reduced response at 500 ◦C can be attributed to the faster desorption rate of H2S
on the surface of the ZnO structure at high temperatures [62,63]. Consequently, the optimal operating
temperature of the prepared ZnO nanomaterial towards H2S is 400 ◦C. The sensitive performance of
the ZnO was further investigated by exposing the structure to different concentrations of H2S at its
optimal operating temperature. The response amplitude of the ZnO sensor increased with the H2S
concentration (Figure 2b). The sensor showed responses of about 1, 1400, 6300 and 7400 towards 5, 10,
20 and 30 ppm of H2S. The obtained response values show that the prepared ZnO nanomaterial has an
excellent response towards relatively low concentrations of H2S.
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Figure 2. (a) Gas sensing response versus operating temperature dependence of the ZnO nanomaterial
towards 30 ppm of H2S. (b) Gas sensing response variation of the ZnO nanomaterial depending on the
concentration of H2S (5, 10, 20 and 30 ppm) at 400 ◦C.

Figure 3 presents the dynamical response of the ZnO structure towards 5, 10, 20 and 30 ppm of
H2S at 400 ◦C. It can be clearly seen that the conductance of the material increased rapidly when H2S
was introduced to the test chamber. After the H2S flow was switched off, the conductance returned
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to the baseline, which confirms the reversible electrical response of the prepared ZnO nanomaterial
towards H2S. The conductance increase of the structure upon interaction with a reducing gas is typical
behavior for an n-type oxide material such as ZnO [64]. The aforementioned conduction change
mechanism of the ZnO can be explained as follows: The oxygen was ionosorbed on the surface of the
ZnO (typically as O−) under exposure to air at 400 ◦C (Equation (1)). Thus, an electron-depleted layer
was formed on the surface of the material, increasing the surface potential [18,61]. When the sensing
structure was exposed to the H2S, the depletion layer was narrowed, followed by a decrease in the
surface potential caused by the chemical reactions between the ionosorbed oxygen and H2S molecules
(Equation (2)) [65]. Consequently, the electrical conductance of material was increased. In addition,
the H2S molecules can adsorb in metastable configurations on the surface of ZnO at relatively high
operating temperatures [66]. Therefore, the sulfuration and desulfuration reversible reactions can
occur between the H2S and ZnO (Equations (3) and (4)). These reactions occur simultaneously without
creating the stable intermediate product of ZnS. However, the sulfuration reaction influences the
capability of oxygen to extract electrons from ZnO. That is to say, the ZnO nanostructure plays a role
similar to the catalyst [67,68].

O2 + 2e− → 2O− (1)

H2S + 3O− → H2O + SO2 + 3e− (2)

H2S + ZnO→ H2O + ZnS (3)

2ZnS + 3O2 → 2ZnO + 2SO2 (4)
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Figure 3. Dynamical response of the ZnO nanomaterial towards 5, 10, 20 and 30 ppm of H2S at 400 ◦C.

The sensing properties of the prepared ZnO nanomaterial towards H2S were compared with
that of previously reported H2S gas sensors based on ZnO (Table 2). The obtained ZnO material
showed a significant improvement in gas sensing response compared with the other structures at their
optimal operating temperatures. Moreover, the obtained samples have an advantage in their sensing
performance compared to some of the doped and mixed ZnO structures at their optimal working
conditions. The higher gas sensing response of the obtained material towards H2S was attributed to
its morphology, which induced effective diffusion as well as providing a larger effective surface area
due to the form and porosity of the structure. In this case, the chains were composed of nanoparticles
connected to each other, forming a very high surface area and thereby enhancing the response of
the ZnO material.
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Table 2. Comparison of H2S gas sensing properties of the prepared ZnO nanomaterial with the
previously reported H2S gas sensors based on ZnO. G0 is the sample conductance in air and G is the
sample conductance in the presence of H2S. R0 is the sample resistance in air, R is the sample resistance
in the presence of H2S.

Composition and
Morphology

Operating
Temperature (◦C)

Gas Concentration
(ppm) Response Ref.

ZnO nanorods 500 50 ∆G/G0, 35 [69]
ZnO dendrites 30 100 R0/R, 17,3 [70]

ZnO nanoparticles 300 20 ∆R/R0, 0.8 [71]
ZnO nanorods 50 100 G/G0, 61.7 [72]
ZnO nanowires 150 20 R/R0, ~0.9 [68]
ZnO comb-like RT 4 ∆R/Rg, 0.8 [73]

Al–ZnO 200 150 R0/R, 2.05 [45]
Cu–ZnO nanograins 250 10 ∆R/R0, ~0.9 [74]
Au–ZnO nanorods RT 6 Gg/G0, 1270 [34]

Carbon–ZnO nanofibers 250 30 R/R0, 77.75 [75]
Pd–SnO2–ZnO RT 20 R0/R, 0.064 [44]

ZnO 400 20 ∆G/G0, 6300 This work

The selectivity of the fabricated ZnO sensors was studied towards 20 ppm of ammonia (NH3),
dimethylamine (DMA) and acetone (C3H6O) at the optimal operating temperature of 400 ◦C (Figure 4).
The responses of the material towards NH3 and C3H6O were 2 and 0.4, respectively. The structure was
not sensitive towards DMA at 400 ◦C. Instead, the response towards H2S was about 6300. The results
obtained indicate that the prepared ZnO nanomaterial has a high selectivity towards H2S against other
interfering gases. This significant difference in the structure sensing response towards H2S and other
interfering gases can be related to the sulfuration and desulfuration reversible reactions on the surface
of the material. Since the aforementioned reactions were not involved in the sensing mechanism of the
ZnO towards interfering gases, the material showed a weaker response to them. Thus, the disparity
in the sensing mechanism between H2S and other reducing gases could be the reason for the better
sensing performance of ZnO towards H2S.
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Figure 4. Response of the obtained ZnO nanomaterial towards 20 ppm of H2S, NH3, dimethylamine
(DMA) and C3H6O at 400 ◦C. The response towards H2S was very high compared to the other gases.
To visualize the response values towards all the gases the response of the structure towards H2S
is shown in blue (left axis), and the response towards NH3, DMA and C3H6O is shown in green
(right axis).
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4. Conclusions

In summary, we have reported the synthesis and investigations of chemical sensing properties
of ZnO nanomaterial for the detection of H2S. The material was fabricated by the electrochemical
anodization method and thermal decomposition procedure. The structure consists of nanoparticles
connected to each other, forming chains with the length of a few microns. The nanoparticles (diameter
~30 nm) and the chain-like morphology of the structure increased the surface area for the interaction
between the material and H2S gas. The ZnO nanomaterial exhibited n-type semiconducting behavior
based on the electrical measurements. Furthermore, the fabricated sensors showed high sensing
response and selectivity towards H2S gas. The excellent sensing performance of the prepared ZnO
nanomaterial was attributed to its morphology, the operating temperature and the disparity in the
sensing mechanism between H2S and other reducing gases. The obtained results demonstrate the
potential suitability of the application of ZnO in gas sensing devices for the detection of H2S.
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