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Abstract: Envelope analysis is a widely used method in fault diagnoses of rolling bearings.
An optimal narrowband chosen for the envelope demodulation is critical to obtain high detection
accuracy. To select the narrowband, the fast kurtogram (FK), which computes the kurtosis of a
set of filtered signals, is introduced to detect cyclic transients in a signal, and the zone with the
maximum kurtosis is the optimal frequency band. However, the kurtosis value is affected by
rotating frequencies and is sensitive to large random impulses which normally occur in industrial
applications. These factors weaken the performance of the FK for extracting weak fault features.
To overcome these limitations, a novel feature named Order Spectrum Correlated Kurtosis (OSCK) is
proposed, replacing the kurtosis index in the FK, to construct an improved kurtogram called Fast
Order Spectrum Correlated Kurtogram (FOSCK). A band-pass filter is used to extract the optimal
frequency band signal corresponding to the maximum OSCK. The envelope of the filtered signal is
calculated using the Hilbert transform, and a low-pass filter is employed to eliminate the trend terms
of the envelope. Then, the non-stationary filtered envelope is converted in the time domain into the
stationary envelope in the angular domain via Computed Order Tracking (COT) to remove the effects
of the speed fluctuation. The order structure of the angular domain envelope signal can then be
used to determine the type of fault by identifying its characteristic order. This method offers several
merits, such as fine order spectrum resolution and robustness to both random shock and heavy
noise. Additionally, it can accurately locate the bearing fault resonance band within a relatively large
speed fluctuation. The effectiveness of the proposed method is verified by a number of simulations
and experimental bearing fault signals. The results are compared with several existing methods;
the proposed method outperforms others in accurate bearing fault feature extraction under varying
speed conditions.

Keywords: fault diagnosis; fast kurtogram; order spectrum correlated kurtosis; rolling bearing;
non-stationary

1. Introduction

Rolling bearings are among the most commonly used support elements in rotating machinery.
They are prone to faults under harsh working conditions. When a fault occurs on the inner or outer
race of a bearing, a series of impulses is generated in the vibration signal as the bearing defect interacts
with another surface, and the impacts excite high-frequency resonances where the signal-to-noise
ratio (SNR) is higher than the other frequency regions in the bearing system, thereby inducing
a modulating phenomenon [1,2]. However, many other sources of bearing vibration such as the
waviness of rolling elements etc. always result in the emergence of side bands around the principal
bearing frequencies, which are more pronounced at higher frequencies [3]. Therefore, accurately
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determining the high-frequency resonance band where the impulse occurs is key to successfully
detecting bearing faults.

In earlier research, the resonance band is often determined by experimental tests, which are
time-consuming [4]. As a statistical index, kurtosis is sensitive to the peaks caused by abnormal
vibrations, and it is usually used as a direct measure of the transient impulses of the signal.
Nevertheless, kurtosis is easily affected by noise. To overcome this limitation, Frequency Domain
Kurtosis (FDK) was proposed by Dwyer [5] to complement the flaw of classical power spectral density
(PSD), i.e., not being sensitive to the statistical nature of the signal. Inspired by this proposal, Spectral
Kurtosis (SK) was presented by Antoni based on the Wold-Cramer theorem for non-stationary feature
extraction in [6]. The basic idea of this approach is that the kurtosis at each frequency line of a signal
is calculated to discover the presence of transients, and to indicate in which frequency bands these
occur. For the convenience of industrial applications, Antoni further proposed the Fast Kurtogram
(FK) using short-time Fourier transform (STFT) combined with 1/3 binary tree algorithms to split
frequency bands to reduce computing time, as described in [7]. The fault impulses are extracted
after a raw signal is processed by a band-filter for which the center frequency and bandwidth are
optimized by FK. Since then, many studies have been conducted to enhance these theories [8–11].
Considering the problem whereby the parameters of the band-filter cannot be determined adaptively,
Zhang et al. [12] combined genetic algorithms and FK to optimize the parameters. To extract transient
impulsive signals under a low SNR condition, Wang et al. [13] proposed a time-frequency analysis
method which combines the merits of ensemble local mean decomposition and FK to detect bearing
faults. In [14], Lei proposed replacing STFT with wavelet package transform (WPT) to improve
the kurtogram (WPTK). Recently, Wang proposed an enhanced kurtogram, in which the kurtosis
values are calculated based on the envelope power spectrum of WPT nodes at different depths [15].
It is worth mentioning that each kurtosis value of the filtered signal is calculated without source
identification in these methods, which is sometimes incorrect, especially when the vibration signal
contains random knocks which usually have higher amplitudes, as well as kurtosis values which
are far larger than those of real faults [4,16]. This effect means that the optimal frequency band
corresponding to the maximum kurtosis is the resonance band containing random knocks, while the
real fault signature is missing. To solve this problem, Barszcz et al. [17] proposed a higher resolution
kurtosis index, the Protrugram, which is obtained by calculating the kurtosis of the envelope spectrum
amplitudes of a narrow band filtered signal along the frequency axis. However, the optimal filter
bandwidth depends on a certain knowledge of the sought fault. In [18], McDonald took advantage
of the periodicity of the faults and proposed Correlated Kurtosis (CK) to detect cyclic transients.
To make the extracted fault characteristic clear, they proposed an iterative selection process for the
first and M-shift to maximize the CK. Combining CK and Redundant Second-Generation Wavelet
Package Transform (RSGWPT), Chen proposed an improved kurtogram in [19]. In addition to these
high-frequency resonance techniques, a non-resonance-based approach is desirable in an industrial
environment, such as the Auto-regression moving average [20] and higher-order energy operator
fusion methods [21]. The effectiveness of these methods has been verified when a shaft rotates at
constant speeds. However, bearings usually operate at variable speed conditions in practice, which
leads the fault features to no longer be discrete frequency lines, but rather, frequency bands related to
the shaft rotating frequency [22–24]. During speed up and speed down processes, impulses induced
by the faults are non-periodic in the time domain, which means that the method based on the indexes
derived from the kurtosis index will be weakened in non-stationary feature extraction. Therefore, the
question of how to recover the fault impulses from the signal collected in the varying speed conditions
must be solved.

In this paper, a new index, Order Spectrum Correlation Kurtosis (OSCK) is proposed. By replacing
the OSCK with the kurtosis in the FK, an improved kurtogram, Fast Order Spectrum Correlation
Kurtogram (FOSCK) is constructed. In this method, the original non-stationary vibration signal is
filtered by a 1/3 binary tree strategy, the envelope of each filtered signal is calculated by using the
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Hilbert transform, and the trend term of each envelope is eliminated by a low-pass filter whose
cutoff frequency is lower than the minimum of the rotating frequency. Then each envelope signal is
resampled into a stationary one in the angular domain using the Computed Order Tracking (COT)
technique to remove the effects of speed fluctuation. The OSCK of each resampling envelope signal
is calculated and utilized to generate a diagram in which the frequency band corresponding to the
highest value can then be considered for further analysis. A band-pass filter is set to maintain the
desired band, and is used to extract the optimal frequency band signal. After that, the envelope of the
filtered signal is resampled into angular domain by using the COT. The order structure of the angular
domain envelope signal can be used to determine the type of fault by identifying its characteristic
order. Compared with the FK, the WPTK and the Protrugram, the proposed method can extract
bearing fault characteristic information more exactly under relatively large speed fluctuations and
heavy interference environments.

2. Theoretical Background

2.1. Overview of Spectral Kurtosis and Fast Kurtogram

To overcome the shortcomings of the power spectral density (PSD), which is not sensitive to
the statistical nature of the signals, the frequency domain kurtosis (FDK) was first introduced by
Dwyer. It can highlight the frequency harmonic that is smeared because of random variation in the
periodicity [5]. Inspired by this development, Antoni proposed spectral kurtosis (SK) in [6]. Different
from FDK, which calculates the kurtosis of a particular frequency’s amplitude, SK calculates the
kurtosis of the complex envelope of filtered signals [17].

According to the Wold-Cramér decomposition theorem, a zero-mean non-stationary signal x(n)
can be expressed as [7,25]:

x(n) =
∫ +l/2

−l/2
H(n, f )ej2π f ndX( f ) (1)

where dX( f ) is a spectral increment and H(n, f ) is the complex envelope of x(n) at frequency f .
The SK can be defined as the fourth-order normalized cumulant [7]:

Kx( f ) =

〈
|H(n, f )|4

〉
〈
|H(n, f )|2

〉2 − 2 (2)

where the symbol 〈 〉 denotes the temporal average operator. The constant −2 is used here because
H(n, f ) is complex. Considering the presence of added noise, the SK of the non-stationary process
x(n) is described by:

Ky( f ) =
Kx( f )

[1 + ρ( f )]2
(3)

where ρ( f ) is the noise-to-signal ratio at frequency f . The transients in signals increase the spectral
kurtosis value. Therefore, SK possesses the ability to detect and localize the presence of transients from
a signal. However, to detect a narrow-band transient buried in noise, SK depends both on frequency
and frequency resolution. Although this can be performed by computing the SK of each combination
of different central frequencies fc and bandwidths (∆ f )m, this process is time consuming. To improve
the calculation efficiency, Antoni utilized 1/3 binary tree algorithms to split the frequency band; then,
the SK of each level m and bandwidth (∆ f )m were calculated to construct a 3D map-fast kurtogram,
as shown in Figure 1. The horizontal axis represents the frequency, the vertical axis represents the level
of the split frequency band, and the third dimension represents the color band, which is the kurtosis
value of the filtered signal’s envelope spectrum for each frequency bandwidth. The node with the
largest kurtosis is chosen as the optimal band. However, the fast kurtogram calculates each kurtosis
value of the filtered signal without source identification, which is sometimes incorrect.
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Figure 1. The paving of the Fast Kurtogram.

2.2. Order Spectrum Correlated Kurtosis

In [18], McDonald found that the kurtosis value of a signal with a single impulse is always higher
than a signal containing consecutive periodicity of impulses. To solve the effect of random transients
on kurtosis, McDonald proposed Correlated Kurtosis (CK) to detect signal cyclic transients by using
the periodicity of the fault nature, and verified that CK can decrease the inference of single transient
impulses. The CK of a vibration signal x is defined as [14]:

CK(x) =

N
∑

n=1

(
M
∏

m=0
xn−mT

)2

(
N
∑

n=1
x2

n

)M+1 (4)

where N is the length of x, T is the period of interest impulses, and M is the CK shift.
In [26], it was also observed that the kurtosis value is considerably affected by shaft rotational

frequency. To eliminate the influence of speed on kurtosis and the frequency smear, COT is employed
to convert the non-stationary filtered envelope time signal into the stationary vibration in the angular
domain. Based on the key-phase signal, which is used to obtain the sampling-time marks of the
even-angle sampling, an interpolation scheme is employed for resampling the original time-domain
signal into the angular domain. Here, we use cubic spline interpolation. After that, the envelope order
spectrum is utilized to expose the order structure in the signal, and the fault characteristic order (FCO)
can be indicated clearly.

Previous research found that kurtosis is sensitive to external interference, especially in varying
speed conditions, and the components contained in the signal have a single transient characteristic.
Thus, it is difficult to detect fault sensitive components. To address the above problem, the order
spectrum analysis is combined with correlated kurtosis to form a new feature, OSCK, to detect the
fault-sensitive frequency band under varying speed conditions.

The OSCK can be defined as follows:

OSCK(A, T) =

N
∑

n=1

(
M
∏

m=0
An−mTo

)2

(
N
∑

n=1
A2

n

)M+1 (5)

where A is the envelope order spectrum amplitudes, and To is the period of impulses.
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2.3. Procedure of the Proposed Method

Based on the discussion above, an improved kurtogram is proposed for rolling bearing fault
diagnosis under varying speed conditions. The optimal frequency band corresponding to the maximum
OSCK in the kurtogram is filtered; then, the fault can be identified by envelope order spectrum analysis
of the filtered signal. The scheme of the proposed method is shown in Figure 2, and the details are
described as follows:
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Step 1. The original vibration signal x(n) and synchronous sampling key-phase signal v(n)
measured by different accelerometers are loaded.

Step 2. The signal x(n) is filtered with a 1/3 binary tree strategy. Let h(n) be a low-pass prototype
filter, and two quasi-analytic low-pass and high-pass analysis filters hl(n) and hh(n) are constructed,
which have the frequency bands [0; 1/4] and [1/4; 1/2], respectively:

hl(n) = h(n)ejπn/4 (6)

hh(n) = h(n)ej3πn/4, j2 = −1 (7)
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Different central frequency fci and bandwidth (∆ f )m corresponding signals are iteratively
obtained by using these filters in a pyramidal manner, which has tree-structured filter-banks and
denote as xi

m(n), where i = 1, 2, · · · , 2m, m = 0, 1, · · · , M − 1, and M is the largest decomposition
level [7]. The envelope of each filtered signal Ci

m(n) =
∣∣xi

m(n) + jHil[xi
m(n)]

∣∣ can be created, where
Hil is the Hilbert transform and the symbol | | represent the absolute value. The trend term of each
envelope is eliminated by a low-pass filter whose cutoff frequency is lower than the minimum of the
rotating frequency.

Step 3. Each filtered envelope signal Ci
m(n) is resampled in the angular domain. Each filtered

envelope signal is non-stationary in the time domain due to the variable speed operations that cause
spectrum smearing and low autocorrelation. To solve this problem, COT is employed to convert the
non-stationary envelope signal into the stationary envelope signal in the angular domain by using the
key-phase signal v(n), whose length is the same as the original signal x(n). The resampling envelope
signal denote as yi

m(n).
Step 4. The OSCK of each resampling envelope signal is calculated. First, the autocorrelation

analysis of yi
m(n) is performed to enhance the involved periodic impulsive feature and the

autocorrelation coefficient can be calculated by the following formula:

Rt =

∣∣∣∣∣ n
∑

j=1

[
yi

m,j − yi
m

]
×
[
yi

m,j+t − yi
m

]∣∣∣∣∣√
n
∑

j=1

[
yi

m,j − yi
m

]2
×

n
∑

j=1

[
yi

m,j+t − yi
m

]2
(8)

where Rt is the autocorrelation coefficient, yi
m is the average value of signal yi

m(n), and t denotes the
length of the delay. Through autocorrelation operation, the periodic impulsive signal component
related to the bearing fault is strengthened. The period To of impulses of interest is denoted as:

To = argmax(Rt) (9)

Second, the order spectrum of yi
m(n) is obtained by Fourier transform and the order spectrum

amplitude denote as Ai
m(n). Last, the OSCK values are calculated using Equation (5). The OSCK

values of all nodes are represented in the kurtogram.
Step 5. The frequency band corresponding to the maximum OSCK value are filtered by a

band-pass filter, and the envelope of the filtered signal is transformed into angular domain by using the
COT, and the envelope order spectrum is used to map the angle domain signal to the order-dependent
signal to identify the bearing fault characteristic order, which is usually calculated by Equations
(10)–(12). The outer race fault characteristic order FCOo, the inner race fault characteristic order FCOi
and the rolling element fault characteristic order FCOb are formulated as follows:

FCOo =
Z
2

(
1− d

D
cos α

)
(10)

FCOi =
Z
2

(
1 +

d
D

cos α

)
(11)

FCOb =
Z
2d

(
1− (

d
D
)

2
cos2 α

)
(12)

where Z is the number of rolling elements, α is the contact angle, and d and D are the diameter of the
rolling element and pitch diameter, respectively.
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3. Simulations

In this section, several simulations are used to demonstrate the effectiveness of the proposed
method. Considering the complexity of the rotating system, the synthetic signals usually include three
terms: deterministic components, including the fundamental frequency and harmonics of the shaft,
which are caused by factors such as misalignment, eccentricity or imbalance. Random components,
which represent a series of impulses excited by a fault, and measurement noise. The simulated signal
is defined as:

x(t) = ∑
m

Am cos(2πm f (t)t + φm)︸ ︷︷ ︸
the deterministic components

+ [1 + λM(t)] ∗∑
n

Bns(t− tn − τn)︸ ︷︷ ︸
the random components

+ n(t)︸︷︷︸
the noise

components

(13)

where Am and φm are the amplitude and initial phase of the mth harmonic frequency of the shaft,
respectively; f (t) is the instantaneous rotating frequency of the shaft; 1+ λM(t) denotes the amplitude
modulation term,

1 + λM(t) =


1, λ = 0 i f bearing outer race f ault
1 + λ cos(2π f t), λ 6= 0 i f bearing inner race f ault
1 + λ cos(2π fcaget), λ 6= 0 i f bearing rolling element f ault
0 normal

(14)

where fcage is the cage speed; Bn and tn are the amplitude and occurrence time of the nth impulse, and
the occurrence time tn is determined according to the instantaneous rotating frequency f (t) and the
fault order frequency fo; τn is the coefficient used to calculate slippage time, which varies from 1% to
2% of the time period of the fault impulse; s(t) is the impulse response function of the system; and
n(t) is the Gaussian white noise that is uncorrelated with other components. The impulse response
function can be written as

s(t) =

{
e−β(t−tn−τn)∑

i
sin{2π fr(t− tn − τn)}, i f t− tn > 0

0 otherwise
(15)

where β is the structural damping coefficient, and fr is the resonance frequency.

3.1. Simple Simulation for the Study of COT Analysis after Time-Domain Filtering

In the FOSCK, the COT must be used after the envelope demodulation analysis. In order to
explain this and determine the influence of COT on impulse feature extraction, a simple outer race
simulated signal that has a single resonant frequency and consists of a series of pure impulses is
shown in Figure 3. The simulation signal parameters in the model are given in Table 1, where fs is
sampling frequency

Table 1. Parameters of the simulation model.

N (s) Bn ϕm f (Hz) f o f s (kHz) f r (kHz) β (kHz) τn

3 1 0 5–15 4.5 20 5 1.2 0.01

The rotating frequency is given by

f (t) = 10 + 5× sin(10πt) (16)

and illustrated in Figure 3a. The corresponding time-domain signal and angle-domain resampling
signal are shown in Figure 3b,c, respectively. It is clear that the intervals of adjacent impulse responses
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change synchronously with the rotating frequency in the time-domain signal; the rotating frequency is
larger, and the adjacent impulse intervals are smaller. Unlike that of the time-domain signal, the pulse
interval is unchanged in the angle-domain signal.
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The short-time Fourier transforms (STFTs) of the time domain and angle domain impulse
responses are shown in Figure 4a,b, respectively. The carrier frequencies of the time-domain signal
are concentrated around the resonant frequency, while the carrier orders of the angle-domain signal
spread to a wider order scope. Therefore, it can be concluded that the COT procedure causes distortion
of the signal resonance band, which is very important in the resonance demodulation analysis.
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Figure 4. STFTs of the simulation: (a) STFT of the time-domain signal and (b) STFT of the
angular-domain signal.

In addition to the above defects, as stated by A.B. Ming in [27], a simple filter with a fixed cutoff
order cannot deal with the angle-domain signal, whose carrier orders vary over time. The envelopes
obtained by a low pass filter with a fixed cutoff frequency in the time domain and a fixed cutoff order
in the angle domain, as shown in Figure 5a,b, respectively. The amplitude of the filtered signal in the
angle domain is distorted. Therefore, an envelope demodulation analysis must first be carried out in
the time domain, then the COT method is performed on the envelope.
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3.2. Simple Simulation of the Influence of Rotational Speed Indication

In this simulation, to illustrate the effect of shaft rotational frequency on the different index values
intuitively, the rotating frequency is given by

f (t) = 10, t = 0 ∼ 3s
f (t) = 10 + 5× (t− 3), t = 3 ∼ 6s
f (t) = 25, t = 6 ∼ 9s

(17)

The other parameters are the same as those mentioned above. The simulation signal that only
contains the pure impulsive signal is shown in Figure 6.Appl. Sci. 2018, 8, x FOR PEER REVIEW  10 of 35 
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domain and (c) the resampling signal in angle domain.

It is generally assumed that a high kurtosis value is treated as a sign of the presence of faults in a
rotating mechanical system. However, this assumption has no application to the varying speed case.
To demonstrate this special condition, both of the time domain signal and angular domain signal are
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equally divided into 45 signal segments. A different index value of every signal segment is calculated
respectively, and normalized to construct a vector, as shown in Figure 7, where the blue and red lines
are denote the normalized kurtosis value and the normalized CK value of each time domain signal
segment. The green and black lines are CK and OSCK values correspond to the angle-domain signal
segments. Overall, the CK and kurtosis of the signal segment decrease as the speed increases, both
in the time domain and the angle domain. It is worth noting that the OSCK of the angle domain
signal segments is sensitive to the speed fluctuation while not being affected by the size of the speed.
Therefore, the OSCK index is more suitable for the extraction of resonance bands under varying
speed conditions.
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3.3. Simple Simulation of the Influence of Random Shocks Indication

A high kurtosis value is often treated as a sign of the presence of faults in bearing fault diagnosis.
However, the kurtosis value of a signal with a single impulse is always higher than a signal containing
consecutive periodicity of impulses. To illustrate the influence of random shocks on a chosen resonance
band, two cases are considered here. The parameters of the simulated signal are shown in Table 2.

Table 2. Parameters of the simulation model.

N (s) Bn ϕm f (Hz) f o
f s

(kHz)
f r1

(kHz)
f r2

(kHz)
β1

(kHz)
β2

(kHz) τn
SNR
(dB)

Case 1 1 1 0 10–12 4.5 20 5 \ 1.2 3 0.01 −5
Case 2 1 1 0 10–12 4.5 20 5 7.3 1.2 3 0.01 −5

3.3.1. Case 1: The Random Shocks Have the Same Resonant Frequency as the Fault Impulses

The noise-free simulated mixed signal, which contains fault impulses and a random shock,
its noise-added signal and their frequency spectrums are shown in Figure 8.

The FOSCK of the simulated signal is paved in Figure 9a; the maximum OSCK is calculated at the
5.5th decomposition level and its corresponding frequency band is (4792, 5000) Hz. The corresponding
envelope of the filtered signal and its resampling envelope signal are shown in Figure 9b,c, respectively.
The envelope order spectrum is shown in Figure 9d. It can be observed that the fault characteristic
order and its harmonics are quite efficiently extracted.
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Figure 9. The results obtained by the FOSCK for processing the mixed signal with same resonant
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signal of (b,d) the envelope order spectrum of (c).

3.3.2. Case 2: The Random Shocks Have Different Resonant Frequencies from the Fault Impulses

In this simulation, a random shock with a different resonance frequency from the fault impulses
is added to the pure signal; its noise-added signal is shown in Figure 10.

The paving of the FOSCK is shown in Figure 11a. The same to case 1, the optimal frequency band
corresponding to the maximum CK is calculated at the 5.5th decomposition level and its frequency
band is (4792, 5000) Hz. The envelope of the filtered signal and its resampling envelope signal are
shown in Figure 11b,c, respectively. The envelope order spectrum is shown in Figure 11d, in which it
the fault characteristic order is obvious.

Therefore, when dealing with a vibration signal with random shock interference, whether the
random shock has the same resonance frequency band as the fault impulses or not, the proposed index
OSCK can locate the fault resonant frequency band exactly.
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Figure 12. Simulated signals: (a) a deterministic component signal, (b) the fault impulse signal, (c) 
the random shocks, (d) the synthetic signal without noise added, (e) the synthetic signal with 
noise-added and SNR = −5 and (f–j) the frequency spectra of the different components. 

Figure 11. The results obtained by the FOSCK for processing the mixed signal with different resonant
frequencies: (a) FOSCK, (b) the envelope of the band-pass filtered signal, (c) the resampling envelope
signal of (b,d) the envelope order spectrum of (c).

3.4. Simple Simulation of the Influence of Multiple Impact Sources

To match the simulation closer to the real situation, a deterministic component and two random
shocks are added to a fault impulse signal, and a considerable amount of Gaussian noise is added too.
The simulation signal parameters are given in Table 3. The different components and their frequency
spectra are shown in Figure 12.

Table 3. Parameters of the simulation model.

N (s) Bn ϕm f (Hz) f o
f s

(kHz)
f r1

(kHz)
f r2

(kHz)
β1

(kHz)
β2

(kHz) τn
SNR
(dB)

1 1 0 10–15 4.5 20 5 7.3 1.2 3 0.01 −5

The FK, WPTK and Protrugram are applied to analyze the mixed signal, and the results are shown
in Figures 13–15, respectively. It is worth noting that in the following paragraphs, a wavelet packet basis
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db10 is used in the WPTK as that given in [14], and a bandwidth (BW) that includes the 3rd harmonic
of the characteristic frequency is selected in the Protrugram according to the rules mentioned in [28].
The analysis results show that both the FK and the WPTK failed to detect the fault-sensitive resonance
frequency, and their optimal frequency bands were located near 7300 Hz, which corresponded to the
random shock. From the envelopes of the filtered signal shown in Figures 13 and 14b,c, the amplitudes
of the fault impulses are relatively small, while the random shocks are obviously. The FCO and its
harmonics are difficult to identify from the envelope order spectra, as shown in Figures 13 and 14d.
Differing from the FK and WPTK, the Protrugram is shown in Figure 15a with BW equals to 300 Hz and
the step is 50 Hz. The optimal frequency band relevant to the maximum kurtosis is the fault-sensitive
frequency band. The corresponding envelope of the filtered signal and its resampling envelope signal
are shown in Figure 15b,c, respectively. The FCO and its harmonics are clearly shown in Figure 15d.
The FOSCK is shown in Figure 16a, the optimal frequency band corresponding to the maximum OSCK
is calculated at the 5.5th decomposition level, and its frequency band is (4792, 5000) Hz. The fault
impulses are clear in the envelopes shown in Figure 16b,c. The FCO and its harmonics are clearly
visible in Figure 16d, which means the FOSCK is robust to the varying speed and random shocks.
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Figure 11. The results obtained by the FOSCK for processing the mixed signal with different resonant 
frequencies: (a) FOSCK, (b) the envelope of the band-pass filtered signal, (c) the resampling envelope 
signal of (b,d) the envelope order spectrum of (c). 
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Figure 12. Simulated signals: (a) a deterministic component signal, (b) the fault impulse signal, (c) 
the random shocks, (d) the synthetic signal without noise added, (e) the synthetic signal with 
noise-added and SNR = −5 and (f–j) the frequency spectra of the different components. 

Figure 12. Simulated signals: (a) a deterministic component signal, (b) the fault impulse signal, (c) the
random shocks, (d) the synthetic signal without noise added, (e) the synthetic signal with noise-added
and SNR = −5 and (f–j) the frequency spectra of the different components.
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Figure 13. The results obtained by the FK for processing the mixed signal: (a) FK, (b) the envelope of 
the band-pass filtered signal, (c) the resampling envelope signal of (b,d) the envelope order spectrum 
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Figure 14. The results obtained by the WPTK for processing the mixed signal: (a) WPTK, (b) the 
envelope of the band-pass filtered signal, (c) the envelope of the resampling of (b,d) the envelope 
order spectrum of (c). 

Figure 13. The results obtained by the FK for processing the mixed signal: (a) FK, (b) the envelope of
the band-pass filtered signal, (c) the resampling envelope signal of (b,d) the envelope order spectrum
of (c).
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of (c). 
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order spectrum of (c). 

4. Experimental Evaluation 

To further examine the effectiveness of the proposed method, an experiment is carried out on a 
Spectra Quest Machinery Fault Simulator. The bearing test rig consists of an AC motor, a flexible 
coupling to connect the shaft to the motor, a tachometer mounted on the motor, a rotor disk 
mounted onto the shaft, the outboard bearing housing, and two rolling element bearings. One of the 
bearings without defects is located in the bearing housing closer to the motor, and the other one is 
located farther from the motor. The ICP acceleration sensors are fixed on the bearing housing to 
collect vibration signals at a sampling frequency of 20 kHz. A data acquisition instrument and a 
computer are used for the analysis. The test rig is shown in Figure 17. 
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4. Experimental Evaluation

To further examine the effectiveness of the proposed method, an experiment is carried out on
a Spectra Quest Machinery Fault Simulator. The bearing test rig consists of an AC motor, a flexible
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coupling to connect the shaft to the motor, a tachometer mounted on the motor, a rotor disk mounted
onto the shaft, the outboard bearing housing, and two rolling element bearings. One of the bearings
without defects is located in the bearing housing closer to the motor, and the other one is located farther
from the motor. The ICP acceleration sensors are fixed on the bearing housing to collect vibration
signals at a sampling frequency of 20 kHz. A data acquisition instrument and a computer are used for
the analysis. The test rig is shown in Figure 17.
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Figure 17. The test bench for bearing fault detection.

The parameters of the bearings are listed in Table 4.

Table 4. Parameters of the bearings.

Fault Severity Bearing
Type

Number
of Balls

Contact
Angle

Pitch
Diameter

Ball
Diameter BPFO BPFI

3/4” Rotor bearing ER-12K 8 0 1.318 in 0.3125 in 3.048 4.95

4.1. Normal Bearing

To illustrate the effectiveness of the proposed bearing fault diagnosis method, a baseline case is
first studied, in which both bearings are healthy, as shown in Figure 17. Due to relative motion, bearing
components generate vibrator signals in operation, as shown in Figure 18a. The shaft rotational speed is
shown in Figure 18b. Figure 18c shows the frequency spectra of a healthy bearing as the shaft accelerates
from 20 Hz to 25 Hz within 3.347 s, i.e., the acceleration a equals 3/2 Hz/s. The time-frequency
representation (TFR) of the signal is obtained via STFT, as shown in Figure 18d. In the TFR, several
suspected resonance frequency bands, in which the energy is most concentrated, are adaptively
removed using different indexes in Figure 19. Based on the maximum of each index, an optimal
frequency band is selected for further analysis. In Figure 19a, the optimal frequency band is (4375,
4687.5) Hz in the FK. The WPTK is shown in Figure 19b, and the corresponding optimal frequency
band is (9376, 10,000) Hz at the 4th decomposition level. The Protrugram with BW = 400 Hz and step
= 50 Hz is shown in Figure 19c, and the maximum kurtosis is calculated at 4974 Hz. In Figure 19d,
the FOSCK, the optimal frequency band corresponding to the maximum CK is calculated at the 5th
decomposition level, and its frequency band is (3125, 3437.5) Hz. The original signal is filtered by
using different band-pass filters corresponding to these optimal frequency bands. The envelope of
each filtered signal is calculated by using the Hilbert transform and resampled into the angular domain
by using COT. The envelope order spectrum analysis result is shown in Figure 20. In all the figures,
the dominant order components are related to the shaft rotational order (SRO) and its harmonics. These
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results imply that both bearings are healthy. It is worth mentioning that the SRO and its harmonics
appear due to rotor disk machining error and installation error.Appl. Sci. 2018, 8, x FOR PEER REVIEW  17 of 35 
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Figure 18. The signal measured from a normal bearing: (a) time-domain signal, (b) the shaft 
rotational frequency from 20 Hz to 25 Hz, (c) the frequency spectrum of (a,d) TFR by using STFT. 

Frequency [Hz]

Le
ve

l k

FKmax=0.9 @ level 5, Bw=312.5 Hz, fc=4531.25 Hz

 

 

0 2000 4000 6000 8000 10000

0  

1  

1.6

2  

2.6

3  

3.6

4  

4.6

5  

Frequency[Hz]

Le
ve

l k
WPT kurtogram：@level 4, node(4,15)

 

 

0 2000 4000 6000 8000 10000

0

1

2

3

4

0 2000 4000 6000 8000 10000
50

100

150

200

250

300
X: 7989
Y: 290.9

The Protrugram analysis: Bw=400Hz, fc= 4974Hz, step=50Hz.

Frequency [Hz]

K
ur

to
si

s

X: 4974
Y: 297.1

Frequency [Hz]

Le
ve

l k

OSCKmax=1 @ level 5, Bw=312.5 Hz, fc=3281.25 Hz

 

 

0 2000 4000 6000 8000 10000

0  

1  

1.6

2  

2.6

3  

3.6

4  

4.6

5  

(a) (b)

(c) (d)

 

Figure 19. The optimal frequency band obtained by different methods: (a) FK, (b) WPTK, (c) 
Protrugram and (d) FOSCK. 

Figure 18. The signal measured from a normal bearing: (a) time-domain signal, (b) the shaft rotational
frequency from 20 Hz to 25 Hz, (c) the frequency spectrum of (a,d) TFR by using STFT.
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Figure 19. The optimal frequency band obtained by different methods: (a) FK, (b) WPTK, (c) 
Protrugram and (d) FOSCK. 
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Figure 18. The signal measured from a normal bearing: (a) time-domain signal, (b) the shaft 
rotational frequency from 20 Hz to 25 Hz, (c) the frequency spectrum of (a,d) TFR by using STFT. 
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Figure 19. The optimal frequency band obtained by different methods: (a) FK, (b) WPTK, (c) 
Protrugram and (d) FOSCK. 
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4.2. Diagnosis of a Bearing with an Outer Race Fault

In the outer race fault case, the right bearing is replaced by an outer race defect, as shown in
Figure 17. Aiming to demonstrate that the method is robust to rotational speed changes and random
shock interference, the vibration signals under three different acceleration conditions are analyzed,
as illustrated in Table 5. In addition, white Gaussian noise (SNR = −3 dB) is added to the collected
signal to make the detection more challenging.

Table 5. Parameters of each experiment.

Acceleration (Hz/s) Experimental Study #1 Experimental Study #2 Experimental Study #3

a 4/3 3/2 3

4.2.1. Experimental Study #1

The collected vibration signal and the rotating speed are shown in Figure 21a,b. The frequency
spectrum of the vibration signal is shown in Figure 21c, in which spectrum smearing could be observed
due to the variable rotating speeds. In addition, the TFR of the signal is blurry and lacks detail due to
background noise interference, which may come from other coupled machine components and the
working environment, making it more difficult to identify the fault type in Figure 21d.

Figure 22 shows the signal analysis results for the outer race fault case when a is equal to 4/3 Hz/s.
The FK is paved in Figure 22a, in which the optimal frequency band is (2916.67, 3333.33) Hz. Figure 22b
shows the WPTK, in which the maximum kurtosis is calculated at the 4th decomposition level, and
its corresponding optimal frequency band is (3125, 3750) Hz. The Protrugram is shown in Figure 22c
and the center frequency is 638.3 Hz. Figure 22d gives the FOSCK, in which the maximum OSCK
is calculated at the 3.5th level, and the optimal frequency band is (3333.33, 4166.67) Hz. Different
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band-pass filters are used to filter out the corresponding frequency band signals, and their envelopes
are calculated using the Hilbert transform. Then, each envelope of these filtered signals is resampled
into the angular domain by using COT, and the envelope order spectrum analysis results are shown
in Figure 23a–d, respectively. It is clear that all the filtered signals contain fault components, which
also verifies that the fault impulse has broadband characteristics. In Figure 23, the FCO of the bearing
outer race fault and its triple octaves are very clear. Therefore, all the methods mentioned above can
effectively detect the bearing outer race fault, as in the case of acceleration a = 4/3 Hz/s.Appl. Sci. 2018, 8, x FOR PEER REVIEW  19 of 35 
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Figure 21. The signal measured from an outer race fault bearing: (a) time-domain signal, (b) the shaft 
rotational frequency from 20 Hz to 25 Hz, (c) the frequency spectrum of (a,d) TFR by using STFT. 
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Figure 22. The optimal frequency band obtained by different methods: (a) FK, (b) WPTK, (c) 
Protrugram and (d) FOSCK. 
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Figure 23. The envelope order spectra of the signal obtained by different methods: (a) FK, (b) WPTK, 
(c) Protrugram and (d) FOSCK. 
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interference, the test is randomly knocked during the changing of speed between 20 Hz and 25 Hz 
with a equal to 3/2 Hz/s in this experiment, and the collected vibration signal and rotating speed 
signal are shown in Figure 24a,b, respectively. The acquisition process is disturbed by a transient 
impact leading to an impulse with a large amplitude in the time domain, which is shown in Figure 
24a, and the corresponding frequency spectrum and TFR are shown in Figure 24c,d, respectively. 
The optimal frequency bands corresponding to different indexes are shown in Figure 25. In Figure 
25a,b, the optimal frequency band corresponding to the FK and the WPTK is (4375, 5000) Hz. The 
Protrugram is paved in Figure 25c with BW = 400 Hz and step = 100 Hz and the center frequency is 
744.7 Hz. Figure 25d shows the FOSCK, and its optimal frequency band is (5833.33, 6666.67) Hz. The 
envelope of the filtered signal from the selected band and its corresponding envelope order 
spectrum are shown in Figure 26. In Figure 26a,b, they failed to provide any bearing fault related 
signatures, while in Figure 26c,d, the FCO and its harmonics in the envelope order spectrum can be 
clearly observed. Therefore, in the case of bearing fault diagnosis under random shock interference, 
the Protrugram and the FOSCK was better than that of the FK and the WPTK. 
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4.2.2. Experimental Study #2

To verify that the proposed method is still effective under the conditions of random shock
interference, the test is randomly knocked during the changing of speed between 20 Hz and 25 Hz with
a equal to 3/2 Hz/s in this experiment, and the collected vibration signal and rotating speed signal
are shown in Figure 24a,b, respectively. The acquisition process is disturbed by a transient impact
leading to an impulse with a large amplitude in the time domain, which is shown in Figure 24a, and
the corresponding frequency spectrum and TFR are shown in Figure 24c,d, respectively. The optimal
frequency bands corresponding to different indexes are shown in Figure 25. In Figure 25a,b, the
optimal frequency band corresponding to the FK and the WPTK is (4375, 5000) Hz. The Protrugram
is paved in Figure 25c with BW = 400 Hz and step = 100 Hz and the center frequency is 744.7 Hz.
Figure 25d shows the FOSCK, and its optimal frequency band is (5833.33, 6666.67) Hz. The envelope
of the filtered signal from the selected band and its corresponding envelope order spectrum are shown
in Figure 26. In Figure 26a,b, they failed to provide any bearing fault related signatures, while in
Figure 26c,d, the FCO and its harmonics in the envelope order spectrum can be clearly observed.
Therefore, in the case of bearing fault diagnosis under random shock interference, the Protrugram and
the FOSCK was better than that of the FK and the WPTK.
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Figure 24. The signal measured from an outer race fault bearing: (a) time-domain signal, (b) the shaft 
rotational frequency from 20 Hz to 25 Hz, (c) the frequency spectrum of (a,d) TFR by using STFT. 
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Protrugram and (d) FOSCK. 

Figure 24. The signal measured from an outer race fault bearing: (a) time-domain signal, (b) the shaft
rotational frequency from 20 Hz to 25 Hz, (c) the frequency spectrum of (a,d) TFR by using STFT.
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Figure 24. The signal measured from an outer race fault bearing: (a) time-domain signal, (b) the shaft 
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Figure 26. The envelope order spectra of the signal obtained by different methods: (a) FK, (b) WPTK,
(c) Protrugram and (d) FOSCK.
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4.2.3. Experimental Study #3

In this experiment, to verify that the proposed method is still effective in the case of rapidly
changing speed and wild fluctuations, the vibration signal and rotational speed are collected during
the speed increase from 18 Hz to 28 Hz with a equal to 3 Hz/s. Figure 27a,b show the raw signal and
its rotational speed, respectively. The optimal frequency band corresponding to different indexes is
shown in Figure 28. The FK is paved in Figure 28a and the optimal frequency band is [5625, 6250] Hz.
The optimal frequency band in the WPTK is [1875, 2500] Hz, as shown in Figure 28b. The Protrugram
is shown in Figure 28c, where the BW equals 400 Hz and step is 100 Hz and the center frequency
is 2105 Hz. Figure 28d shows the FOSCK, in which the maximum OSCK is calculated at the 3.5th
decomposition level, and its corresponding optimal frequency band is [1666.67, 2500] Hz. The envelope
order spectrum analysis results are shown in Figure 29a–d. In Figure 29a,d, the FCO and its quadruple
octaves are very clear, especially in Figure 29d, and more harmonic components of the FCO can
be found. Although the FCO can be found in Figure 29b,c, only the first two octaves are obvious.
Therefore, compared with the WPTK and the Protrugram, the FK and the FOSCK are more sensitive to
the fault impulse resonance frequency under these conditions.
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Figure 27. The signal measured from an outer race fault bearing: (a) time-domain signal, (b) the shaft 
rotational frequency from 18 Hz to 28 Hz, (c) the frequency spectrum of (a,d) TFR by using STFT. 
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4.3. Diagnosis of a Bearing with an Inner Race Fault

In this test, the setup is the same as in the previous test, except that the left normal bearing is
replaced by one with an inner race fault, and the right bearing is normal. Three different experiments
are carried out to prove the effectiveness of the proposed method for inner race fault diagnosis. White
Gaussian noise (SNR=-3 dB) is also added to the collected signal in each experiment. The shaft
rotational speed increases from 20 Hz to 25 Hz following a nearly linear pattern with three different
accelerations, which are displayed in Table 6.
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Table 6. Parameters of each experiment.

Acceleration (Hz/s) Experimental Study #4 Experimental Study #5 Experimental Study #6

a 4/3 3/2 3

4.3.1. Experimental Study #4

As shown in Figure 30a,b, the vibration signal and the rotating speed are collected at the same time
during the speed increase from 20 Hz to 25 Hz, and the acceleration a equals 4/3 Hz/s. The frequency
spectrum and TFR of the signal are blurred due to the variable rotating speed and the background
noise, as shown in Figure 30c,d.Appl. Sci. 2018, 8, x FOR PEER REVIEW  27 of 35 
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Figure 30. The signal measured from an inner race fault bearing: (a) time-domain signal, (b) the shaft
rotational frequency from 20 Hz to 25 Hz, (c) the frequency spectrum of (a,d) TFR by using STFT.

The optimal frequency bands corresponding to different indexes are shown in Figure 31. The FK
and the WPTK have the same optimal frequency band, which is [625, 1250] Hz as shown in Figure 31a,b.
The Protrugram is paved in Figure 31c with BW equal to 400 Hz and a step of 100 Hz and the center
frequency is 425.5 Hz. In Figure 31d, the optimal frequency band of the FOSCK is [3125, 3750] Hz.
The envelope order spectra of the filtered signals corresponding to different indexes are displayed
in Figure 32. The envelope order spectra do not contain any noticeable FCO in Figure 32a–c, which
means that the FK, the WPTK and the Protrugram failed to identify the appropriate fault sensitive
resonance frequency band. In Figure 32d, the FCO and its third octaves can be identified in the
envelope order spectrum, although the third harmonics are masked by heavy background noise, and
the fault component can still be identified. Therefore, the FOSCK has the best ability to detect bearing
inner race faults in this case.
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Figure 31. The optimal frequency band obtained by different methods: (a) FK, (b) WPTK,
(c) Protrugram and (d) FOSCK.
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Figure 33. The signal measured from an inner race fault bearing: (a) time-domain signal, (b) the shaft 
rotational frequency from 20 Hz to 25 Hz, (c) the frequency spectrum of (a,d) TFR by using STFT. 
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(c) Protrugram and (d) FOSCK.

4.3.2. Experimental Study #5

In this experiment, the vibration and the rotational speed signal are collected during the speed
increase from 20 Hz to 25 Hz with a equal to 3/2 Hz/s, as shown in Figure 33a,b, respectively. As can
be seen in Figure 33c,d, the faulty bearing signatures cannot be detected either through the frequency
spectrum or the envelope order spectrum directly due to the frequency smearing caused by the varying
speed and heavy noise.

The analysis of the vibration signal performed by different methods is shown in Figure 34. One can
find in Figure 34a that the maximum kurtosis occurs at level 4, and the optimal frequency band in
the FK is [5000, 5625] Hz. The WPTK is shown in Figure 34b, and the optimal frequency band is
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[1875, 2500] Hz. Figure 34c shows the Protrugram with BW equal to 400 Hz and step equal to 100 Hz
and the center frequency is 537.6 Hz. The optimal frequency band of the FOSCK is [2500, 3750] Hz,
as shown in Figure 34d. The results of the envelope order spectrum analysis are shown in Figure 35a–d.
The FCO and its third octaves can be identified in the envelope order spectrum obtained by the FOSCK,
as shown in Figure 35d. Therefore, the FOSCK has the best ability to detect bearing inner race faults in
this case.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  28 of 35 

Figure 31. The optimal frequency band obtained by different methods: (a) FK, (b) WPTK, (c) 
Protrugram and (d) FOSCK. 

0 5 10 15 20 25
0

0.005

0.01

0.015

0.02

X: 4.95
Y: 0.018

FK, Bw=625 Hz, fc=937.5 Hz 

M
ag

ni
tu

de

Order

3X SRO

4X SRO

2X SRO

1X SRO

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04 X: 4.95
Y: 0.03576

Order

The Protrugram, Bw=400 Hz, fc=425.5 Hz

M
ag

ni
tu

de

1X SRO

2X SRO

3X SRO

0 5 10 15 20 25
0

0.002

0.004

0.006

0.008

0.01

X: 4.95
Y: 0.008

FOSCK, Bw=625 Hz, fc=3437.5 Hz 

Order

M
ag

ni
tu

de

1X FCOi FCOi+2XSRO 2X FCOi 3X FCOi
FCOi+SROFCOi-SRO

FCOi-2XSRO

SRO

(a) (b)

(c) (d)

0 5 10 15 20 25
0

0.005

0.01

0.015

0.02

0.025

0.03
X: 4.95
Y: 0.02507

Order

M
ag

ni
tu

de

WPT kurtogram, node(4,1)

1X SRO

2X SRO

3X SRO

4X SRO

 
Figure 32. The envelope order spectra of the signal obtained by different methods: (a) FK, (b) WPTK, 
(c) Protrugram and (d) FOSCK. 

4.3.2. Experimental Study #5 

In this experiment, the vibration and the rotational speed signal are collected during the speed 
increase from 20 Hz to 25 Hz with a equal to 3/2 Hz/s, as shown in Figure 33a,b, respectively. As can 
be seen in Figure 33c,d, the faulty bearing signatures cannot be detected either through the 
frequency spectrum or the envelope order spectrum directly due to the frequency smearing caused 
by the varying speed and heavy noise. 

0 0.5 1 1.5 2 2.5 3

-1

0

1

Am
pl

itu
de

0

2000

4000

6000

8000

10000

0200400

Fr
eq

ue
nc

y 
[H

z]

Amplitude
0.5 1 1.5 2 2.5 3

0

2000

4000

6000

8000

10000

Time [s]
0 0.5 1 1.5 2 2.5 3

15

20

25

Time [s]
Ve

lo
ci

ty
 [H

z]
 

 

Real speed
Coded pulse
The fitting speed

(a)

(c)

(b)

(d)
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Figure 33. The signal measured from an inner race fault bearing: (a) time-domain signal, (b) the shaft
rotational frequency from 20 Hz to 25 Hz, (c) the frequency spectrum of (a,d) TFR by using STFT.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  29 of 35 

The analysis of the vibration signal performed by different methods is shown in Figure 34. One 
can find in Figure 34a that the maximum kurtosis occurs at level 4, and the optimal frequency band 
in the FK is [5000, 5625] Hz. The WPTK is shown in Figure 34b, and the optimal frequency band is 
[1875, 2500] Hz. Figure 34c shows the Protrugram with BW equal to 400 Hz and step equal to 100 Hz 
and the center frequency is 537.6 Hz. The optimal frequency band of the FOSCK is [2500, 3750] Hz, 
as shown in Figure 34d. The results of the envelope order spectrum analysis are shown in Figure 
35a–d. The FCO and its third octaves can be identified in the envelope order spectrum obtained by 
the FOSCK, as shown in Figure 35d. Therefore, the FOSCK has the best ability to detect bearing inner 
race faults in this case. 

Frequency [Hz]

Le
ve

l k

FKmax=5 @ level 4, Bw=625 Hz, fc=5312.5 Hz

 

 

0 2000 4000 6000 8000 10000

0  

1  

1.6

2  

2.6

3  

3.6

4  

Frequency [Hz]

Le
ve

l k

WPT kurtogram:@level 4, node(4,3)

 

 

0 2000 4000 6000 8000 10000

0

1

2

3

4

0 2000 4000 6000 8000 10000
50

100

150

200

250

300

350

400

450
X: 537.6
Y: 437

The Protrugram analysis: Bw=400Hz, fc=537.6 Hz, step=100Hz

Frequency [Hz]

K
ur

to
si

s

Frequency [Hz]

Le
ve

l k

OSCKmax=1 @ level 3, Bw=1250 Hz, fc=3125 Hz

 

 

0 2000 4000 6000 8000 10000

0  

1  

1.6

2  

2.6

3  

3.6

4  

(a) (b)

(c) (d)

 
Figure 34. The optimal frequency band obtained by different methods: (a) FK, (b) WPTK, (c) 
Protrugram and (d) FOSCK. 
Figure 34. The optimal frequency band obtained by different methods: (a) FK, (b) WPTK,
(c) Protrugram and (d) FOSCK.



Appl. Sci. 2019, 9, 1157 27 of 31

Appl. Sci. 2018, 8, x FOR PEER REVIEW  30 of 35 

0 5 10 15 20 25
0

0.002

0.004

0.006

0.008

0.01

X: 4.95
Y: 0.008

FK, Bw=625 Hz, fc=5312.5 Hz 

Order

M
ag

ni
tu

de

FCOi-2XSRO

FCOi-SRO

1X FCOi

FCOi+SRO

FCOi+2XSRO 2X FCOi

SRO

0 5 10 15 20 25
0

0.002

0.004

0.006

0.008

0.01
X: 4.95
Y: 0.008088

Order

M
ag

ni
tu

ed

WPT kurtogram, node(4,3)

SRO FCOi-2XSRO

FCOi-SRO

1X FCOi

FCOi+2XSRO

2X FCOi

FCOi+SRO

0 5 10 15 20 25
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

X: 4.95
Y: 0.01261

Order

  The Protrugram, Bw=400 Hz, fc=537.6 Hz

M
ag

ni
tu

de 2X SRO

1x SRO

3X SRO

4X SRO

0 5 10 15 20 25
0

0.002

0.004

0.006

0.008

0.01

X: 4.95
Y: 0.008

FOSCK, Bw=1250 Hz, fc=3125 Hz 

Order

M
ag

ni
tu

de

SRO

FCOi-2XSRO 1X FCOi

FCOi-SRO

FCOi+2XSRO 2X FCOi 3X FCOi

FCOi+SRO

(a) (b)

(c) (d)

 
Figure 35. The envelope order spectra of the signal obtained by different methods: (a) FK, (b) WPTK, 
(c) Protrugram and (d) FOSCK. 

4.3.3. Experimental Study #6 

Similar to experiment three, the vibration signal and rotational speed are collected as the speed 
increases from 18 Hz to 28 Hz with a equal to 3 Hz/s to verify that the proposed method is still 
effective in the case of rapidly changing speed and wild fluctuations. These signals are shown in 
Figure 36a,b, respectively. The frequency spectrum and the TFR of the vibration signal are shown in 
Figure 36c,d, respectively. 

0 0.5 1 1.5 2 2.5 3
-2

0

2

A
m

pl
itu

de

0

2000

4000

6000

8000

10000

0200400

Fr
eq

ue
nc

y 
[H

z]

Amplitude
0.5 1 1.5 2 2.5 3

0

2000

4000

6000

8000

10000

Time [s]
0 0.5 1 1.5 2 2.5 3

15

20

25

30

Time [s]

Ve
lo

ci
ty

 [H
z]

 

 

Real speed
Coded pulse
The fitting speed

(a)

(c)

(b)

(d)

 
Figure 36. The signal measured from an inner race fault bearing: (a) time-domain signal, (b) the shaft 
rotational frequency from 18 Hz to 28 Hz, (c) the frequency spectrum of (a,d) TFR by using STFT. 

Figure 37 shows the signal analysis results of the inner race fault case. The FK is paved in Figure 
37a, in which the optimal frequency band is [625, 1250] Hz. Figure 37b shows the WPTK, in which 

Figure 35. The envelope order spectra of the signal obtained by different methods: (a) FK, (b) WPTK,
(c) Protrugram and (d) FOSCK.

4.3.3. Experimental Study #6

Similar to experiment three, the vibration signal and rotational speed are collected as the speed
increases from 18 Hz to 28 Hz with a equal to 3 Hz/s to verify that the proposed method is still
effective in the case of rapidly changing speed and wild fluctuations. These signals are shown in
Figure 36a,b, respectively. The frequency spectrum and the TFR of the vibration signal are shown in
Figure 36c,d, respectively.
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Figure 37 shows the signal analysis results of the inner race fault case. The FK is paved in
Figure 37a, in which the optimal frequency band is [625, 1250] Hz. Figure 37b shows the WPTK,
in which the maximum kurtosis is calculated at the 4th decomposition level, and its corresponding
optimal frequency band is [1875, 2500] Hz. The Protrugram is shown in Figure 37c and the center
frequency is 543.5 Hz. Figure 37d shows the FOSCK, and its optimal frequency band is [0, 1250] Hz.
The envelope order spectra of the filtered signals are shown in Figure 38a–d. It can be seen that only
the envelope order spectrum obtained by the FOSCK can extract the first three octaves in Figure 38d.
Therefore, the FOSCK is better than other methods in bearing inner race fault diagnosis in this case.
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5. Discussion

Regarding the various bearing fault signals obtained under different conditions, the diagnoses
results are shown in Table 7. Note that the fault is supposed to be diagnosed successfully only if the
FCO and its first three harmonics or above are identified effectively, as mentioned in [28].

Table 7. Bearing fault diagnosis result.

Fault Location Outer Race Fault Inner Race Fault

Experimental Study #1 #2 #3 #4 #5 #6

FK Y N Y N N N
WPTK Y N N N N N

Protrugram Y Y N N N N
FOSCK Y Y Y Y Y Y

* Y means Yes and N means No.

From the diagnosis results, it is clear that the FOSCK is capable of detecting bearing faults in
all cases. It is also concluded that: (1) the fault impact has broadband characteristics and causes
different resonances; (2) the Protrugram and FOSCK have better robustness against random impulse
disturbance; (3) the FOSCK and FK can diagnose the outer race fault effectively under a large range of
the speed fluctuations conditions, which verifies the OSCK index proposed in Section 2 is sensitive to
the speed fluctuation while not being affected by the size of the speed; (4) the comparison between
the results of experimental studies #1 and #2 shows that both of the Protrugram and FOSCK can
suppress the influence of acceleration changes; (5) under the same fault severity conditions, the energy
of the inner race fault is dispersed due to the modulation, the local SNR is lower, in which case the
envelope order spectra obtained by the existing methods fails to provide any bearing fault related
signature. However, the FOSCK is capable of detecting bearing inner race fault in all cases. The results
of performance comparison of the FK, the WPTK, the Protrugram and the FOSCK are summarized in
Table 8. Besides, considering the FOSCK is robust to the random shock and heavy noise, the method
can be applied for exacting random impulses caused by earthquake, in which the random impulses
have similar characteristics with bearing fault impulses [29].

Table 8. Method robustness.

Interference Random Shock Large Speed Fluctuation Different Acceleration Heavy Noise

FK N Y P N
WPTK N N P N

Protrugram Y N Y N
FOSCK Y Y Y Y

* Y means Yes, N means No and P means Pending.
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6. Conclusions

This paper proposes a new feature OSCK based on the COT and CK, and by replacing the OSCK
with the kurtosis in the FK, an improved kurtogram the FOSCK is constructed. In the case of simulated
signal analysis, the COT procedure may cause warp of the signal resonance band and distortion of the
signal amplitude, which means that the COT method must be used after other signal enhancement
methods. Compared with other indexes, the OSCK is sensitive to the speed fluctuation while not
affected by the size of the speed, so it is more suitable for locating fault-sensitive frequency bands
under variable speed conditions. The results of the simulated and experimental bearing vibration
signals analyses show that compared with the FK, the WPTK and the Protrugram, the proposed
method in this paper can extract fault characteristic information more exactly under different operating
conditions and interference environments. In the FOSCK, the COT is carried out many times, which
will increases the computational cost. Our work will focus on solving this problem in the future.

Author Contributions: Y.R. designed the experiments and analyzed the datasets; W.L., B.Z. and Z.Z. performed
the experiments and analyzed part of the dataset; Y.R. and F.J. wrote the paper. All authors contributed to
discussing and revising the manuscript.

Funding: This work was supported by National Natural Science Foundation of China (No. 51605478), Natural
Science Foundation of Jiangsu Province (Nos. BK20160276, BK20160251), China Postdoctoral Science Foundation
(No. 2017M621862), Jiangsu Planned Projects for Postdoctoral Research Funds (No.1701193B) and the Project
Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Acknowledgments: The authors would like to thank all of the reviewers for their constructive comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Randall, R.B.; Antoni, J. Rolling element bearing diagnostics—A tutorial. Mech. Syst. Signal Process. 2011, 25,
485–520. [CrossRef]

2. Mishra, C.; Samantaray, A.K.; Chakraborty, G. Rolling element bearing defect diagnosis under variable speed
operation through angle synchronous averaging of wavelet de-noised estimate. Mech. Syst. Signal Process.
2016, 72–73, 206–222. [CrossRef]

3. Lynagh, N.; Rahnejat, H.; Ebrahimi, M.; Aini, R. Bearing induced vibration in precision high speed routing
spindles. Int. J. Mach. Tools Manuf. 2000, 40, 561–577. [CrossRef]

4. Zhao, M.; Lin, J.; Miao, Y.; Xu, X. Detection and recovery of fault impulses via improved harmonic product
spectrum and its application in defect size estimation of train bearings. Measurement 2016, 91, 421–439.
[CrossRef]

5. Dwyer, R. Detection of non-Gaussian signals by frequency domain Kurtosis estimation. In Proceedings of
the IEEE International Conference on Acoustics, Speech, and Signal Processing, Boston, MA, USA, 14–16
April 1983; pp. 607–610.

6. Antoni, J.; Randall, R.B. The spectral kurtosis: Application to the vibratory surveillance and diagnostics of
rotating machines. Mech. Syst. Signal Process. 2006, 20, 308–331. [CrossRef]

7. Antoni, J. Fast computation of the kurtogram for the detection of transient faults. Mech. Syst. Signal Process.
2007, 21, 108–124. [CrossRef]

8. Gu, X.; Yang, S.; Liu, Y.; Hao, R. Rolling element bearing faults diagnosis based on kurtogram and frequency
domain correlated kurtosis. Meas. Sci. Technol. 2016, 27, 125019. [CrossRef]

9. Wang, Y.; Tse, P.W.; Tang, B.; Qin, Y.; Deng, L.; Huang, T. Kurtogram manifold learning and its application to
rolling bearing weak signal detection. Measurement 2018, 127, 533–545. [CrossRef]

10. Chen, B.Q.; Zhang, Z.S.; Zi, Y.Y.; He, Z.; Sun, C. Detecting of transient vibration signatures using an improved
fast spatial–spectral ensemble kurtosis kurtogram and its applications to mechanical signature analysis of
short duration data from rotating machinery. Mech. Syst. Signal Process. 2013, 40, 1–37. [CrossRef]

11. Wang, H.; Chen, J.; Dong, G. Fault diagnosis of rolling bearing’s early weak fault based on minimum entropy
de-convolution and fast Kurtogram algorithm. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2015, 229,
2890–2907. [CrossRef]

http://dx.doi.org/10.1016/j.ymssp.2010.07.017
http://dx.doi.org/10.1016/j.ymssp.2015.10.019
http://dx.doi.org/10.1016/S0890-6955(99)00076-0
http://dx.doi.org/10.1016/j.measurement.2016.05.068
http://dx.doi.org/10.1016/j.ymssp.2004.09.002
http://dx.doi.org/10.1016/j.ymssp.2005.12.002
http://dx.doi.org/10.1088/0957-0233/27/12/125019
http://dx.doi.org/10.1016/j.measurement.2018.06.026
http://dx.doi.org/10.1016/j.ymssp.2013.03.021
http://dx.doi.org/10.1177/0954406214564692


Appl. Sci. 2019, 9, 1157 31 of 31

12. Zhang, Y.; Randall, R.B. Rolling element bearing fault diagnosis based on the combination of genetic
algorithms and fast kurtogram. Mech. Syst. Signal Process. 2009, 23, 1509–1517. [CrossRef]

13. Wang, L.; Liu, Z.; Miao, Q.; Zhang, X. Time–frequency analysis based on ensemble local mean decomposition
and fast kurtogram for rotating machinery fault diagnosis. Mech. Syst. Signal Process. 2018, 103, 60–75.
[CrossRef]

14. Lei, Y.; Lin, J.; He, Z.; Zi, Y. Application of an improved kurtogram method for fault diagnosis of rolling
element bearings. Mech. Syst. Signal Process. 2011, 25, 1738–1749. [CrossRef]

15. Wang, D.; Tse, P.W.; Tsui, K.L. An enhanced Kurtogram method for fault diagnosis of rolling element
bearings. Mech. Syst. Signal Process. 2013, 35, 176–199. [CrossRef]

16. Hong, L.; Liu, X.; Zuo, H. Compound faults diagnosis of rotating machinery based on adaptive maximum
correlated kurtosis deconvolution and customized multiwavelets transform. Meas. Sci. Technol. 2018, 29,
115007. [CrossRef]
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