
applied  
sciences

Article

False Positive RFID Detection Using
Classification Models

Ganjar Alfian 1 , Muhammad Syafrudin 2 , Bohan Yoon 2 and Jongtae Rhee 2,*
1 u-SCM Research Center, Nano Information Technology Academy, Dongguk University, Seoul 04626, Korea;

ganjar@dongguk.edu
2 Department of Industrial and Systems Engineering, Dongguk University, Seoul 04620, Korea;

udin@dongguk.edu (M.S.); yi92run@dongguk.edu (B.Y.)
* Correspondence: jtrhee@dongguk.edu or jtrhee.uscm@gmail.com; Tel.: +82-2-2264-8518

Received: 7 January 2019; Accepted: 13 March 2019; Published: 19 March 2019
����������
�������

Abstract: Radio frequency identification (RFID) is an automated identification technology that can be
utilized to monitor product movements within a supply chain in real-time. However, one problem
that occurs during RFID data capturing is false positives (i.e., tags that are accidentally detected
by the reader but not of interest to the business process). This paper investigates using machine
learning algorithms to filter false positives. Raw RFID data were collected based on various tagged
product movements, and statistical features were extracted from the received signal strength derived
from the raw RFID data. Abnormal RFID data or outliers may arise in real cases. Therefore, we
utilized outlier detection models to remove outlier data. The experiment results showed that machine
learning-based models successfully classified RFID readings with high accuracy, and integrating
outlier detection with machine learning models improved classification accuracy. We demonstrated
the proposed classification model could be applied to real-time monitoring, ensuring false positives
were filtered and hence not stored in the database. The proposed model is expected to improve
warehouse management systems by monitoring delivered products to other supply chain partners.
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1. Introduction

The Industry 4.0 concept opens opportunities to digitize industrial machines, processes, and assets;
providing new insights and efficiently countering various current challenges [1]. Radio frequency
identification (RFID) is a key Industry 4.0 enabling technology, and has been widely used throughout
manufacturing and supply chains. RFID transfers data between readers and movable tagged objects
and has been applied to many diverse areas, including tracking and managing assets in healthcare [2–4],
reducing misplaced inventory throughout supply chains [5], measuring soil erosion [6], and improving
just-in-time operation for automotive logistics [7]. The technology has also provided significant
advantages for bee monitoring [8], tracking ship pipes [9], customer purchase behavior analysis [10],
inventory management [11], indoor robot patrol [12], etc.

For warehouse management systems (WMSs), RFID can monitor tagged products moving
through a gate and subsequently loaded for delivery to other supply chain partners. However, RFID
cannot distinguish tagged products that move through the gate or those that enter the reading range
accidentally. Tags within reader range but not moved through the gate are called false positive, whereas
tagged products moved through the gate and loaded are called true positive readings. These accidental
reads occur when the range of the antenna might be extended by metallic objects. Consequently, tags
assumed to be clearly out of range can be unexpectedly read by the reader. In addition, false positives
can also be due to the tags that are located within the nominal read range but are read accidentally.
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Since WMSs should correctly calculate the total amount of tagged products loaded, detecting and
filtering false positives is critical to ensure the correct delivered product records are retained.

Received signal strength (RSS) is the relative quality of a received signal for a device, which
is related to the distance between the tags and antenna for RFID, and has been previously utilized
for indoor localization systems (ILSs) [13–16], indoor mapping and navigation in retail stores [17],
indoor tracking system for elderly [18], and gesture recognition [19]. Previous studies confirm RSS
approaches to be suitable to detect false positives [20–22], where static and moved tags were classified
as false positive and true positive readings, respectively. Machine learning models have also been
utilized to successfully detect false positives using RSS based features as inputs. However, some retail
store-based studies showed that tag movement close to the gate and through the gate were classified
as false positive and true positive readings, respectively [23,24]. Therefore, false positive classification
must consider other tag movement types, such as tag movement close to the gate, as well as static tags
for WMSs.

Collected data commonly includes outliers, due to environmental interference and imperfect
sensing, and various outlier detection methods have been proposed to detect and remove them.
The local outlier factor (LOF) has been applied for several application areas to detect outliers in data
streams [25], fault detection in medical [26] and process monitoring [27,28], and activity recognition [29].
Interquartile range (IQR) has shown significant outlier detection capability for residential building
energy usage [30], groundwater data [31], and health care insurance fraud [32]. LOF and IQR have
both been implemented to predict electricity consumption, providing good performance detecting
true outliers [33]. Thus, outlier detection helps improve classification model performance.

The present study investigated machine learning model performance to detect false positives
based on tag RSS. To represent complex warehouse situation, we considered false positives for not
only static but moving tags close to the gate. Incorporating outlier detection models within the
machine learning algorithms significantly improved false positive prediction performance. We also
demonstrated that the proposed classification model could be integrated into real-time monitoring
systems (RTMSs), ensuring false positives were filtered and hence not stored in the database.

The remainder of this paper is organized as follows. Section 2 discusses related works on false
positive detection, machine learning, and outlier detection models. Section 3 presents the collected
dataset and feature selection, and Section 4 presents the proposed classification and outlier detection
models. Section 5 provides and discusses the results and Section 6 summarizes and concludes the paper.

2. Related Work

2.1. False Positive Detection

RFID technology can be utilized for WMSs since it can detect any object with an attached tag
located within the reading range. Although RFID readers can be installed at the exit gate to record
products loaded onto trucks to be moved to other supply chain partners, the reader cannot distinguish
between tags that move through the gate and those that accidentally appear in the reading range, but
were not subsequently loaded. Several methods have been proposed to detect RFID false positives,
including sliding window, extra hardware, RSS, phase, and doppler-based methods.

Sliding windows methods rely on tag occurrence and timestamp. Bai et al. (2006) proposed
a sliding window approach to remove noise (false positives) and duplicates from continuous
high-volume RFID data streams [34]. The proposed model considered fixed sized windows that moved
with time (i.e., sliding windows) and a threshold. The model scanned all windows and removed RFID
tags where the occurrence was below the defined threshold. However, this approach requires the
window size and threshold to be accurately defined prior to analysis for optimal results. Jeffery et al.
(2006) determined optimal window size using Statistical sMoothing for Unreliable RFid data (SMURF),
an adaptive smoothing filter, to clean false positives [35]. SMURF determines optimal window size
automatically based on the underlying data stream characteristics. Their results showed that SMURF
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techniques could adjust window size and outperformed all static window schemes. Massawe et al.
(2012) proposed a window sub-range transition detection (WSTD) adaptive sliding window approach,
which used binomial sampling to calculate the appropriate window size [36]. Their results show that
the WSTD scheme outperformed SMURF. In addition, the tag occurrence and timestamp can be utilized
for indoor RFID-tracking system. Offline cleaning technique (grid-based filtering and sampling-based
model) for addressing missing detections [37] and probabilistic framework for cleaning trajectories [38]
have been presented in RFID-tracked moving objects. The results showed that the proposed model
outperformed other models and provided remarkable cleaning efficacy for different scenarios. Finally,
Baba et al. (2016) proposed a learning-based approach to solve the false negatives (miss-reads) and
false positives (cross readings) problems [39]. The hidden Markov model was built to be used as a
building block for the cleaning process of time-series raw RFID data. The experimental results have
showed the efficiency and effectiveness of the proposed model compared to other models.

Extra hardware methods rely on additional hardware (e.g., reader(s) and/or antenna(s)). Tu and
Piramuthu (2011) proposed decision support models utilizing extra readers and tags to determine
false positives [40]. If both readers recognized the majority of the reads, then the tagged object was
considered to be present, whereas false positives were confirmed if the tag was not read by any readers.
If only one reader detected the tagged object, then several decision rules were triggered to finally
decide whether the tagged object was present or not. Their results showed that the proposed decision
support model successfully improved false positive detection. Keller et al. (2012) showed that adding
additional antennas improved false positive RFID tag detection [41]. The study proposed several portal
antenna setups, including standard, satellite, and transition portals. Standard portals utilized a single
reader with four different antennas, whereas satellite and transition portals used an additional RFID
reader with four more antennas. Although the same number of readers and antennas were defined
between satellite and transition portals, the antenna setup differed significantly. Combined with
the classification algorithm, adding more readers and antennas provided higher RFID classification
accuracy for satellite and transition portals compared to the standard portal. However, this approach
requires installing additional reader(s) and antenna(s), hence significantly increasing hardware costs.

Another popular method to detect false positive RFID is by analyzing tag RSS. Several previous
studies have considered RSS information for WMSs. Keller et al. (2010) investigated static and moved
tags characteristics from low level reader data, including RSS [20]. They investigated the optimal
threshold derived from the required information gain to separate static (false positive) and moved (true
positive) tags. A classifier was developed based on the single RSS feature, with accuracy performance
as high as 95.69%. Similar studies have utilized multiple feature classifiers to detect false positives.
Keller et al. (2015) considered RSS, SinceStart, and Antenna information [21]. RSS attributes provide the
distance between tag and antenna, while SinceStart considers the timeframes between the beginning
of gathering cycle and time the tag was read. Antenna information attributes reveal the information of
antenna that read tags during gathering cycle. They employed single (decision stump) and multiple
feature classifiers (i.e., logistic regression (LR), multilayer perceptron (MLP), and decision tree (DT)) to
distinguish between static and moved tags. In addition, the study also proposed a rule-based classifier
to improve classification accuracy. Ma et al. (2018) recently considered false positive detection based
on RSS [22]. They utilized several machine learning algorithms (DT, support vector machines (SVMs),
and LR) to classify RFID readings, using features related to RSS and phase shift. The SVM based
approach outperformed all other models, providing the highest accuracy (up to 95.5%).

The phase and doppler are the other methods that can be utilized to identify the moving tags.
Phase shift is generated when the wave travels from the reader antenna to the tag antenna given
distance, while the doppler is retrieved when there is a relative motion between reader and a tag.
Buffi and Nepa (2014) utilized classification model to differentiate between the moving tags on the
conveyor and static tags [42]. The phase variation history from moving and static tags are gathered
and finally the peak position of tags at reference time can be retrieved. The K-means is utilized as a
classifier with input features such as matching function peak and actual speed of the tags. The result
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showed that the proposed model successfully discriminates moving and static tags with an overall
accuracy greater than 96%. Furthermore, the improved model has been presented by considering
nomad tags (randomly moving tags) and static tags as false positive readings [43]. The peak position
and cross-correlation coefficient are used as input features. The rule-based model has been introduced
and by employing a wide beam reader antenna it showed high accuracy, as much as 99.9%. Finally,
the doppler-based method is utilized for item sorting and indoor localization system (ILS). Xu et al.
(2018) proposed a sorting algorithm for moving tags on the conveyor belt [44]. The proposed study
utilized RSSI, phase, and doppler frequency of moving tags. The result showed that by integrating the
RSSI and the doppler method together, the proposed model performs better in the actual conveyor
belt. Tesch et al. (2015) proposed RFID indoor localization based on the doppler effect to determine the
position of the reader antenna [45]. Two scenarios are considered for moving tags, slow speed and fast
speed tags. The slow speed tags generate small variation, while fast speed generates larger variation in
doppler frequency. The result showed that the proposed model generated a low mean absolute error
(MAE) as compared to other models.

Previous studies [20–22] classified static tags as false positives, with moved tags being considered
true positive readings. Static tags occurred when the tags were located within the configured read
range, whereas moved tags are tags that were moved through the reader gate. However, several
previous retail store domain studies have shown that certain moved tags (e.g., tag movement close
to the gate) were considered as false positives [23,24]. Hauser et al. (2015) investigated classification
models to detect false-positive RFID readings in retail stores to help prevent shop theft [23]. The
proposed study utilized machine learning models to distinguish between tag movement through the
gate (true positive) and close to the gate (false positive). RSS based attributes were extracted as features
for the considered classification models: DT, LR, random forest (RF), artificial neural network (ANN),
and SVM. Another study revealed that integrating machine learning models with RFID could enable
automated checkout systems, particularly for fashion retailing [24].

Therefore, the present study investigated machine learning model performance to detect false
positives based on tag RSS, considering false positive for static tags and also tags moved close to the
gate, whereas true positive tags were only those moved through the gate. Thus, this better represents
complex real situations than previous studies. We also show that incorporating outlier detection
models significantly improves false positive prediction accuracy.

2.2. Machine Learning and Outlier Detection Models

Previous studies have successfully applied ANN, LR, SVMs, DT, RF, and XGBoost machine
learning models to detect false positives with high classification accuracy using features extracted
from tag RSSs [21–24].

Outlier detection methods have also been introduced to further improve classification
performance for several applications. Yao et al. (2018) utilized LOF to detect outliers in data
streams [25]. The proposed model combined LOF and composite nearest neighborhood (CNN) models
and was tested on three datasets, provided superior outlier detection compared to other models. Yang
et al. (2015) proposed dynamic LOF (D-LOF) for fault detection in a medical sensor network [26]. They
utilized LOF to detect outliers and then used fuzzy linear regression for prediction. The proposed
model exhibited significantly higher detection accuracy compared to other models. Lee et al. (2011)
proposed process monitoring by integrating independent component analysis and LOF [27]. The
proposed model exhibited improved accuracy to detect process monitoring faults compared to other
models, and was expected to reduce accident risk while simultaneously increasing processing efficiency.
Song et al. (2014) proposed combining multiple subspace principal component analysis and LOF for
multimode process monitoring [28]. Experimental results showed that incorporating LOF reduced
missed detections and the proposed method outperformed other considered methods. Zhao et al.
(2018) proposed human activity recognition by combining k-means, LOF, and multivariate gaussian
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distribution models [29]. LOF was used to remove outliers with low relative density from each cluster.
The proposed model exhibited enhance recognition performance compared to previous studies.

Interquartile range is another statistical approach that can be utilized for outlier detection. Do and
Cetin (2018) evaluated outlier detection methods for predicting energy usage of residential buildings,
and showed that employing IQR to detect and remove outliers provided significant model performance
improvement in most cases [30]. Jeong et al. (2017) compared three sigma, IQR, and median absolute
deviation (MAD) outlier identification methods for groundwater state [31]. IQR outlier identification
performance was significantly superior to the other two methods. Van Capelleveen et al. (2016)
compared outlier detection methods to detect fraudulent patterns in the healthcare system, and
showed that IQR outlier detection was useful to reveal fraudulent providers [32]. Sun et al. (2017)
combined IQR and LOF to improve prediction accuracy for public building electricity consumption [33].
The proposed method utilized support vector regression classification model with IQR, LOF, and
PCOut outlier detection. IQR and LOF methods provided excellent true outlier detection, consequently
improving predicted electricity consumption accuracy (i.e., decreasing root mean square error).

Thus, many previous studies have established that IQR and LOF can improve classification
accuracy across various data fields. Therefore, the present study combined IQR and LOF with machine
learning models to improve false positive RFID detection.

3. Dataset and Feature Extraction

Figure 1 shows the structure employed to detect false positives using machine learning models.
Data was collected for different tag movements and tag RSSs was recorded. Statistical features were
then extracted for each tag, and outlier detection applied. After cleaning the data (i.e., removing the
identified outliers), several machine learning algorithms were applied and compared.
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Several pallet movement scenarios were identified to investigate false positives. Figure 2a shows
static and movement RFID tag examples that feasibly occur in actual warehouses. The RFID reader
and antenna were installed in the warehouse exit gate before products were loaded in the vehicle. The
main system purpose is to accurately record only those tags moved through the gate and subsequently
loaded in the vehicle. However, the RFID reader could potentially read moved or static tags, where
the moved tags could pass through the gate or close to the gate.

This study considered true positive and false positive RFID readings. True positive readings were
defined as the tags read when the pallets were moved through the gate and loaded onto the vehicle;
whereas false positives were where pallets were moved close to the gate and the tags were read, but
were not loaded onto the vehicle, or pallets were stationary within the reading range of the RFID
reader. These accidental reads occur when the tags are located within the nominal read range or the
range can be extended accidentally by metal objects within the field [21]. The purpose of the proposed
classification model was to identify false positive tags based on extracted RSS information.

Figure 2b shows a typical case where tagged products are moved through the gate. The tags read
by the RFID reader through the antenna, and the tag data is forwarded to the client computer through
wired connection. We developed the data gathering program to receive and present tag information
as well as RSS data in real-time, as shown in Figure 2c. It took approximately 5 s to move the trolley
through the gate, and the real-time tags and corresponding RSS details were presented on the screen
(Figure 2c) and recorded during this gathering session.
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We used 86 × 54 × 1.8 mm card type passive RFID tags for this trial, with the tags attached to the
boxes and the trolley moved through the gate at different paths and speeds. The ultra high frequency
(UHF) passive RFID tag model was 9662 with frequency 860–960 MHz. The IC type was Alien H3
while protocol was EPC Class1 Gen2 (ISO 18000-6C). The tag was packed with PVC material into a
card-type passive tag. In addition, single reader ALR-9900+ from Alien Technology and linear antenna
ALR-9610-AL with 5.90 dbi Gain were utilized in this experiment. The operating frequency of the
reader was 902–928 MHz and supported EPC Class1 Gen2 (18000-6C). The ALR-9900+ is an enterprise
reader, allowing users to monitor or read multiple tags as well as gather RSS data simultaneously at
large distances. The Alien reader provides inventory command, a full-featured system for discerning
the IDs of multiple tags in the field at the same time. In order to achieve good inventory performance,
the reader can dynamically adjust the Q parameter to cause more or fewer tags to respond at any given
time. The reader provides several modulation modes available with the Gen2 protocol, such as FM0,
M4 (Miller 4), and the default RF mode value is 25M4 [46,47]. To simplify the experiment process, we
used default parameters provided by the reader. The reader provided a standard development kit
incorporating several languages (Java, Net, Ruby), which allowed relatively simple integration into
the developed data gathering program.
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During the gathering session, different tags movement paths and speeds through the gate were
implemented and performed, and the reading data labelled as true positive. Various other tag
movements close to the gate were also conducted and labelled as false positive, and random static tags
were placed within the configured read range and also labelled as false positive. In total, 1624 unique
data readings were collected, with 1130 false positives and the remainder true positive. Each reading
consisted of tag id, date and time, and RSS value. The minimum, maximum, and average number of
tags read during a data gathering session where 17, 240, and 69.23, respectively.

Figure 3 shows RSS readings for a typical data gathering session. The ALR-9900+ reader does not
provide the unit of measure for the RSSI; therefore, we have presented signal quality (%) as secondary
y-axis. First, we investigated the minimum as well as maximum values of RSSI during our experiment,
they were 432 and 37,131, respectively. Based on this information, the real value of RSSI was then
converted into signal quality (%). The maximum RSS for tags moved through the gate was larger than
for static tags (Figure 3a). RSS increased when tags passed through the gate, achieving maximum
when the tags were closest to the antenna. In contrast, static tags had relatively constant RSS, since the
distance between the antenna and static tag was fixed. This particular case shows a static tag located
relatively distant from the reader, hence RSS was low. Figure 3b shows RSS histograms for typical
static tags and those moved through the gate. Static tags tended to have small variance, whereas tags
moved through the gate tag tended to exhibit heavy-tailed distribution.

Figure 3c shows the case for a static tag located a relatively close distance to the RFID reader. The
static tag generated a non-constant RSS, being relatively stable but reducing when other products being
moved through the gate blocked the antenna signal (the worker as well as the boxes). Once the worker
and boxes complete passing the gate, the static tag RSS became stable again. Consequently, closer
static tags tended to generate histograms with higher variance and maximum RSS values compared to
more distant tags (Figure 3b), as shown in Figure 3d. However, closer static tags still tended to have
lower variance and light-tailed distributions compared with tags moved through the gate.
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Figure 3e shows a typical RSS distribution for a tag moved close to the gate, which is quite similar
to that for tags moved through the gate. For both tags, RSS increased as they moved closer to the
antenna, then decreased as the distance increased. However, maximum RSS for tags moved close
to the gate was lower than for tags moved through the gate, since the antenna did not directly face
the tags moved close to the gate. Figure 3f compares typical histograms for tags moved close to and
through the gate. Although the histograms are similar, tags moved through the gate tag exhibited
higher variance and more heavy-tailed distributions compared to tags moved close to the gate.
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Since RSS depends on the distance between the antenna and tag, closer tags generated larger RSS.
Therefore, RSS attributes provide important data to classify RFID readings, and have been utilized in
previous studies to identify RFID readings with high performance accuracy [20–22]. Table 1 shows the
nine relevant statistical features extracted from RSS to help distinguish between true and false positives.
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Table 1. Attributes extracted from RSS.

Feature Description

Min Minimum signal strength during a gathering session
Max Maximum signal strength during a gathering session

Mean Average signal strength during a gathering session
Var RSS variance during a gathering session
Std RSS standard deviation during a gathering session

Skewness Distribution asymmetry
Kurtosis Indicates if the data distribution is heavy- or light-tailed, relative to normal

Diff Difference between highest and lowest signal strength during a gathering session
Count Total number of reads for the tag during a gathering session.

During data gathering, the worker loaded several boxes with attached tags on the trolley and
performed different RFID readings (i.e., true and false positives) (Figure 2b). To generate a complex
dataset, the worker followed different speeds and paths. The data gathering program (Figure 2c),
received RSS for each tag through the gathering session, and the raw data was stored as a CSV file. For
true positive readings, the worker performed multiple gathering sessions, moving the tags through
the gate, and RSS values for static tags located within read range were also collected to generate false
positives. Different movement paths and speeds were also performed for tags moved close to the gate.

Table 2 showed the detail execution parameters for gathering the true positive readings (tag
movements through the gate), such as number of boxes/tags and the speed and movement pattern of
trolley. During gathering session, different numbers of boxes were loaded on the trolley and different
numbers of movements through the gate were conducted. In addition, different speeds and paths
of the trolleys moving through the gate were considered for data gathering. Based on Table 2, most
of the experiments were performed with four tagged boxes on the trolley, with the speed between
0.5–0.99 m/s, and moves straight ahead. In our experiment, the distance between start point (when
the tag is first read) and end point (last occurrence of tag) was approximately 4 m.

Table 2. Execution parameters for gathering the true positive readings.

Parameter Value Frequency

Number of boxes/tags

1 17
2 15
3 12
4 53
5 11
6 24

Speed of trolley (m/s)

<0.50 84
0.50–0.99 216
1.00–1.50 155
1.51–2.00 34

>2.00 5

Movement pattern Straight ahead 410
Diagonal line 84

Figure 4 shows that the raw RFID data, recorded for each gathering session, consisted of the
electronic product code (i.e., the tag ID), date and time, antenna information, read time, and RSS.
Each raw RFID dataset was then divided based on the tag ID, statistical features to represent data
characteristics, and class attributes, labelled as either true positive (1) or false positive (0).

Table 3 compares classification accuracy for individual features based on decision stumps (decision
trees with single input features). Although each feature can identify true and false positives, none
of the features achieved accuracy >90% individually. Thus, a single predictor could not achieve a



Appl. Sci. 2019, 9, 1154 10 of 21

satisfactory result. However, we expect that combining multiple predictors using machine learning
models would significantly improve the prediction performance.
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Table 3. Prediction accuracy using individual features.

Predictor Accuracy

Min 85.591%
Max 89.532%

Mean 69.581%
Var 89.532%
Std 89.532%

Skewness 75.185%
Kurtosis 70.566%

Diff 89.594%
Count 75.431%

4. Classification and Outlier Detection Models

This section describes the process of removing outliers and the machine learning models to
classify RFID readings. We used IQR and LOF to identify and, hence, remove outlier data, and then
applied several machine learning algorithms: Naïve Bayes (NB), MLP, SVM, DT, and RF.
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4.1. Interquartile Range

Outlier detection identifies sample data with different behavior from expected. Most outlier
detection methods are based on statistical approaches, acquiring a fitted model from the dataset and
identifying outliers as data points in low-probability regions. The IQR approach divides the data set
into lower (Q1), median (Q2), and upper (Q3) quartiles, and defines IQR = Q3 − Q1. Data points with
values Q1 − (OF × IQR) or Q3 + (OF × IQR) (where OF is the outlier factor) are considered to be
outliers [48]. Thus, the total number of outliers depends on the OF parameter. Low OF will generate
larger number of outliers, and vice versa. Table 4 shows IQR outlier detection applied to the dataset
for two indicative OF values. Assuming normal distributions, the region between the low and high
thresholds for OF = 1.5 (i.e., between Q1 − 1.5 × IQR and Q3 + 1.5 × IQR) contained 99.3% of the data
points. Therefore, we selected OF = 1.5, retaining 1358 data points (from 1624) for classification.

Table 4. Optimal interquartile range outlier detection.

Original Dataset Outlier Factor Outlier Data Points Acceptable Data Points

1624
1.5 266 1358
3 135 1489

4.2. Local Outlier Factor

The LOF detection method calculates the local density deviation for a given data point with
respect to its neighbors to indicate the degree a data point is an outlier [48,49]. The LOF score for
acceptable data is expected to be close to 1, and increases for outliers. The algorithm first calculates the
relative density, o, for the dataset, D, and the distance distk(o) between o and another object, p ∈ D,
such that

• There are at least k objects o′ ∈ D–{o} such that dist(o, o′) ≤ dist(o, p), and
• There are at most k − 1 objects o′′ ∈ D–{o} such that dist(o, o′′ ) < dist(o, p).

The k-distance neighborhood of o contains all objects where distance to o < distk(o),

Nk(o) =
{

o′
∣∣o′ ∈ D, dist

(
o, o′

)
≤ distk(o)

}
(1)

where Nk(o) may contain more than k objects. The reachability distance from o′ to o is

reachdistk
(
o ← o′

)
= max

{
distk(o), dist

(
o, o′

)}
(2)

and the local reachability density, lrd, of an object, o, is

lrdk(o) =
‖Nk(o)‖

∑o′∈Nk(o) reachdistk(o′ ← o)
(3)

Thus, LOF for o is the average of the lrd ratio for the object and k-nearest neighbors,

LOFk(o) =
∑o′∈Nk(o)

lrdk(o′)
lrdk(o)

‖Nk(o)‖
(4)

Thus, we could calculate LOFk for all objects in the dataset. The approach takes the single
parameter MinPts, the number of nearest neighbors defining the local neighborhood for an object.
Previous study provided the guideline on picking the value of MinPts between MinPtsLB (lower
bound) and MinPtsUB (upper bound) range [49]. In their experiment, mostly they utilized range value
of MinPts between 10 and 50, which appeared to work well in general. We ran the experiment by using
MinPtsLB and MinPtsUB as 10 and 40, respectively. The LOF score minimum, maximum, average, and
standard deviation = 0.975, 5.064, 1.27, and 0.401, respectively.
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A suitable LOF score threshold is required to classify a given data point as outlier or not. Breunig
et al. (2000) showed that LOF ≈ 1 should not be considered an outlier [48], and since the LOF
distribution was approximately normal (see Figure 5a), 99.7% of the data points fell within µ± 3σ

(where σ and µ are standard deviation and mean, respectively). Therefore, we set the LOF threshold =
µ + 3σ = 2.473, as shown in Figure 5a. Table 5 shows the number of outliers identified, and Figure 5b
shows where these outlier data occurred in terms of the RSS features defined above.
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Table 5. Optimal local outlier factor (LOF) outlier detection.

Original Dataset LOF Threshold Outlier Data Points Acceptable Data Points

1624 2.473 38 1586

4.3. Naïve Bayes

Naïve Bayes is a statistical classifier that calculates the probability of a given data point belonging
to a particular class [48]. Let D be a training dataset and their class. Suppose there are m classes, C1, C2,
. . . , Cm. Given a tuple, X, the classifier will predict that X belongs to class Ci with the highest posterior
probability, conditioned on X, i.e.,

P(Ci
∣∣X) > P(Cj

∣∣X) for 1 ≤ j ≤ m, j 6= i (5)

Therefore, we maximize P(Ci|X) ,

P(Ci|X) =
P(X|Ci)P(Ci)

P(X)
(6)

The NB classifier performance is comparable with decision tree and can provide high accuracy
and speed when applied to large datasets.

4.4. Multilayer Perceptron

The MLP model comprises an ANN with one input layer, one or more hidden layers, and one
output layer. The backpropagation algorithm is utilized to train the MLP [48,50]. Figure 6 shows an
example MLP, where each layer is composed of several units, corresponding to measured attributes
for each training tuple.
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The Min, Max, Mean, Var, Std, Skewness, Kurtosis, Diff, and Count extracted from the RFID
reading dataset (see Table 1) were presented as training data to the input layer, passed across the
hidden layer, and then to the output layer. Net input was calculated by multiplying each input and
its corresponding weight, and then summed. Each unit in the hidden layer took net input and then
applied an activation function. Backpropagation compared the prediction result with the target class
value, and modified the weights for each training tuple to minimize mean squared error between
prediction and target values. This process was iterated multiple times to produce optimal weights,
providing optimal predictions for the test data.

4.5. Support Vector Machine

The SVM classifies training data by nonlinearly mapping the original data into high dimensional
feature space and finding the linear optimal hyperplane to separate instances each class from the
others [48,51]. For the case of separating training vectors belonging to two linearly separable classes,

(xi , yi), xi ∈ Rn, yi ∈ {+1,−1}, i = 1, . . . , n, (7)

where xi is a real valued n-dimensional input vector and yi is the class label associated with the training
vector. The separating hyperplane is determined by an orthogonal vector w and bias b that identify
points that satisfy

w·x + b = 0 (8)

Thus, the classification mechanism for SVM can be expressed as [52,53]

maxα

[
n

∑
i=1

αi −
1
2

n

∑
i,j=1

αiαjyiyjK
(
xi, xj

)]
(9)

with constraints
n

∑
i=1

αiyj = 0, 0 ≤ αi ≤ C, i = 1, 2, . . . ., n (10)

where α is the parameter vector for the classifier hyperplane, K is a kernel function to measure the
distance between xi and xj, and C is a penalty parameter to control the number of misclassifications.
This study used the polynomial kernel function,
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k
(
xi, xj

)
=
(
xi·xj + 1

)q, q = 1, 2, . . . , n. (11)

4.6. Decision Tree

The DT classifier is a tree-like model that illustrates all possible decision alternatives and
corresponding outcomes. We used the C4.5 algorithm developed by Ross Quinlan to generate the
decision tree [48]. For each tree node, C4.5 selected the attribute that best discriminated the tuples
according to class. Let D be the training dataset, then the C4.5 algorithm is shown in Algorithm 1.
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4.7. Random Forest

The RF classifier consists of a collection or ensemble of simple tree predictors, and uses the bagging
or random space method [54]. Randomization is introduced by bootstrap sampling the original data
and at the node level when growing the tree. RF chooses a random subset of factors at every node and
uses them as contenders to locate the best split for each node. Algorithm 2 shows RF generation for
each tree.
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4.8. Performance Metric

The various classification models to predict RFID reading type are detailed above, and in each case
the output class is labelled as 1 (true positive) (i.e., tag moved through the gate), or 0 (false positive) (i.e.,
tag was static or moved close to the gate). Table 6 shows the confusion matrix, a useful tool to analyze
classifier performance. True positive (TP) and true negative (TN) represent tags that are correctly
classified, whereas false positive (FP) and false negative (FN) represent tags incorrectly classified.
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Table 6. Classifier confusion matrix.

Actual Class Predicted as “1” Predicted as “0”

1 TP FN
0 FP TN

We employed 10-fold cross-validation for all classification models when generating the models,
and the IQR and LOF outlier detection as well as the classification models were implemented in Weka
V3.8.0 [55]. Table 7 shows the classification model performance metrics, based on the average value for
all cross-validations.

Table 7. Classifier model performance metrics.

Metric Formula

Precision TP
(TP+FP)

Recall TP
(TP+FN)

F-1 score 2×(Precision×Recall)
(Precision+Recall)

Accuracy (TP+TN)
(TP+TN+FP+FN)

5. Results and Discussion

The machine learning models classify RFID readings and can be utilized to improve warehouse
management. This section evaluates the classification models and describes how to integrate them
into a real-time monitoring system.

5.1. Classification Model Performance

Table 8 compares various model performances, including outlier detection impacts. The machine
learning models, such as support vector machine (SVM), multilayer perceptron (MLP), Naïve Bayes
(NB), decision tree (DT), and random forest (RF) are utilized to detect false positive readings. The
result showed that for conventional models, RF outperformed all other models in terms of precision,
recall, F1 score, and accuracy (97.078%, 96.199% 96.623%, and 97.167%, respectively).

Previous studies comparing machine learning algorithms to predict RFID using RSS showed that
high classification accuracy could be achieved [21,22], with SVM providing superior accuracy up to
95.5% [22]. However, the present study considered static tags as well as tags moving close to the gate
tag as false positive readings, whereas previous studies only considered static tags. Therefore, this
study is expected to better represent the complex real situation.
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Table 8. Classification model performances.

Classifier Model Recall F-1 Score Precision Accuracy

NB 89.578 89.308 89.054 90.887
MLP 94.934 95.373 95.845 96.121
SVM 90.69 90.69 90.69 92.118
DT 95.035 94.856 94.683 95.628
RF 96.199 96.623 97.078 97.167

NB + IQR 88.559 86.456 84.774 91.016
MLP + IQR 93.476 93.852 94.24 96.171
SVM + IQR 88.056 87.518 87.01 92.047
DT + IQR 93.179 94.448 95.864 96.613
RF + IQR 95.443 95.968 96.517 97.496
NB + LOF 90.661 90.106 89.606 91.677

MLP + LOF 94.923 95.463 96.051 96.28
SVM + LOF 91.501 91.242 90.995 92.686
DT + LOF 96.158 95.642 95.167 96.343
RF + LOF 96.648 96.942 97.249 97.478

We also investigated the effect of combining outlier detection (IQR or LOF) and the classification
model on accuracy, as shown in Table 8 and Figure 7. The classification model accuracy increased
when applying interquartile range (IQR) except for SVM, with the overall average increase = 0.28%;
whereas applying local outlier factor (LOF) increased the accuracy for all models, with the overall
average increase = 0.51%. Our result showed that by integrating either IQR or LOF with RF provided
the same and highest accuracy for our dataset = 97.5%. Integrating outlier detection (IQR or LOF) with
the classification model improved classification accuracy in our dataset. Previous studies also showed
that by integrating IQR or LOF with the prediction model, it improved the accuracy [29,33]. However,
this presented model (RF with IQR or LOF) needs to be performed on different types of datasets, as it
might not produce the highest accuracy compared to other models.
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The experimental results indicate that false positive RFID readings can be detected by machine
learning with high accuracy. If tags that are static or moved close to the gate are incorrectly classified,
the warehouse assumes the relevant products have been loaded. Therefore, incomplete products will
be sent. In contrast, when tags moved through the gate are incorrectly classified as static or moved
close to the gate, the warehouse will send excess product. Thus, combining outlier detection with
suitable classification models will significantly improve the accuracy of WMS monitoring of delivered
products to supply chain partners.
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5.2. Management Implications

This section describes possible real implementation of false positive detection based on machine
learning. Figure 8a shows prototype real-time monitoring system architecture to filter false positives,
ensuring only products actually moved through the gate are sent to the representational state transfer
application programming interface (REST API), for presentation in web dashboard(s) and/or database
storage. We used the MongoDB V3.4.9 database since it can efficiently store continuously-generated
sensor/RFID data from manufacturing [56–58], healthcare [59], and supply chain [60]. The real-time
monitoring system used java programming language V1.8.0 to receive tag information from the readers,
filter false positives using trained RF, and send products moved through the gate information to the
server via REST API. We used RF since it exhibited significantly superior prediction performance, as
detailed in Section 5.

The REST API used Node.js V8.4.0, Express.js V4.13.4, Bootstrap V4.1.3, and Socket.io V2.1.1.
Node.js as the webservers, with Express.js and Bootstrap or data visualization. Socket.io was also
used to handle and present product information in real-time. Figure 8b shows the prototype real-time
monitoring system receiving tags information from reader and filtering false positives. We assumed
the time required to move through the gate before loading was 5 s. Therefore, RSS was gathered for 5 s
from when the tag was first read. The collected RSS data was then converted into statistical features
(see Section 3) and the trained RF model (see Section 5) applied to detect the tag as true or false positive.
False positive tags were filtered and not stored in the server-side database.

Once the tag data was sent to the REST API, product information was presented to the web
dashboard and stored into the MongoDB, as shown in Figure 8c. Menu history was available to the
user to check historical product data, and the web dashboard enabled managers to monitor product
delivered to supply chain partners.
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false positives, and (c) web dashboard presents the delivered products.

6. Conclusions and Future Work

Detecting and filtering false positives will improve WMS monitoring accuracy for product delivery
to supply chain partners. This study used machine learning to predict false positives based on tag RSS.
Different tag movement paths and speeds were considered, and statistical features were extracted from
tag RSSs. Outlier detection methods were implemented to filter outliers from the collected dataset,
and machine learning models were applied to detect static tags and movement close to the gate as
false positives. Experimental results showed that integrating outlier detection with machine learning
improved classification accuracy. The most accurate classification (97.5%) was achieved by combining
LOF or IQR with RF, and was significantly superior to the other combinations and models considered.

We demonstrated the proposed classification model integrated into a prototype real-time
monitoring system, comprising a client program to receive tag information from the reader and
a REST API to store the information in the cloud. The client program also filtered false positives to
ensure only correct product details (i.e., true positive tag readings), and were forwarded to the REST
API and stored in the database. Thus, managers could monitor products delivered to supply chain
partners in real-time using the prototype web-based monitoring system.

Future study should consider different parameters as addition to RSSI, such as phase and doppler,
as well as utilizing multiple readers or antennas. The datasets that better represent complex real
situations, such as by considering different tag orientations and tag movement directions, need to be
gathered in the near future. Furthermore, extending the comparison with other classification models,
as well as applying machine learning models to identify other problems that occur during RFID
readings, such as false negative readings or miss-reads, could be presented in the near future.
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