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Abstract: An outside mutual correction (OMC) algorithm for natural scene text detection using
multibox and semantic segmentation was developed. In the OMC algorithm, semantic segmentation
and multibox were processed in parallel, and the text detection results were mutually corrected.
The mutual correction process was divided into two steps: (1) The semantic segmentation results
were employed in the bounding box enhancement module (BEM) to correct the multibox results.
(2) The semantic bounding box module (SBM) was used to optimize the adhesion text boundary
of the semantic segmentation results. Non-maximum suppression (NMS) was adopted to merge
the SBM and BEM results. Our algorithm was evaluated on the ICDAR2013 and SVT datasets. The
experimental results show that the developed algorithm had a maximum increase of 13.62% in the
F-measure score and the highest F-measure score was 81.38%.
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1. Introduction

Scene text detection is an important and challenging task in computer vision [1,2]. The goal is
to accurately locate the text area in a scene image. This technology has a wide range of applications
in image retrieval, scene analysis, blind navigation, and other fields [3]. Text found in natural scenes
have different fonts, styles, and sizes. It is usually accompanied by geometric distortion, a complex
background, and uncontrolled lighting. Therefore, natural scene text detection is still a very open
research challenge.

Early mainstream approaches focused on various heuristics that help detect characters or
character components. The two most famous approaches are: (1) the maximum stable extremal
region (MSER) [4–6]; and (2) the stroke width transformation (SWT) [7,8]. MSER extracts character
regions with a similar intensity whereas SWT assumes that the text component has a comparable
stroke width. Both MSER and SWT must be combined with additional post-processing to produce
reasonable text candidates.

In recent works, various convolutional neural network (CNN)-based methods have been proposed
to detect scene text [9–14]. These efforts focus on reducing the number of handcrafted features or
artificial rules in text detection. Tian et al. [15] propose a text flow method using a minimum cost flow
network to sort character CNN candidate detection, erroneous character deletion, text line extraction,
and text line verification. Cho et al. [16] propose a canny text detector using the maximum stable
region, edge similarity, text line tracking, and heuristic rule grouping to calculate candidate characters.

Appl. Sci. 2019, 9, 1054; doi:10.3390/app9061054 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-6339-0427
https://orcid.org/0000-0002-8681-5889
http://www.mdpi.com/2076-3417/9/6/1054?type=check_update&version=1
http://dx.doi.org/10.3390/app9061054
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 1054 2 of 13

One of the most important CNN-based methods is a fully convolutional network (FCN).
Zhang et al. [17] suggest using a FCN to obtain text block candidates, a character-centroid FCN
to generate auxiliary text lines, and a set of heuristic rules based on intensity and geometric consistency
to reject the wrong candidates. Gupta et al. [18] proposes a fully convolutional regression network
(FCRN) that efficiently performs text detection and bounding-box regression at all locations across
multiple scales in an image based on a FCN. All of these algorithms use FCN to generate text semantic
segmentation detection results containing semantic segmentation information.

Another method called multibox uses multiple default candidate boxes to calculate the position
of text in an image. Since general object detection based on CNN has achieved remarkable results in
recent years, scene text detection has been greatly improved by treating text words or lines as objects.
High-performance methods for object detection such as a faster region-based convolutional neural
network (R-CNN) [19], single shot multibox detector (SSD) [20], and you only look once (YOLO) [21]
have been modified to detect horizontal scene text [10,14,22,23] and have been greatly improved.

In this paper, the outside mutual correction (OMC) algorithm is proposed. Existing fusion
approaches use semantic segmentation as a module for extracting features inside a multibox detector,
this is referred to as inside feature extraction (IFE). During IFE processing, feature maps extracted
by semantic segmentation are enlarged first and then reduced, which usually introduces noise and
reduces the accuracy of detection. In our proposed algorithm, semantic segmentation and multibox
are processed in parallel, and the text detection results are mutually corrected. Thus, the bounding
box enhancement module (BEM) and the semantic bounding box module (SBM) were designed.
The proposed algorithm inherits the advantages of these methods and obtained more accurate text
detection results through OMC.

The rest of the paper is organized as follows: In Section 2, we provide a brief review of the related
theories, including single shot multibox and the FCN. In Section 3, we describe the details of our
proposed algorithm. In Section 4, we present the experimental results on benchmarks and comparisons
to other scene text detection systems. In Section 5, we provide the conclusions of this paper.

2. Related Work

2.1. Multibox Text Detector

The multibox text detector extracts feature maps using convolutional layers. The detector draws
multiple default bounding boxes on feature maps of different resolutions. After the convolution
process, the targets in the original image will decrease in size. Since the default box has a fixed shape,
the target will be captured at the right size. SSD is a representative of multibox text detectors. SSD
has several advantages, including: (1) SSD discretizes the output space of bounding boxes into a
set of default boxes over different aspect ratios and scales per a feature map location. (2) During
the prediction procedure, the network generates scores for the presence of each object category in
each default box and adjusts the box to better match the object shape. (3) Additionally, the network
combines predictions from multiple feature maps with different resolutions to naturally handle objects
of various sizes [20]. Figure 1 shows the SSD network architecture.

He et al. [24] proposed an improved SSD-based network named single shot text detector (SSTD).
The inception structure and semantic segmentation are integrated in the SSD. The inception structure
shows better performance for extraction convolution features. A new module named the text attention
module is used to fuse semantic segmentation information and convolution features. The whole
semantic segmentation fusing process has three steps: (1) The feature maps are enlarged and scored
during semantic segmentation using a deconvolution process. (2) In order to fuse with the original
feature map, the semantic segmentation results need to be reduced to smaller sizes through convolution
processing. (3) Finally, the text attention module combines semantic segmentation information
and convolution features. In this process, the feature map will be enlarged first and then reduced,
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introducing noise. This problem is caused by the desire to combine semantic segmentation within the
multibox. Thus, this method to integrate semantic segmentation has limited effect.
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Figure 1. (a) Single shot multibox detector (SSD) architecture. From the convolutional layers C1 to C9,
a number of bounding boxes and their corresponding confidence are inferred. (b) Fixed size default
bounding box on different resolution feature maps. The fixed size default box captures different-sized
targets in different resolution feature maps. This architecture allows the SSD to capture both large and
small targets in one shot.

2.2. Semantic Segmentation

Semantic segmentation information can be acquired from the fully convolutional network
(FCN) [25]. Typically, the convolutional neural network has several fully connected layers after
the convolution layers. The feature maps generated from convolution layers are mapped to feature
vectors by fully connected layers. For example, the 1000-dimensional vector output by the ImageNet
model in [26] indicated the probability that the input image belongs to each class. The FCN classifies
the object’s class at the pixel level. The FCN uses the deconvolution layer to upsample the feature map
and restore it to the input image size. After the deconvolution process, a prediction is made for each
pixel classification and the spatial information in the input image is preserved. The FCN fused features
from different coarseness layers to refine the segmentation using spatial information. Finally, the loss
of the softmax classification was calculated pixel by pixel, which was equivalent to one training sample
per pixel. The FCN architecture is shown in Figure 2.
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deconvolution layers. (b) Overlay of the input image and FCN processing results.

Based on the FCN, DeepLab-V2 [27], containing atrous spatial pyramid pooling (ASPP), was
proposed. In ASPP, parallel atrous convolution with different rates were applied in the input feature
map and fused together. As objects of the same class may have different scales in the image, ASPP
helps to account for different object scales that can improve the accuracy.
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Usually semantic segmentation is treated as a special feature extraction process integrated
into the convolutional neural network. The feature map will first be enlarged and then reduced
during the inside feature extraction process as shown in Figure 3. During this process, noise is
introduced and the detection results are affected. Therefore, the proposed algorithm uses the outside
mutual correction (OMC) algorithm to fuse semantic segmentation outside the multibox. Through the
proposed algorithm, the pixel-level classification of semantic segmentation can be more effectively
utilized to improve the detection accuracy. We used SSD and SSTD as the basic multibox text detectors.
DeepLab-V2 was used to generate semantic segmentation information.
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3. Proposed Algorithm

3.1. Overall Framework

The proposed algorithm is shown in Figure 4. Plenty of text candidate bounding boxes were
obtained from the multibox processing. Meanwhile, the text semantic segmentation result was obtained
from semantic segmentation processing. A softmax layer was added to the output layer of the semantic
segmentation process to obtain the classification probability of each pixel. The text candidate bounding
boxes and semantic segmentation results are merged in the bounding box enhancement module (BEM)
to eliminate the false results of multibox processing. The semantic segmentation result enter the
semantic bounding box module (SBM). After the CRF algorithm optimizes the text boundaries, the
text semantic bounding box is computed. Finally, the outputs of the BEM and SBM are sent to the
non-maximum suppression (NMS) to remove duplicate bounding boxes.
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3.2. Bounding Box Enhancement Module

The BEM merges the multibox results and semantic segmentation result to eliminate the false
bounding boxes. The regional median probability of all bounding boxes was calculated based on the
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semantic segmentation result. The bounding box will be removed if its regional median probability is
less than the threshold. The detailed steps of the BEM are shown in Algorithm 1.

Algorithm 1. Bounding box enhancement module (BEM)

Step 1. Acquire a multibox result: Reci = ((x1, y1), (x2, y2))i. i refers to the i-th result. (x1, y1)
is the coordinates of the upper left corner of the text bounding box. (x2, y2) is the
coordinates of the right bottom corner of the text bounding box.

Step 2. Get the rectangular area AreaRec of Reci in the semantic segmentation result.
Step 3. Calculate the regional median probability:

PArea = Median( ∑
ij in Aera

Pij)

Step 4. Compare PArea to the threshold T:
If PArea < T: Delete the Reci in the multibox results.
Else: continue.

Step 5. Repeat steps 1–4 until all multibox results have been calculated.

The BEM process is shown in Figure 5. It can be seen from the figure that region (a) is the text and
the region (b) is the background. These two blocks are detected as text in multibox processing. From
the heatmap of the semantic processing results, we found that region (a) was bright while region (b)
was dark. After the processing of the bounding box enhancement module, region (a) was reserved and
region (b) was discarded.
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3.3. Semantic Bounding Box Module

The SBM contains two modules: CRF processing and bounding box search. The CRF processing
solves the problem of boundary blur and stickiness in text semantic segmentation. The bounding box
search obtains the optimal text semantic segmentation bounding box according to the CRF processing
result. The SBM process is shown in Figure 6.
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The semantic segmentation result has a defect, which is that it is easy to cause adhesion when
words are close. The CRF algorithm is used to correct the pixel-level prediction of the semantic
segmentation result. Text edges are sharper and less sticky after CRF processing. CRF has been
employed to smooth noisy segmentation maps [28,29]. These methods use short-range CRF to couple
neighboring nodes, favoring same-label assignments to spatially proximal pixels. In this work, the
goal should be to recover the detailed local structure rather than smooth it further. Therefore, the fully
connected CRF model [30] is integrated into our network. The CRF model employs the energy function:

E(x) = ∑ iθi(xi) + ∑ ijθij
(
xi, xj

)
, (1)

where the x is the label assignment for pixels and the unary potential is defined as follows:

θi(xi) = − log P(xi), (2)

where P(xi) is the label assignment probability of pixel i computed by semantic processing.
The pairwise potential has a form that allows for efficient inference while using a fully-connected

graph, i.e., connecting all pairs of image pixels, i, j. In particular, as in [30], the following expression
is used:

θij
(

xi, xj
)
= µ

(
xi, xj

)[
ω1exp

(
−
‖ pi − pj ‖2

2σ2
α

−
‖ Ii − Ij ‖2

2σ2
β

)
+ ω2exp

(
−
‖ pi − pj ‖2

2σ2
γ

)]
, (3)

where µ
(

xi, xj
)
= 1 if xi 6= xj, and zero otherwise. The remaining expression uses two Gaussian

kernels in different feature spaces; the first, bilateral kernel depends on both pixel positions p and
RGB color I, while the second kernel depends on pixel positions. The hyperparameters σα, σβ and σγ

control the scale of Gaussian kernels. The first kernel has similar tags for pixels with similar colors
and positions, whereas the second kernel considers spatial proximity while smoothing the boundaries.
Figure 7 shows the effectiveness of the CRF processing.
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4. Experimental Results

4.1. Datasets

• ICDAR2013

The ICDAR 2013 [31] consists of 229 training images and 233 testing images, with word-level
annotations provided. It is the standard benchmark for evaluating near-horizontal text detection. Some
examples of the ICDAR2013 dataset are shown in Figure 8.
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• Street View Text (SVT)

The SVT dataset is harvested from Google Street View. Image text in this data exhibits high
variability and often has low resolution [32]. In autonomous driving, the text in these Street View
images helps the system confirm its position. Compared to the ICDAR2013 dataset, text in the SVT
dataset has lower resolution, more complex light conversion, and relatively smaller text, which is more
challenging. Figure 9 shows some examples of the SVT dataset.
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4.2. Exploration Study

Inside feature extraction (IFE) and outside mutual correction (OMC) algorithms were tested. Since
the IFE in SSTD cannot be removed alone, the performance without IFE cannot be tested. Therefore,
only IFE and OMC algorithms were tested. The training and testing environments were consistent.
All methods used the same training datasets, the same number of training epochs, and the same
set parameters. We used two standard evaluation protocols: the IC13 standard and the DetEval
standard [33]. The proposed method was implemented with Caffe and Matlab, running on a computer
with an 8-core CPU, 32G RAM, TitianXP GPU, and Ubuntu 16.04. The complete test results are shown
in Tables 1 and 2.

Table 1. Comparison of the IFE and outside mutual correction (OMC) algorithms (on ICDAR2013).

Network
IC13 Standard DetEval Standard

R 1 P 2 F 3 R P F

SSD 52.20% 87.76% 65.18% 53.06% 87.24% 65.98%
SSD-IFE 49.17% 82.79% 61.69% 49.88% 83.29% 62.39%

SSD-OMC 69.30% 81.21% 74.78% 70.15% 85.10% 76.91%
SSTD-IFE 74.54% 83.65% 78.83% 75.39% 84.07% 79.50%

SSTD-OMC 80.51% 82.27% 81.38% 80.43% 87.60% 83.86%
1 Recall. 2 Precision. 3 F-measure.

Table 2. Comparison of IFE and OMC algorithms (on SVT).

Network
IC13 Standard DetEval Standard

R P F R P F

SSD 48.61% 73.24% 58.43% 48.17% 75.12% 58.70%
SSD-IFE 50.34% 79.91% 61.77% 50.34% 79.91% 61.77%

SSD-OMC 69.91% 73.57% 71.69% 66.01% 77.97% 71.48%
SSTD-IFE 78.60% 73.35% 75.89% 78.60% 73.35% 75.89%

SSTD-OMC 85.13% 71.68% 77.83% 81.65% 79.78% 80.71%

‘SSD’ refers to the original SSD algorithm without IFE and OMC. ‘SSD-IFE’ refers to the SSD
added IFE algorithm. ‘SSD-OMC’ refers to the SSD added OMC algorithm. ‘SSTD-IFE’ refers to the
SSTD added IFE algorithm, which was the original SSTD. ‘SSTD-OMC’ refers to the SSTD added
OMC algorithm.

The experimental results show that the IFE algorithm reduces the accuracy of text detection on
the ICDAR2013 dataset. For the SVT dataset, the IFE algorithm slightly improved the accuracy of
the text detection. Compared to the IFE algorithm, the OMC algorithm significantly improved the
F-measure score.
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4.3. Experimental Results

Five methods were tested on the ICDAR2013 and SVT datasets: FCN, SSD, SSD-OMC, SSTD, and
SSTD-OMC. The SSD-OMC and the SSTD-OMC use the proposed algorithm to combine the semantic
segmentation with SSD and SSTD, respectively.

Table 3 shows the tested results of five methods on the ICDAR2013 dataset using two standard
evaluation protocols. It can be seen from the test results that the SSD-OMC and SSTD-OMC algorithms
showed an increase of 17.10% (IC13), 17.09% (DetEval) and 5.97% (IC13), 5.04% (DetEval) in the recall
rate relative to the SSD and SSTD algorithms, which means that more texts missed by the multibox
processing was detected. The SSD-OMC method was 9.60% (IC13) and 10.93% (DetEval) higher than
the SSD method in the F-measure score, and the SSTD-OMC method was 2.55% (IC13) and 4.36%
(DetEval) higher compared to the SSTD method in the F-measure score, meaning that the multibox
processing optimized by our algorithm had a better detection accuracy.

Table 3. Improved algorithm compared with original algorithm (on ICDAR2013).

Network
IC13 Standard DetEval Standard

R 1 P 2 F 3 R P F

FCN 62.54% 60.80% 61.66% 66.97 62.05% 64.42%
SSD 52.20% 87.76% 65.18% 53.06% 87.24% 65.98%

SSD-OMC 69.30% 81.21% 74.78% 70.15% 85.10% 76.91%
SSTD 74.54% 83.65% 78.83% 75.39% 84.07% 79.50%

SSTD-OMC 80.51% 82.27% 81.38% 80.43% 87.60% 83.86%
1 Recall. 2 Precision. 3 F-measure.

Table 4 shows the results of the SSTD-OMC algorithm and four other advanced text detection
algorithms tested on the ICDAR2013 dataset. As can be seen in the table, SSTD-OMC has a higher
f-measure score, indicating that SSTD-OMC had the better detection accuracy among these five
algorithms. Some detection results are shown in Figure 10.

Table 4. Improved algorithm compared with other advanced algorithms (on ICDAR2013).

Network
IC13 Standard DetEval Standard

R P F R P F

Yin [34] 0.66 0.88 0.76 0.69 0.89 0.78
Neumann [35] 0.72 0.82 0.77 - - -

Zhang [36] 0.74 0.88 0.80 0.76 0.88 0.82
Textboxes [22] 0.74 0.86 0.80 0.74 0.88 0.81

SSTD-OMC 0.80 0.82 0.81 0.80 0.80 0.83

Table 5 shows the results of five methods tested on the SVT dataset. The SSD-OMC method
showed an improvement of 13.62% (IC13) and 12.78% (DetEval) on the F-measure score compared
to the SSD method, while the SSTD-OMC method improved 1.94% (IC13) and 4.82% (DetEval) on
the F-measure score compared to the SSTD method. Figure 11 shows some detection results from the
SVT dataset.
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5. Conclusions

Our work provided an OMC algorithm to fuse multibox with semantic segmentation. In the OMC
algorithm, semantic segmentation and multibox were processed in parallel, and the text detection
results were mutually corrected. The mutual correction process had two stages. In the first stage, the
pixel-level classification results of the semantic segmentation were adopted to correct the multibox
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bounding boxes. In the second stage, the CRF algorithm was used to precisely adjust the boundaries
of the semantic segmentation results. Then the NMS was introduced to merge the text bounding
boxes generated by multibox and semantic segmentation. The experimental results showed that the
proposed OMC algorithm had better performance than the original IFE algorithm. The F-measure score
increased by a maximum of 13.62% and the highest F-measure score was 81.38%. Future work will
focus on more powerful and faster detection structures, as well as on rotating text detection research.
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