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Abstract: Although industrial robots are widely used in production automation, their applications in
machining have been limited because of the structural vibrations induced by periodic cutting forces.
Since the dynamic characteristics of an industrial robot depends on its configuration, the responses
of the robot structure to the cutting forces are affected by how the workpiece is placed within the
workspace of the robot. This paper presents a method for workpiece pose optimization for a robotic
milling system to improve the quasi-static performance during machining. Since the milling forces
are time-varying due to the characteristics of the multi-tooth and discontinuity of milling, these
forces can excite vibrations inside the robot structure. To address this issue, a structural dynamics
model is established for industrial robots, considering their joint flexibility, and a milling force
formulation is incorporated into the robot dynamics model to investigate the forced vibrations of the
flexible joints. Then, the quasi-static performance of the robotic machining system is evaluated by the
vibration-induced offset of the cutter tool that is mounted on the end-effector. Finally, an optimization
approach is given for the workpiece pose to minimize the cutter tool offset under the periodic milling
force. A numerical simulation demonstrates that the optimal workpiece pose can significantly reduce
the overall tool offset during machining and can lower the variation of the tool offset along the
milling path.
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1. Introduction

Due to their flexibility, efficiency, and reliability, industrial robots have played an important role
in production automation for a wide spectrum of applications including welding, painting, assembly,
packaging, and material handling [1]. Recently, these machines have also been proposed for more
complex tasks with a large dynamic loading such as machining [2], and these robotic applications
require a high positioning accuracy and involve large time-varying loading during the processes.
A few examples are the European projects HEPHESTOS and COMET that were launched to develop
innovative robotic machining systems for small-batch production [3,4] and Boeing’s initiative that
aimed at using robots to automate drilling and percussive riveting processes in aircraft assembly [5].
On the other hand, the challenges for these robotic applications have also been highlighted in literature
due to the inherent disadvantages of industrial robots compared with machine tools, such as having
a low positioning accuracy and being prone to vibrations [2].

With the development of modern metrology techniques such as laser tracking [6,7] and
photogrammetry-based measurement [8,9], the robotic positioning accuracy can be improved by
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kinematic parameter calibration [10–12] and positioning error compensation [7,8,13–16]. For example,
Andres et al. [12] developed a calibration method to estimate the external joint configuration parameters
using a laser displacement sensor. Morris et al. [16] developed a kinematic model for a robot arm
through a coordinate measuring machine (CMM), and experimental measurements at some robot poses
were taken using the CMM. However, industrial robots still face issues due to structural vibrations for
these applications, and the resulting influence is difficult to eliminate by metrology techniques.

Robotic machining involves dynamic loading in a way that the magnitudes and directions of the
force and torque acting on the robot dramatically change with time during machining. The resulting
forced vibrations of the robot structure lead to much more complicated dynamics behaviors than many
other robotic tasks such as pick-and-place and welding where static or very low contact forces act
on the robot. First, the forced vibrations of the robot can seriously affect the process, for example, by
decreasing the efficiency [17], damaging the surface quality [18], causing tool misalignment [19], and
reducing the fatigue lives of the tool and the robot to a great extent [20,21]. Second, not only static
but also inertial forces are important for these applications. Furthermore, the interaction between
the machining forces and the robot vibrations can even cause instability to the robotic machining
system [22,23] if some machining parameters such as spindle speed and feed rate are not selected
properly [24,25]. All these works have shed some light on the complexity of structural dynamics of
robotic machining.

Several approaches have been proposed to improve the robotic machining quality for a specific
task considering the forced vibrations caused by machining. Vosniakos et al. [26] used two genetic
algorithms to find the region with the best manipulability and the lowest joint torque in the robot
workspace. Baglioni et al. [27] developed a parametric modeling procedure that can correctly simulate
the robot dynamics behavior. Klimchik et al. [28] modeled the interaction between the milling tool and
the workpiece and proposed a method for compensating the compliance errors based on a nonlinear
stiffness model. Kaldestad et al. [29,30] adjusted the tool path to counteract the tool deflections
during the milling operations after estimating the tool force and robot joint stiffness. Kubela et al. [31]
proposed an online method for compensating the backlash errors induced by the drive reversion.
Cordes et al. [32] proposed a new joint space model that combined the joint stiffness and the reversal
error and then used the model to compensate the milling path deviation. Shi et al. [33] proposed
a prediction model that could estimate the stable and unstable zones of milling process.

In a robotic machining system, the workpiece is usually clamped on a work table and must
be placed within the work space of the robot. The configuration of the robot and the cutting force
acting on it during machining are dependent upon the pose of the workpiece relative to the robot.
It has been found that the natural frequencies of a robot strongly depend on its configuration [34]
and that the robot stiffness varies significantly in different directions [35,36] and can be improved by
optimizing the robot configuration for a given pick-and-place task [36–38], which implies that the
vibration characteristics of robotic machining are affected by how the workpiece is placed with respect
to the robot. For example, the robot stiffness is considered in Reference [37] for the optimization
of the redundant degrees of freedom to minimize the displacement of the cutting tool under static
force. In this paper, the forced vibrations of the robot are considered and the optimization goal
is to minimize the overall steady-state offset amplitude of the cutting tool under the time-varying
cutting force during the milling process. To this end, a structural dynamics model is established for
industrial robots considering their joint flexibility, and a milling force formulation is incorporated
into the robot dynamics model to investigate the forced vibrations of the flexible joints. Then, the
quasi-static performance of the robotic machining system is evaluated by the vibration-induced offset
of the cutter tool that is mounted on the end-effector. The performance is quasi-static because the effect
of the robot’s deformation on the milling force is neglected. Finally, an optimization approach is given
for the workpiece pose to minimize the cutter tool offset under the periodic milling force.

The next three sections of this work are organized as follows. Section 2 describes the robotic
milling system and the problem statement. Section 3 presents the theoretical modeling, including the
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robot dynamics model, the milling force model, and the optimization approach for the workpiece pose.
A numerical simulation study is given in Section 4.

2. System Description and Problem Statement

As shown in Figure 1, a robotic machining system for milling is being developed. The system
is composed of a Kuka KR 300-2 PA robot, a cylindrical helical end milling cutter mounted the
robot end-effector, a work table located within the robot workspace, a modular fixture placed on the
work table, and a workpiece to be machined. Both the work table and the fixture have pin holes for
positioning reference and bolt holes for fastening, and the workpiece is fixed on the fixture. In addition,
the inclination angle θp between the fixture and the work table can be adjusted. As a result, the pose of
the workpiece relative to the robot can be represented by the position of the fixture on the work table
denoted by xp and yp and the inclination angle θp as displayed in Figure 1.
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Figure 1. The robotic milling system under study.

During the milling operation, the robot is subjected to periodic milling forces due to the
intermittence of the cutter teeth. Since the machining operations can excite vibrations inside the
robot structure, it is necessary to guarantee that the offset of the cutter tool maintains certain tolerances
during the milling operation. In other words, the robot must be able to the hold the cutter tool firmly
under the periodic milling forces. The machining forces can be changed by adjusting the machining
parameters like the spindle speed and the feed rate; however, the adjustment of these parameters is
constrained by many other factors such as the process efficiency requirement and the capability of
the spindle and the robot. On the other hand, as mentioned above, the vibration characteristics of the
system are also influenced by the workpiece pose relative to the robot, and the workpiece pose can be
adjusted relatively easily. Then, the problem under study can be defined given the required milling
tasks and milling parameters to find the optimal workpiece pose relative to the robot that minimizes
the cutter tool offset under the periodic milling forces.

3. Theoretical Modeling

3.1. Dynamic Model of Robot

We first establish a structural dynamics model for the industrial robot to analyze the vibration
characteristics. For this purpose, an n-DOF industrial robot with n links and n rotary joints is illustrated
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in Figure 2. A cutter tool is mounted on the robot end-effector. The local body-fixed coordinate systems
{oi_xiyizi} (i = 1, 2, . . . ,n) and the tool coordinate system {ot_xtytzt} are established at each joint and at
the cutter tool tip, respectively. The position vector of the ith joint and the origin of tool coordinate
system in the inertial coordinate system {o_xyz} are denoted by Pi and Pt respectively. During the
milling operation, the cutter is subjected to an external machining force FE.
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For industrial robots, the main source of deformation is joint flexibility [1,39]. Thus, to simplify
the robot model, we assume that all the links are rigid and that all the joints are equivalent to linear
elastic torsion springs. If the joint angles for a given configuration are denoted as q = (q1, q2, . . . , qn)T,
then the dynamic model of the stationary robot under forced vibrations in this configuration can be
written as

M∆
..
q + C∆

.
q + K∆q = JT

v FE (1)

where M represents the n × n symmetric generalized mass matrix, K is the n × n diagonal stiffness
matrix with its diagonal entries equal to the torsional stiffness of the corresponding joints, and C is
a damping matrix. Both K and C are defined in the joint space. Vector ∆q is the perturbations in the
joint angles from an equilibrium configuration and represents the joint deflections. The 3 × n linear
velocity Jacobian matrix Jv represents the mapping from the joint rates to the velocity of the tool tip
such that v = Jvq̇, in which v is the linear velocity of tool tip written in the inertial coordinate system
and q̇ is the joint rates. Matrices M and Jv depend on the robot configuration, and the force FE depends
on the specific machining task.

The dynamic model described as Equation (1) is a linear time invariant system. Force FE can be
considered as the external input, and ∆q is the output response of the robot. In addition, if the joint
deflection is small, the linear displacement of tool tip offset can be written as

∆d = Jv∆q, (2)

Thus, once the joint deflection is obtained, the offset of the cutter tool caused by the robot vibration
can be calculated through Equation (2), which can be used to evaluate the quasi-static performance of
the robotic machining system under a specific machining force.

3.2. Milling Force Model

A cutting force model for cylindrical helical end milling is incorporated into the equation of
motion of the robot to obtain the force vector FE, without considering the regenerative effect and the



Appl. Sci. 2019, 9, 1044 5 of 15

effect of the dynamic response of the robot on the cutting force [40,41]. In our system, up milling is
chosen due to the concern with a backlash of the system. The readers are referred to Reference [42] for
more detail about the cutting force modeling of down milling, which is similar in principle to that of
up milling. In this cutting force model, the instantaneous cutting forces are assumed to be proportional
to the area of contact between the flute and the workpiece [43]. Then, a mathematical model of the
instantaneous milling force can be constructed by calculating the uncut chip thickness in a certain
time. Then, the change of the cutter edge length during milling is analyzed to obtain the continuous
milling force in the whole period. Figure 3 shows the geometric size and force condition of a single
cutting edge of the cylindrical helical end mill. The tool coordinate system {ot_xtytzt} (also see Figure 2)
is established as follows. The origin is at the center of the milling cutter tool tip, the zt axis is along
the centerline of the milling cutter, the xt axis is along the direction of feed rate, and the yt axis is
determined from the right-hand rule. N represents the number of milling teeth; β and R represent
the helical angle and the radius of the cutter, respectively; and ap and ae represent the axial and radial
depth of cut, respectively.
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Due to the existence of the helix angle of the cutter tool, the axial height of cutter teeth varies
with the cutting thickness. Therefore, a microelement method is used to model a single cutter tooth.
First, the cutter edge is discretized into numerous cutting-edge elements along the zt axis direction,
and the height of each axial element is denoted as dz. ϕ represents the projection angle of the entire
cutting edge in the xtotyt plane, and this projection angle is denoted as ψ when the axial height reaches
z′. Then we have the following equations [42–44]:

ϕ =
2πnc

60
t and ψ =

z′tanβ

R
, (3)

where nc represents the spindle speed with a unit of rpm and t represents time. The cutting-edge angle
θ between the microelement with an axial height of z′ and the yt axis can be calculated as

θ = ϕ− ψ. (4)

The determination of the cutting forces requires the area of contact between the end mill and the
workpiece. For an axial element of thickness dz, this is equivalent to requiring the uncut chip thickness
h. The uncut chip thickness h with an axial height of z′ can be approximately expressed as
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h(θ) = ft sin(θ), (5)

where ft = vf/(nN) represents the feed per tooth and vf represents the feed rate. Because dz is very
small, the area of contact with a height of dz between the flute and the workpiece at time t can be
approximately equal to h(θ)dz. Then, we can calculate the elemental cutting force at this moment.
Next, the force generated by this cutting tooth can be obtained by adding up all the elemental cutting
forces. This is a definite integral problem, and we can get the result by integrating the axial height
numerically. The upper and lower limits of integration can be obtained from the height of the cutting
tooth involved during milling. In addition, there can be multiple cutting teeth involved in the cutting
at time t. Then, we need to add up the forces from all the cutting teeth involved in the cutting to
obtain the overall cutting force. The milling force is periodic because of the intermittence of the cutter
teeth. The axial milling force along the zt axis can be neglected, since it is typically much smaller than
the tangential and radial forces and has small contributions to the bending moment acting on the
cutter tool. The detailed expressions for the tangential and radial milling forces are elaborated in thte
Appendix A.

3.3. Steady-State Response and Optimization Method

Since the robot drives the tool to move slowly along the milling path, we can use the steady-state
response of the cutter tool offset to evaluate the quasi-static performance of robotic milling in a given
position. The cutter tool offset can be solved from Equations (1) and (2) in the time domain if the
external forces are given. For a specific milling task, we select np points along the path and obtain the
amplitudes di (i = 1, 2, . . . , np) of the steady-state responses of the cutter tool offset at these points.
The steady-state response amplitudes di can also be obtained from Equation (1). Then, we calculate the
mean value of all these amplitudes dm to quantify the overall quasi-static performance for this task.
Then we have the following Equation:

dm =

np

∑
i=1

di

np
(6)

If a local coordinate system {ow_xwywzw} is established on the workpiece, the position vectors pmi
(i = 1, 2, . . . ,np) of the selected points and the milling forces FEi (I = 1, 2, . . . , np) exerted on the cutter
at these points in the inertial coordinate system can be expressed as

pmi = pc + pw + pni
and FEi = RniF′

(
i = 1, 2, . . . , np

)
,

(7)

where pc and pw represent the position vectors of the work table and workpiece coordinate systems
respectively and both vectors are written in the inertial coordinate system. In particular, vector pw

can be obtained by xp and yp as pw = [xp, yp, zw]T in which zw is a constant and represents the height
of the origin of workpiece coordinate system ow. Vectors pni (i = 1, 2, . . . ,np) represent the position
vectors of the selected points in the inertial coordinate system and can be calculated as pn = Rwz(θp)p’ni
in which p’ni are the position vectors of the selected points in the workpiece coordinate system and
Rwz(θp) represents the rotation matrix from the workpiece coordinate system to the inertial coordinate
system. Vector F’ represents the cutting force in the tool coordinate system and can be obtained with
the cutting force model presented in Section 3.2, and the 3 × 3 matrices Rni (i = 1, 2 . . . np) represent
the rotation matrices from the tool coordinate system of the selected points to the inertial coordinate
system. Now, the process to calculate dm is illustrated in Figure 4.
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The workpiece has three degrees of freedom relative to the work table in this robotic milling
system, which can be denoted by a parameter vector p = [xp, yp, θp]T. Then we aim at minimizing the
mean value of the amplitudes of the cutter tool offset along the machining path by adjusting these
parameters. The optimization problem can be expressed as

Minimizedm
(
xp, yp, θp

)
, (8)

where dm is computed with the steps described in Figure 4. Once this optimization problem is solved,
we find the optimal pose of the workpiece relative to the robot for the milling.

4. Numerical Simulation

4.1. System Parameters

In this simulation analysis, we only consider the flexibility of the first three joints of the robot
because the moment arms of the cutting force about the last three joints are much shorter than those
about the first three joints. The aforementioned coordinate systems in this simulation are described as
follows. The inertial coordinate system {o_xyz} and the local coordinate systems {oi_xiyizi} (i = 1, 2, 3)
of the robot are established as shown in Figure 5a. The inertial coordinate system is located at the
base of the robot with the positive z-axis vertically upward and the y-axis perpendicular to the plane
containing the second and third links. The zi-axis of the local coordinate systems are along the rotation
directions of the corresponding joints; the axis x1 is parallel to the axis x when the robot is stationary,
and the x2 and x3 axes are along the link length directions. The directions of the other reference axes of
{oi_xiyizi} (i = 1, 2, 3) are determined from the right-hand rule. The local coordinate system of the work
table {oc_xcyczc} is established at the middle position near the robot, with the xc and zc axes parallel to
the x and z axes respectively and the yc axis is determined from the right-hand rule. The workpiece and
the milling path are shown in Figure 5b. The workpiece coordinate system {ow_xwywzw} is established
at the bottom of the workpiece, with the xw and yw axes parallel to the length and width and also
parallel to the xc and yc axes respectively and the zw axis is determined from the right-hand rule.
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The geometric, inertial, and structural parameters of the robot are described as follows. The link
length vectors of o1o2, o2o3, and o3ot can be written in local coordinate systems of robot as I12 = [0, 0, l1]T,
I23 = [l2, 0, 0]T, and I12 = [l3, 0, 0]T, where the link lengths are l1 = 0.2 m and l2 = l3 = 0.8 m.
The masses, position vectors of the centers of gravity (CG), and inertia tensors of the links are listed in
Table 1. Note that these vectors and tensors are written in the corresponding local coordinate systems.
The torsional stiffnesses and damping of the three joints can be obtained by a stiffness identification
experiment [45,46]. However, our system is still being built, and thus, the joint stiffness values available
for a robot with similar payload and size are adopted, i.e., k1 = 2.4 × 105 Nm/rad and k2 = k3 = 105

Nm/rad. A damping ratio ξ of 0.06 is used to compute the damping matrix based on the modal test
data for industrial robots given in Reference [46]. Then, the ranges of the joint angles are θ1 ∈ [−π, π],
θ2 ∈ [−π/2, π/2], and θ3 ∈ [−π/3, π/3].

Table 1. The inertial properties of the links.

Link Masses
(kg)

Position Vector of CG
(m)

Inertia Tensors
(kg/m2)

1 80 (0, 0, 0.1)T diag (0.9, 1, 1)
2 40 (0.4, 0, 0)T diag (0.6, 6.5, 6.5)
3 55 (0.4, 0, 0)T diag (0.8, 9.5, 9.5)

The geometric parameters of the work table and the workpiece are described as follows.
The position vector of the origin of the work table coordinate system oc are written as pc= [px, py, pz]T,
where px, py, and pz are equal to 0.6 m, 0 m, and 0.5 m respectively. The length, width, and height of
the work table are 1.16 m, 0.8 m, and 0.5 m, respectively, and the inclination angle of the fixture θp can
change from 0 to π/3. The length L and width D of the milling path are 0.16 m and 0.08 m, respectively.
We select 20 intermediate points uniformly distributed along the milling groove. The position vector
of point 1 in the coordinate system {ow_xwywzw} is pn1 = [nx1, ny1, nz1]T, where nx1 = 0.12 m, ny1 = 0 m
and nz1 = 0 m. The position vectors of the rest points can be calculated along the path.

The parameters for the cutter tool are described below. The teeth number and helical angle of the
milling cutter are 2 and π/3 in this simulation. The diameter of the tool is 0.024 m, and the material of
the tool and workpiece are uncoated tungsten carbide and aluminum alloy, respectively. The axial
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cutting depth and radial cutting depth are 0.002 m and 0.004 m, respectively, and the feed per tooth ft
is 0.00012 m. The coefficient parameters kt1 and kt2 for calculating the cutting force (see Appendix A)
are experimentally determined as 387 and 0.0018, respectively. Similarly, parameters b1 and b2 are
determined as −0.327 and −0.224, respectively [43]. The readers are referred to the Appendix A for
more information about these cutting force parameters.

4.2. Milling Force and Mean Value of Tool Offset

According to the milling parameters given in Section 4.1, we first obtain the milling force and its
Fast Fourier Transform (FFT), as shown in Figure 6, when the speed n is equal to 1000 rpm. We can see
that this spindle speed leads to a frequency of 33.33 Hz for the cutting force with two teeth.
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In this simulation, we use the lsim function in MATLAB to compute the time-domain response of
the joint deflections ∆q under the periodic milling force from Equation (1). Then, the cutter tool offset
can be obtained from Equation (2) for every point along the tool path.

Figure 7 shows the mean value of the tool offset amplitudes dm with different xp, yp, and θp and
the variation of dm in the xpyp plane with different θp. The following observations can be found. In
Figure 7a, when yp is equal to 0 m and 0.25 m, the deflection of joint 3 plays a major role when xp is
between 0 m and 0.2 m. When xp increases, the torque acting on joint 3 due to the x component of the
cutting force decreases. When xp is between 0.2 m and 0.6 m, the deformation of joint 1 plays a major
role, and the torque acting on joint 1 due to the y component of the cutting force increases with the
increase of xp. When yp is equal to 0.5 m, the deformation of joint 1 plays a major role; therefore, we
see that dm increases when xp increases. In Figure 7b, it is seen that dm is asymmetrical about the oxz
plane because the cutting forces are in opposite directions in every two symmetrical positions about
the oxz plane along the milling groove. Figure 7c shows that dm increases when the inclination angle θp

increases. This is likely because the z component of milling force and the resulting torques on joints
2 and 3 increase as the angle θp increases. Similarly, we find in Figure 7d that as angle θp increases,
dm becomes larger. In addition, it can be seen from Figure 7d that when θp remains unchanged, dm
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decreases as the workpiece is placed closer to the robot. In particular, when vector p is equal to [0.6 m,
0.5 m, π/3]T and [0.6 m, −0.5 m, π/3]T, dm dramatically increases since the natural frequencies of the
robot along the milling path with these workpiece poses are close to twice that of the milling force
frequency (66.7 Hz).
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and 0.6 m; and (c) the curves of dm change θp when [xp, yp] = [0,0] m, [0.3, 0.25] m, and [0.6, 0.5] m.
(d) The variation of dm in the xpyp plane when θp is equal to 0, π/12 rad, π/6 rad, and π/3 rad.

4.3. Optimization Results

In this section, the workpiece pose is optimized to minimize the mean value of the steady-state
amplitudes of the cutting tool offset dm along the milling path defined in Figure 5b. Accordingly, the
optimization problem in Equation (8) can be rewritten for this task as below:

Minmizedm
(

xp, yp, θp
)

s.t. xp ∈ (0, 0.6)
yp ∈ (−0.5, 0.5)
θp ∈ (0,π/3)

(9)

To capture the possible coupling between the three optimization variables, a global optimization
algorithm is used for solving the problem. The algorithm utilized here, called optQuest/NLP or
OQNLP [47], is designed to find the global optima for pure and mixed integer nonlinear problems
with multiple constraints and variables, where all the objective functions are differentiable with respect
to the continuous variables. The optimization results and the other selected five sets of dates are
listed for comparison in Table 2. The curves in Figure 8 show the steady-state amplitudes of the tool
offset in the selected positions along the milling path with different workpiece poses p. We can find
that dm introduced in Section 3.3 is strongly influenced by the workpiece pose. In addition, when
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the workpiece pose remains unchanged, dm can vary greatly at different points along the milling
path. The optimal workpiece pose is obtained as p = [0, −0.46, 0]T, which gives the smallest average
tool offset amplitude dm of about 0.22 × 10−3 m. Also, the tool offset changes relatively smoothly in
different positions along the path compared with the variations with other workpiece pose parameters.
dmi represents the dm at the position of the ith workpiece position.

Table 2. dmi with different places of workpiece. * represents the set of result as the optimal workpiece pose.

Number 1 2 3 4 5 6 *

p [0.6, 0.2, π/3]T [0.2, 0.3, π/6]T [0.3, −0.4, π/3]T [0.5, −0.5, 0]T [0,0,0]T [0, −0.46, 0]T

dm (0.001 m) 0.73 0.32 0.54 0.25 0.25 0.22
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5. Conclusions

Structural vibration induced by periodic machining force is one of the main limitations for the
application of industrial robots in machining. This paper presents a method for workpiece pose
optimization for robotic milling to improve the quasi-static performance of the system. The method
integrates a structural dynamics model of flexible-joint robots, a cutting force model for cylindrical
helical end milling, and a global optimization for the workpiece pose. A numerical simulation is carried
out for a robotic milling system for a given task. The results show that the quasi-static performance
of the robot is strongly influenced by the workpiece pose and can change dramatically in different
positions along the milling path. The optimal workpiece pose can effectively reduce the overall tool
offset due to the periodic milling force and can lower the variation of the tool offset along the path.
The results are helpful to improve the quasi-static performance including the accuracy and quality of
robotic machining. The following future research directions are recommended. First, the regenerative
effect on the undeformed chip thickness and the dynamic response of the robot should be considered.
Second, the nonlinear behavior of robot joints should be further studied in the model.
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Appendix A

The tangential and radial cutting force acting on a microelement of the milling tool with a thickness
of h(θ) can be expressed as {

dFt = Ktch(θ)dz
dFr = KrcdFt

, (10)

where Ktc and Krc are the tangential and radial cutting force coefficients respectively and are
experimentally determined as the following [43]:

Ktc = kc1tc
b1

and Ktc = kc2tc
b2

, (11)

where tc is the average chip thickness value over one cutter revolution, and for a rigid tool, it can be
given as

tc =
ftae

R cos−1(1− ae
R )

. (12)

The elemental tangential and radial forces can be further written in the tool coordinate system
as below: {

dFx = −dFt cos θ − dFr sin θ

dFy = dFt sin θ − dFr cos θ
, (13)

where dFx and dFy are the elemental forces in the xt and yt directions acting on the microelement with
an axial height of z’, respectively. We can integrate Equation (12) about the axial height numerically to
obtain the cutting force acting on a single cutting edge. Lastly, the instantaneous cutting force of the
whole milling cutter at a certain time can be obtained by adding up the cutting forces on all the cutting
edges and expressed as 

Fx =
Ne
∑

j=1

∫ z2
z1

dFx

Fy =
Ne
∑

j=1

∫ z2
z1

dFy

, (14)

where Ne represents the number of cutting edges and the upper and lower bounds z1 and z2 represent
the height of the lower and upper ends of the cutting edge. As the cutter tool rotates, the length of the
cutting edge involved in milling first increases and then decreases until zero. Accordingly, single-tooth
milling can be divided into three stages: the entry phase, the stabilization stage, and the off stage.
The upper and lower limits for the integration for these three cutting stages are listed in Table A1,
where the width of the cutting layer aw can be expressed as

aw = R cos−1
(

1− ae

R

)
. (15)

Finally, the upper and lower limits of the next cutter tooth can be obtained by its correlation with
the first cutter tooth.

Table A1. The integral upper and lower limits of a cutter tooth.

Time Range The Upper The Lower

Entry phase 0 ≤ 2Rπn
60 (t1 − t0) ≤ ap tan β 0 2Rπn

60 tan β (t1 − t0)

Stabilization stage ap tan β ≤ 2Rπn
60 (t1 − t0) ≤ aw 0 ap

Off stage aw ≤ 2Rπn
60 (t1 − t0) ≤ ap tan β + aw

2Rπn
60 tan β (t1 − t0)− aw

tan β ap
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