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Featured Application: The potential application of this work is an electrode material for
supercapacitor application.

Abstract: Nitrogen-doped graphene (NDG) and mixed metal oxides have been attracting much
attention as the combination of these materials resulted in enhanced electrochemical properties. In this
study, a composite of nitrogen-doped graphene/manganese oxide/iron oxide (NDG/Mn3O4/Fe3O4)
for a supercapacitor was prepared through the hydrothermal method, followed by freeze-drying.
Field emission scanning electron microscopy (FESEM) images revealed that the NDG/Mn3O4/Fe3O4

composite displayed wrinkled-like sheets morphology with Mn3O4 and Fe3O4 particles attached on
the surface of NDG. The presence of NDG, Mn3O4, and Fe3O4 was characterized by Fourier transform
infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The electrochemical studies revealed that
the NDG/Mn3O4/Fe3O4 composite exhibited the highest specific capacitance (158.46 F/g) compared
to NDG/Fe3O4 (130.41 F/g), NDG/Mn3O4 (147.55 F/g), and NDG (74.35 F/g) in 1 M Na2SO4 at a
scan rate of 50 mV/s due to the synergistic effect between bimetallic oxides, which provide richer
redox reaction and high conductivity. The galvanostatic charge discharge (GCD) result demonstrated
that, at a current density of 0.5 A/g, the discharging time of NDG/Mn3O4/Fe3O4 is the longest
compared to NDG/Mn3O4 and NDG/Fe3O4, indicating that it had the largest charge storage capacity.
NDG/Mn3O4/Fe3O4 also exhibited the smallest resistance of charge transfer (Rct) value (1.35 Ω),
showing its excellent charge transfer behavior at the interface region and good cyclic stability by
manifesting a capacity retention of 100.4%, even after 5000 cycles.
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1. Introduction

The rapid growth of the human population and the development of the global economy has
caused the increasing demand for energy. The global energy need is predicted to be doubled by the
mid-century and more than triple by the end of this century [1]. Therefore, an energy storage system is
needed to store excess energy generated and to supply it to electrical devices effectively. Among energy
storage devices, supercapacitors are always preferred due to their high performance in energy storage
compared to batteries, flywheels, and traditional capacitors. This is because batteries have high energy
density, but low power density and short life cycles. In addition to this, flywheels are cost-effective and
have a long cycle life, but they have installment and safety issues due to their large size. Traditional
capacitors can be charged and discharged in a short time, but they have low energy density.
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A supercapacitor is an electrical component that can store a large amount of electrical energy. It is
a multicomponent system comprised of two electrodes connected to current collectors and a separator
immersed in an electrolyte, and was first used in 1978 as a backup power source in order to maintain
computer memory system [2]. Over the years, due to the development of technology, supercapacitors
have been widely used in portable electronic devices and hybrid electric vehicles because of their rapid
charging-discharging rates, long cycle life, and high specific power. Based on their charge-storage
mechanism, supercapacitors are classified into three types: Electrochemical double layer capacitors
(EDLCs), pseudocapacitors, and hybrid capacitors.

EDLCs, which are made up of carbon-based materials, store charges electrostatically or
non-Faradaically in an electrical double layer formed at the interface between an electrode and
electrolyte [3]. Conversely, pseudocapacitors, which consist of transition metal oxides or conducting
polymers, accumulate charges through faradic processes in which the charge is transferred across
the electrode and electrolyte by reversible redox reaction occurring at the interface [4]. The hybrid
capacitor, which is a combination of a EDLC and pseudocapacitor, where both electrical double layer
and electrochemical processes are involved in charge storage, enable hybrid capacitors to have the
advantages of both EDLCs and pseudocapacitors, i.e., high specific energy and power with good cyclic
stability [2].

The materials used in supercapacitor electrodes need to have high conductivity, large surface area,
good cyclic stability, and a high theoretical specific capacitance [5]. N-doped graphene (Figure 1) is
a good carbon-based electrode material for supercapacitors because it has a large surface area, good
cyclic stability, and high electrical conductivity, however, it has low specific capacitance. On the other
hand, transition metal oxides such as manganese oxides and iron oxides have high specific capacitance,
together with a minimal impact on the environment and low cost, but both of these two oxides have
poor cyclic stability and conductivity. Therefore, graphene or N-doped graphene is usually used as a
support for transition metal oxides, which provides high electrical conductivity and excellent cyclic
stability [6].
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Recently, composites of NDG with mixed metal oxides are extensively studied because the
incorporation of two metal oxides or bimetallic oxides is believed to possess superior specific
capacitance due to the synergistic effect of two types of metal oxides that offer richer redox reactions
compared to single metal oxide or spinel oxides, which can give better electrochemical performance.
Zhang, et al. [7] synthesized nanocomposites of NDG/ZnO/NiO with a specific capacitance of
1834.9 F/g, which is higher than composites of NDG with single metal oxide because ZnO improved
the conductivity of NiO. The nanocomposite has a capacity retention of 93% after 6000 cycles. Ramesh,
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et al. [8] reported that NDG/NiO/MnO2 nanocomposites can achieve a high specific capacitance of
1490 F/g with 98% cyclic stability retention after 2000 cycles.

There are various ways to synthesise NDG/mixed metal oxide composites, such as microwave
synthesis, liquid phase plasma, and the solvothermal and hydrothermal method [9]. Among these
methods, a hydrothermal method is the most preferred method due to its low cost and simple operation.
The hydrothermal process is a process in which the starting materials will be dissolved in the aqueous
solvent under high pressure and temperature and then recrystallized into a form of material that is
difficult to dissolve under normal conditions. This can give particles that are highly dispersed with the
desired size and structure. In addition, only a very small amount and non toxic side product will be
produced in the hydrothermal method [2].

In this study, a hybrid material consisting of N-doped graphene (NDG), manganese oxide
(Mn3O4), and iron oxide (Fe3O4) was prepared using by the hydrothermal method, followed by
freeze-drying. Hydrazine was chosen as a source of nitrogen to be doped between graphene oxide
(GO) sheets and eliminated the oxygenated functional groups of GO in order to restore the conductivity
during the hydrothermal process. The supercapacitive performance of N-doped graphene/manganese
oxide/iron oxide (NDG/Mn3O4/Fe3O4) with various iron and manganese salt ratio (Fe:Mn) was
thoroughly studied.

2. Materials and Methods

2.1. Chemical and Reagents

Graphene oxide (GO) was purchased from Graphenea (San Sebastian, Spain). Manganese
sulphate monohydrate (MnSO4·H2O), polytetrafluoroethylene (PTFE), and carbon mesoporous were
obtained from Sigma-Aldrich (Steinheim, Germany). Iron sulphate heptahydrate (FeSO4·7H2O)
and ethanol (95%) were purchased from HmbG (Hamburg, Germany) and John Kollin Corporation
(Midlothian, UK), respectively. Sodium sulphate (Na2SO4) was obtained from Merck Darmstadt,
Germany. Hydrazine monohydrate (N2H4·H2O) and nickel foam was purchased from Nacalai Tesque
Inc. (Kyoto, Japan) and Goodfellow (Huntingdon, UK) respectively. Deionized (DI) water was supplied
from a Millipore water system (Darmstadt, Germany).

2.2. Preparation of N-Doped Graphene/Metal Oxide (NDG/Metal Oxide) and N-Doped Graphene (NDG)

GO solution (2.67 mg/mL) was first ultrasonicated for 2 h. Then, 25 mM of FeSO4·7H2O and
75 mM of MnSO4·H2O were added in the homogeneous GO solution and ultrasonicated for 1 hour.
After that, the solution was transferred into a 50 mL autoclave and added with 2.5 g of N2H4·H2O.
After continuous stirring for 30 minutes, the autoclave was sealed and subjected to hydrothermal
reduction at 160 ◦C for 3 h. The sample was cooled to room temperature and rinsed with DI water
several times. Finally, the sample was freeze-dried. NDG was also prepared following the same steps
in the absence of FeSO4·7H2O and MnSO4·H2O.

2.3. Physical Characterization

Field Emission Scanning Electron Microscopy (FESEM) was performed using JEOL JSM-7600F in
order to investigate the morphology of the composites. The structural fingerprints of the composites
were analyzed via Shimadzu Fourier-transform infrared spectrometer (FTIR), and Shimadzu XRD 6000
diffractometer with Cu Kα radiation (λ = 1.54 Å) at the scan rate of 2 o/min.

2.4. Electrochemical Characterization

The working electrode was prepared by mixing the active material with carbon black and PTFE,
which acts as a binder in the ratio of 80:10:10. The mixture was then dispersed in ethanol to form a
slurry. The slurry was pasted on a nickel foam (1 cm × 1 cm) and dried at 60 ◦C for 12 h. The nickel
foam was then subjected to a mechanical pressure of 5 MPa for good attachment between the current
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collector and material. The electrochemical characterizations of the composites were conducted using
an Autolab (M101) potentiostat with a three-electrode configuration in 1 M Na2SO4. Nickel foam,
pasted with active materials, was used as a working electrode (WE), platinum wire served as a counter
electrode (CE), and silver/silver chloride (Ag/AgCl) served as a reference electrode (RE). Cyclic
voltammetry (CV) was performed at a potential range of 0–1 V with various scan rates, i.e., 25, 50, 100,
150, and 200 mV/s, whereas galvanostatic charge–discharge (GCD) was evaluated at different current
densities of 0.5, 1.0, 1.5, 2.0, and 2.5 A/g. Electrochemical impedance spectroscopy (EIS) was carried
out in the frequency range of 0.1 Hz to 10 kHz at an open circuit potential (OCP) with alternating
current (AC) potential at an amplitude of 5 mV. The charge transfer resistance (Rct) and equivalent
series resistance (ESR) of the composites were determined from the diameter of the semicircle and the
intercept of the semicircle at the Z’ axis at the high frequency region of the Nyquist plot, respectively.
The cyclic stability test of the composites was performed via CV at a scan rate of 100 mV/s for
5000 cycles.

3. Results and Discussion

3.1. Physical Characterization

Fourier-transform infrared (FTIR) spectroscopy was performed to investigate the chemical
structure of NDG, NDG/Fe3O4, NDG/Mn3O4, and NDG/Mn3O4/Fe3O4 (Figure 2). In the NDG
spectrum (Figure 2a), peaks of N-H stretching, amidic C=O stretching, N-H bending, and C-N
stretching can be observed at 3392 cm−1, 1651 cm−1, 1543 cm−1, and 1103 cm−1, respectively.
The presence of N-H and C-N in the spectra indicates that nitrogen was successfully doped into
graphene oxide during the hydrothermal process. Furthermore, similar peaks of NDG can still be
observed in the spectra after the addition of Mn3O4 and Fe3O4 into NDG, proving a successful
anchoring of Mn3O4 and Fe3O4 on the NDG sheets. In the NDG/Fe3O4 spectrum (Figure 2b), two new
peaks at 428 cm−1 and 524 cm−1 were noticed, which correspond to Fe-O vibrations. The spectrum
of NDG/Mn3O4 (Figure 2c) shows the peaks of Mn-O and Mn-O-Mn vibrations at 561 cm−1 and
709 cm−1, respectively. The presence of both metal oxides in the NDG/Mn3O4/Fe3O4 composite is
confirmed by peaks observed at 507 cm−1, 596 cm−1, and 752 cm−1, which correspond to Fe-O, Mn-O,
and Mn-O-Mn vibrations, respectively, in the NDG/Mn3O4/Fe3O4 spectrum (Figure 2d). The peak of
Fe-O at 428 cm−1 becomes less visible because it is overlapped with the peak of Fe-O at 507 cm−1.
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Field Emission Scanning Electron Microscopy (FESEM) was performed to investigate the
morphologies of NDG, NDG/Fe3O4, NDG/Mn3O4, and NDG/Mn3O4/Fe3O4. As shown in Figure 3a,
NDG exhibits a wrinkle-like sheet morphology, which can also be noticed in the FESEM images of
NDG/Fe3O4, NDG/Mn3O4, and NDG/Mn3O4/Fe3O4 (Figure 3b–d). After the addition of Fe3O4,
the well-dispersed particles of Fe3O4 can be clearly seen to cover the surface of wrinkled NDG sheets
(Figure 3b). The presence of Mn3O4 in NDG/Mn3O4 (Figure 3c) is confirmed as Mn3O4 particles
that obviously attach on the NDG sheets. Upon the addition of both Fe3O4 and Mn3O4 into NDG,
a large number of Fe3O4 and Mn3O4 particles can be seen anchored on the wrinkled surface of NDG,
indicating that both metal oxides are successfully added into NDG (Figure 3d). The presence of the
dispersed particles of Fe3O4 and Mn3O4 cover on the surface of NDG sheets have enhanced Csp

of the composites due to their highly pseudocapacitive properties [10]. This could be due to the
presence of Fe3O4 and Mn3O4 particles on the wrinkle NDG sheets, which effectively prevent severe
agglomeration of NDG sheets [11] and provide more accessible sites for the electrochemical reaction.
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Figure 3. Field Emission Scanning Electron Microscopy (FESEM) images of (a) NDG, (b) NDG/Fe3O4,
(c) NDG/Mn3O4, and (d) NDG/Mn3O4/Fe3O4.

X-ray diffraction (XRD) was performed to identify the structure and crystallinity of the prepared
NDG, NDG/Fe3O4, NDG/Mn3O4, and NDG/Mn3O4/Fe3O4. In Figure 4a, the large broad peak
at 24.6◦, corresponding to the (002) plane, indicates the disordered arrangement of loosely packed
graphene sheets of NDG [12]. The diffraction peaks of NDG are less visible in the XRD patterns of
NDG/Fe3O4, NDG/Mn3O4, and NDG/Mn3O4/Fe3O4 due to the relatively small diffraction intensity
of NDG compared to the strong peaks of Fe3O4 and Mn3O4 [13]. For NDG/Fe3O4 (Figure 4b), the peaks
observed at 30.2◦, 35.5◦, 43.2◦, 57.1◦, 62.7◦, and 74.2◦ are related to the (220), (311), (400), (511), (440),
and (533) planes of the Fe3O4 cubic crystalline system (JCPDS 01-088-0315). The peaks observed
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at 18.0◦, 32.5◦, 36.2◦, 38.1◦, 44.6◦, 58.8◦, and 60.0◦ in the XRD pattern of NDG/Mn3O4 (Figure 4c)
corresponds to the (101), (103), (211), (004), (220), (321), and (224) planes of tetragonal crystallinity
in Mn3O4 (JCPDS 00-001-1127). For NDG/Mn3O4/Fe3O4, almost all the characteristic peaks for
Fe3O4 and Mn3O4 can be observed (Figure 4d), confirming that both Fe3O4 and Mn3O4 exist in the
composite. The diffraction peaks of Fe3O4 in NDG/Mn3O4/Fe3O4 shift to a lower angle, as compared
to NDG/Fe3O4, indicating a partial change of the lattice structure of Fe3O4 after the addition of
Mn3O4 [7].
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3.2. Electrochemical Characterization

Cyclic voltammetry (CV) was performed in 1 M Na2SO4 to evaluate the capacitive performance
of prepared NDG, NDG/Mn3O4, NDG/Fe3O4, and NDG/Mn3O4/Fe3O4 as electrode materials for a
supercapacitor. The specific capacitance (Csp) of the composites was calculated using Equation (1):

Csp =

∫
IdV

mv∆V
(1)

where I is the current density (A/g), v is the scan rate applied (mV/s), ∆V is the potential range
applied, and m is the mass of the sample (g). Figure 5a shows the CV curves of NDG/Mn3O4/Fe3O4

with a different ratio of Fe:Mn at a scan rate of 50 mV/s. NDG/Mn3O4/Fe3O4 with the Fe:Mn ratio
of 1:3 exhibits the highest Csp (158.46 F/g) compared to ratios of 1:0 (130.41 F/g), 3:1 (74.16 F/g),
1:1 (82.05 F/g), and 0:1 (147.55 F/g), as the composite has the largest enclosed area of the CV curve.
The Csp of NDG/Mn3O4/Fe3O4 with a Fe:Mn ratio of 1:3 is higher than the Fe:Mn ratio of 3:1,
suggesting that the Mn-based species contribute in the major part of the charge storage mechanism,
while Fe species serve as a synergist to enhance the capacitance when both species are mixed
together [7]. Quasi-rectangular CV curves and small humps are observed for NDG/Mn3O4/Fe3O4 in
all Fe:Mn ratios, NDG/Fe3O4, and NDG/Mn3O4 (Figure 5b), which indicate that the capacitance is
mainly contributed by Faradaic pseudocapacitance [14], which is contributed by the metal oxides [15].
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NDG/Mn3O4/Fe3O4 exhibits the largest enclosed CV curve area, indicating that it has the highest Csp

(158.46 F/g) compared to NDG, NDG/Fe3O4, and NDG/Mn3O4. This might due to the presence of
both Fe3O4 and Mn3O4 that enhance the pseudocapacitance of the composites. In addition, bimetallic
oxides provide richer redox reactions compared to single metallic oxide, and thus helps to further
improve the capacitive performance of the composites [16]. NDG/Fe3O4 and NDG/Mn3O4 exhibit
higher Csp compared to NDG because the dispersion of metal oxides between N-doped graphene
sheets prevent the sheets from restacking to increase the number of accessible sites for electrolyte
ions [17].
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The effect of the scan rate on the capacitive performance of NDG/Mn3O4/Fe3O4 was studied
between 50 and 500 mV/s. As can be seen in Figure 5c, there is a little distortion of the quasi-rectangular
shape CV curves at a high scan rate of 500 mV/s. The Csp values (Figure 5d) decline from 158.46 F/g to
128.74 F/g as the scan rate increases from 50 mV/s to 500 mV/s, with 65.22% of the initial Csp retained.
This is because the diffusion of electrolyte ions to the electrode surface becomes limited with time
constraints as the scan rate increases [18].

Galvanostatic charge/discharge (GCD) was carried out to further investigate the capacitive
performance of the prepared NDG/Mn3O4, NDG/Fe3O4, and NDG/Mn3O4/Fe3O4. As shown in
Figure 6, all the GCD curves show a nearly symmetrical triangular shape with only a small deviation
from linearity due to the contribution from the pseudocapacitance [9]. In addition, insignificant voltage
drop (IR drop) in the GCD curves of NDG/Mn3O4/Fe3O4, NDG/Mn3O4, and NDG/Fe3O4 (Figure 6a)
show high efficiency of ion transport or diffusion near the electrode–electrolyte interface [19]. IR drops
occur during the charge/discharge process due to internal resistance, which includes the boundary
resistance of electrode/electrolyte and the contact resistance between the active material and current
collector [20]. Hence, a small IR drop indicates low internal resistance, which leads to a high power
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density [18]. From the GCD curves, the specific capacitance of the composites can be calculated
according to Equation (2):

Csp =
I∆t

m∆V
(2)

where Csp is the specific capacitance of the electrode (F/g), ∆t is the discharging time (s), I is the
discharge current (A/g), ∆V is the potential range (V), and m is the mass of the electrode material (g).
NDG/Mn3O4/Fe3O4 exhibits the highest Csp (90.58 F/g), followed by NDG/Mn3O4 (83.21 F/g) and
NDG/Fe3O4 (14.27 F/g). NDG/Mn3O4/Fe3O4 also shows the longest discharge time, as compared to
NDG/Mn3O4 and NDG/Fe3O4 at 0.5 A/g (Figure 6a), indicating that NDG/Mn3O4/Fe3O4 possesses
the highest charge storage capacity [8,21]. The discharging time of NDG/Mn3O4/Fe3O4 becomes
shorter as current density increases from 0.5 A/g to 2.5 A/g (Figure 6b), indicating the decrease of Csp

from 90.58 F/g to 73.10 F/g. The decrease of Csp is caused by faster ion migration at a higher current
density, which accelerates the polarisation and depolarisation process of the electrode. This will result
in the incomplete utilisation of ions on the electrode surface [22].
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Figure 6. GCD curves of (a) NDG/Fe3O4, NDG/Mn3O4, and NDG/Mn3O4/Fe3O4 at a current density
of 0.5 A/g and (b) NDG/Mn3O4/Fe3O4 at different current densities: 0.5 A/g, 1.0 A/g, 1.5 A/g, 2.0
A/g, and 2.5 A/g.

Electrochemical impedance spectroscopy (EIS) was performed to evaluate the resistive behavior of
all the composites. Nyquist plots of NDG/Mn3O4, NDG/Fe3O4, and NDG/Mn3O4/Fe3O4 (Figure 7)
consist of a semicircle in the high frequency region and a vertical line in the low frequency region.
The vertical line in the low frequency region of Nyquist plots for all the composites approach
90◦, suggesting rapid ion transport between the electrode and electrolyte and ideal capacitive
behavior [23]. The diameter of the semicircle is related to Rct at the electrode–electrolyte interface.
NDG/Mn3O4/Fe3O4 possesses the smallest diameter of the semicircle, followed by NDG/Mn3O4

and NDG/Fe3O4, indicating that NDG/Mn3O4/Fe3O4 has the lowest Rct (1.35 Ω), as compared to
NDG/Mn3O4 (1.39 Ω) and NDG/Fe3O4 (1.49 Ω). This suggests that NDG with bimetallic oxides have
a lower contact resistance and the greater charge transfer rate at the electrode–electrolyte interface
compared to NDG with single metal oxides [24]. At the high frequency region, the intercept of the
semicircle at the Z’ axis gives information about equivalent series resistance (ESR), which is the
combination of the internal resistance of the electroactive materials, the interfacial resistance between
the electrode and the current collector, and the intrinsic ionic electrolyte resistance [25]. The ESR values
of NDG/Mn3O4/Fe3O4, NDG/Fe3O4, and NDG/Mn3O4 are 3.61 Ω, 3.87 Ω, and 4.65 Ω, respectively,
as shown in Table 1. NDG/Mn3O4/Fe3O4 exhibits the lowest ESR value, demonstrating that the
composite has the lowest contact resistance at the interface of active material and a current collector,
which contributes to rapid ion diffusion [11]. The low ESR value also proves the lowest internal
resistance in NDG/Mn3O4/Fe3O4, which is supported by an insignificant iR drop observed in the
GCD curve [14]. These EIS results also agree well with the CV results.
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Table 1. The values of Rct and ESR of NDG/Mn3O4, NDG/Fe3O4, and NDG/Mn3O4/Fe3O4.

Samples Rct (Ω) ESR (Ω)

NDG/Mn3O4 1.39 4.65
NDG/Fe3O4 1.49 3.87

NDG/Mn3O4/Fe3O4 1.35 3.61

Cyclic stability tests were carried out at a scan rate of 100 mV/s for 5000 cycles to evaluate
the capacitance retention of NDG/Mn3O4/Fe3O4. As shown in Figure 8a, the Csp retention of
NDG/Mn3O4/Fe3O4 initially increases until the 2500th cycle, and then decreases to 103.4% at the
5000th cycle. The initial increase in capacitance of NDG/Mn3O4/Fe3O4 may be due to the active site
activation of the composites [10,26]. After activation, the electrochemically active materials will be
completely exposed to the electrolyte [27]. This phenomenon can be related to the ESR value of the
composite after 2500 cycles (Figure 8b), in which the ESR decreases to 1.83 Ω due to the proper wetting
of the electrode surface, which can enhance the electrolyte diffusion. From 2500 to 5000 cycles, there is
an decrease in Csp retention that was caused by activity loss of the metal oxide particles during the
charging and discharging processes [26]. This phenomenon is also supported by the EIS data, in which
there is an increase in ESR (2.12 Ω). Generally, the NDG/Mn3O4/Fe3O4 shows good cyclic stability
due to the strong bonding between dispersed metal oxide particles and NDG with high mechanical
strength, which can effectively prevent the volume expansion and aggregation of metal oxides during
the charging and discharging processes [7,28]. The cycling stability of NDG/Mn3O4/Fe3O4 is higher
in comparison to MnFe2O4/graphene reported in the literature [11].
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4. Conclusions

NDG/Mn3O4/Fe3O4 with different Fe:Mn ratios were successfully prepared using a
hydrothermal method followed by freeze-drying. The combination of the high conductivity of NDG
with richer redox reaction from Mn3O4/Fe3O4 resulted in the enhanced electrochemical performance of
the composite with bimetallic oxide compared to the composite with a single metal oxide, which is due
to Mn3O4 and Fe3O4 particles being attached on the wrinkled surface of NDG that helped to prevent
agglomeration of the NDG sheets. Different Fe:Mn ratios in NDG/Mn3O4/Fe3O4 were studied and
the results showed that the ratio between the metal oxides also played an important role in enhancing
the supercapacitive performance of the composite. The Fe:Mn ratio of 1:3 exhibited the highest specific
capacitance and had excellent cyclic stability with the lowest Rct and ESR value, which indicates good
energy storing ability, a superior life cycle, and fast charge transfer at the electrode–electrolyte interface.
Therefore, NDG/Mn3O4/Fe3O4 is a potential material for electrodes to be used in supercapacitors.
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