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Abstract: We investigate theoretically the photon statistics in a coupled cavity system mediated by a
two-level atom. The system consists of a linear cavity weakly driven by a continuous laser, and a
nonlinear cavity containing an atom inside. We find that there exists a photon blockade in the linear
cavity for both parameter regimes where the coupling strength between the atom and the nonlinear
cavity is greater (or less) than the dissipation rate of the linear cavity. We also extend our model by
pumping the two cavities simultaneously and find that the conventional photon blockade is apparent
in the linear cavity, whereas the unconventional photon blockade appears in the nonlinear cavity.
These results show that our work has potential applications for a single photon source in a weakly
nonlinear system.
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1. Introduction

Single photon source and single photon detectors have great potential applications in precision
measurement instruments, quantum information computing, and quantum communications [1,2].
For instances, in quantum information science, single photons can be promising quantum bits on which
information can be encoded using interferometers or polarization, and can be used in quantum key
distribution and other applications. In other domains, single photon detectors are used in a wide range
of applications, such as bioluminescence detection, Deoxyribonucleic acid (DNA) sequencing, and
picosecond imaging circuit analysis. Single photon emitters deliver photons one at a time, which is also
called photon antibunching phenomenon [3]. This single photon is quantized by its energy }νk, where
} is Planck’s constant, and νk is the frequency of the kth mode in the quantized electromagnetic field.
A single photon source can be generated by different mechanisms. Clauser [4] first generated single
photons in 1974 based on a cascade transition of calcium atoms. Diedrich and Walther investigated
the antibunching and sub-Poissonian properties of the resonance fluorescence of a single atomic ion
stored in a radio-frequency trap [5]. Nano-objects in condensed matter are also possible sources of
single photons [6], such as semiconductor nanocrystals [7], color centers in diamonds [8], and quantum
dots [9–11].

In cavity quantum electrodynamics (QED), a photon blockade is typically achieved by the coupling
of nonlinear freedoms that give rise to the anharmonicity of the Jaynes–Cummings ladder of the system
eigenstates. A conventional photon blockade is the result of the strong nonlinearity of the system,
which requires the single-photon nonlinearity to be at least larger than the mode linewidth κ [12–15].
A photon blockade created in weakly nonlinear systems, which are far more natural in many areas
of photonics and are more feasible to integration and scalability, is referred to as an unconventional
photon blockade (UPB) [16–18]. The underlying mechanism for the UPB is the destructive quantum
interference between different excitation pathways, which usually requires that the system involves
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several degrees of freedom to establish multi-transition paths. The UPB was first put forward by Liew
and Savona [16] in a pair of coupled quantum modes. The UPB has been, since then, studied in various
cavity systems, such as two coupled Kerr nonlinear cavity structures with one laser-driven [19], one
linear cavity coupled to a Kerr nonlinear cavity with one driving laser [20], two nonlinear cavities with
two driving laser [21], two coupled Kerr cavities in a semiconductor [22] and in all-silicon [23], two
overlapped cavities corresponding to low frequency and high frequency modes [24], and one cavity
coupled to a quantum dot with two driving laser [25].

We know that physical mechanisms of conventional and unconventional photon blockades are
different. For conventional photon blockades, the system needs to have a strong nonlinarity effect,
whereas UPBs need a weak nonlinearity effect. For obtaining the unconventional photon blockade, we
introduce a two-level atom system in Cavity B. We use a pump laser to couple the cavity field, and
the interaction between the cavity and the atom can then be effectively manipulated, which provide a
method for realization of the unconventional photon blockade. In this paper, we go back to the basic
Jaynes–Cummings model and study the conventional and unconventional photon blockade effect in
a linear cavity coupled to a nonlinear cavity. The nonlinearity of the second cavity is mediated by a
two-level atom. An atom itself is a potential emitter of light, and the cavity can enhance the spontaneous
emission rate and the photon production rate. The second cavity provides different transition paths for
the photons in the first cavity. We find that there are conventional and unconventional photon blockade
effects when the first cavity, the second cavity, and the atom are resonant with the driving laser. So far,
the coexistence of two different photon blockades has not been reported. Laser manipulation and
atomic coupling are relatively mature technologies, so our scheme is feasible in experiment. A photon
blockade is an effective method for realization of a single photon source, which plays an important
role in quantum communication and quantum information processing.

The rest of this paper is organized as follows. In Section 2, we introduce the model, the photon
transition paths, and the ladder of the dressed states. In Section 3, we demonstrate the conventional and
unconventional single photon blockade by numerically solving the master equation and calculating the
equal-time second correlation function. In Section 4, we study the optimal parameters for equal-time
second correlation function using the non-Hermitian effective Hamiltonian method. In Section 5, we
provide some extension discussions of our proposal by adding a simultaneous pump laser to the
nonlinear cavity. Conclusions are given in Section 6.

2. Model

As shown in Figure 1, we consider a coupled cavity system that consists of two cascaded cavities.
The first cavity (Cavity A) is driven by a classical light field with frequency ωL and amplitude ε.
The Hamiltonian of Cavity A with the driven leaser is given by

HA = }ωaa†a + }ε(a†e−iωLt + aeiωLt) (1)

where a is the annihilation operator of Cavity A whose resonant frequency is ωa, and a† is the creation
operator. We apply the rotating wave approximation. The Hamiltonian of the second cavity (Cavity B)
reads as

HB = }ωbb†b + }ω1σ†σ + }g(σ†b + σb†) (2)

Here, b and b† are the annihilation operator and creation operator of the mode in Cavity B, whose
resonant frequency is ωb. The lowering (up) operator of the two-level atom in Cavity B is denoted by
σ (σ†), and the transition frequency of the atom is ω1. g describes the coupling strength between the
atom and Cavity B. These two cavities are coupled through photon hopping interactions with strength
of J.
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In a rotating frame with respect to H0 = }ωLa†a + }ωLb†b + }ωLσ†σ, the Hamiltonian of the
whole system is given by (} = 1):

H = ∆aa†a + ∆bb†b + ∆1σ†σ + g(σ†b + σb†) + J(a†b + ab†) + ε(a† + a). (3)

∆a, ∆b and ∆1 are, respectively, the frequency detuning of Cavity A, Cavity B, and the atom with
respect to the driving field.
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Figure 1. Schematic of the studied system. The system consists of two cavities, which are coupled
to each other through a photon-hopping interaction. The first cavity is a linear cavity driven by a
continuous laser. The second cavity is nonlinear with a two-level atom.

In the weak-driving regime, where the driving amplitude ε is far less than the dissipation rate of
Cavity A, we consider the total excitation number N ≤ 2 in our system. Then the bare states of the
system are |0, 0, g〉, |0, 0, e〉, |0, 1, g〉, |1, 0, g〉, |0, 1, e〉, |1, 0, e〉, |1, 1, g〉, |0, 2, g〉, and |2, 0, g〉, with the first
number denoting the photon number in Cavity A, the second number denoting the photon number in
Cavity B, and the third part denoting the status of the atom in Cavity B. For simplification, we denote
these nine bare states by |0〉, |1〉, · · · , |8〉, respectively. The Hamiltonian in Equation (3) without the
driving field can be expressed in the following matrix:

0 0 0 0 0 0 0 0 0
0 ∆1 g 0 0 0 0 0 0
0 g ∆b J 0 0 0 0 0
0 0 J ∆a 0 0 0 0 0
0 0 0 0 ∆b + ∆1 J 0 g 0
0 0 0 0 J ∆a + ∆1 g 0 0
0 0 0 0 0 g ∆a + ∆b J J
0 0 0 0 g 0 J 2∆b 0
0 0 0 0 0 0 J 0 2∆a


(4)

which is defined based on the bare states mentioned above. Assuming ∆a = ∆b = ∆1 = ∆, the
eigenvalues and eigenstates of the system within the two excitation subspace are given by

E0 = 0, |ψ0〉 = |0, 0, g〉 (5)

E0
1 = ∆,

∣∣∣ψ0
1

〉
= − J√

g2 + J2
|0, 0, e〉+ g√

g2 + J2
|1, 0, g〉 (6)

E−1 = −
√

g2 + J2 + ∆,
∣∣ψ−1 〉 = g√

2J2 + 2g2
|0, 0, e〉 − 1√

2
|0, 1, g〉+ J√

2J2 + 2g2
|1, 0, g〉 (7)

E+
1 =

√
g2 + J2 + ∆,

∣∣ψ+
1
〉
=

g√
2J2 + 2g2

|0, 0, e〉+ 1√
2
|0, 1, g〉+ J√

2J2 + 2g2
|1, 0, g〉 (8)

E0
2 = 2∆ (9)
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E−2 =
1
2
(−
√

2

√
2g2 + 3J2 −

√
J2(16g2 + J2) + 4∆) (10)

E−−2 =
1
2
(−
√

2

√
2g2 + 3J2 +

√
J2(16g2 + J2) + 4∆) (11)

E+
2 =

1
2
(
√

2

√
2g2 + 3J2 −

√
J2(16g2 + J2) + 4∆) (12)

E++
2 =

1
2
(
√

2

√
2g2 + 3J2 +

√
J2(16g2 + J2) + 4∆). (13)

The eigenstates corresponding to the eigenvalues E0
2 , E−−2 , E−2 , E+

2 , and E++
2 are too cumbersome.

We will not list them here. The transition channels are demonstrated in Figure 2a. The multiple
excitation paths from state |0, 0, g〉 to state |2, 0, g〉 are the fundamental and essential factors to the
single photon blockade in our system. A single photon blockade is apparent when one can find the
proper quantum destructive interference conditions among different transition paths from |1, 0, g〉 to
|2, 0, g〉. The eigenenergy levels are shown in Figure 2b. The blue arrows and red arrows illustrate the
anharmonicity of the Jaynes–Cummings ladder. When the resonant absorption frequency ω is detuned
to reach the state

∣∣ψ−1 〉 (corresponding to the eigenvalues E−1 ) or
∣∣ψ+

1
〉
, it will block the absorption of a

second photon at frequency ω because the states corresponding to eigenenergy E−−2 , E−2 , E0
2 , E+

2 , and
E++

2 are all detuned from ω.
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Figure 2. (a) Energy levels within two excitation subspaces and the corresponding excitation paths;
(b) the eigenenergy spectrum of the dressed states within two excitation subspaces.

3. Numerical Computation Conventional and Unconventional Photon Blockade

In this section, we study the conventional and unconventional photon blockade effects by
numerically calculating the equal-time second-order correlation function of Cavity A.

3.1. Quantum Master Equation

We assume our system satisfies the Born approximation and is in a “short-memory environment”
such that it also satisfies the Markov approximation. The time-evolution of the system density matrix
is then governed by the Lindblad master equation [26,27]:

•
ρ = i[ρ, H] + κa

2 (ntha + 1)=[a] + κa
2 ntha=[a†] + κb

2 (nthb + 1)=[b]
+ κb

2 nthb=[b†] + γ
2 (nth1 + 1)=[σ] + γ

2 nth1=[σ†]
(14)

The super operator =[o] = 2oρo† − ρo†o− o†oρ is the Lindblad term [28,29] accounting for the

losses to the environment.
−
nthx = [exp(}ωx/KBTx)− 1]−1, x = {a, b, 1} are the average thermal

excitation numbers of the bath at temperature Tx, with KB as the Boltzmann constant. κa and κb are the



Appl. Sci. 2019, 9, 980 5 of 13

dissipation rates of Cavity A and Cavity B, respectively. The transition rate from |e〉 to |g〉 of the atom
is described by the term proportional to γ

2 (nth1 + 1), which contains a rate for spontaneous transitions
and a rate for stimulated transitions induced by thermal photons. The last term in Equation (14)
describes the transition rate from |g〉 to |e〉, which is obtained by absorbing thermal photons from the
cavity field. At optical frequencies and laboratory temperatures, the thermal photon number nthx can
be completely negligible [26].

The time evolution of the mean photon numbers in Cavity A can be obtained by solving the
master Equation (14). The result is shown in Figure 3 in which Cavity A, Cavity B, and the atom have
the same detuning with respect to the driving laser.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 5 of 14 

spontaneous transitions and a rate for stimulated transitions induced by thermal photons. The last 
term in Equation (14) describes the transition rate from g  to e , which is obtained by absorbing 
thermal photons from the cavity field. At optical frequencies and laboratory temperatures, the 
thermal photon number thxn  can be completely negligible [26]. 

The time evolution of the mean photon numbers in Cavity A can be obtained by solving the 
master Equation (14). The result is shown in Figure 3 in which Cavity A, Cavity B, and the atom have 
the same detuning with respect to the driving laser. 

 
Figure 3. Time evolution of the average photon numbers in Cavity A in unit of 2 / a  . The 
parameters are b a  , 0.6 a  , 7a a  , 1a b     , 0.5 a  , 9 aJ  , 2 ag  , and 

1 0tha thb thn n n
  

   . 

The photon-number statistics in Cavity A can be evaluated by the result of the photon 
correlation function, which is defined in the steady-time limit as 

† †
(2)

2†

( ) ( ) ( ) ( )
( ) lim

( ) ( )t

a t a t a t a t
g

a t a t

 




 
 . (15) 

We assume that there is zero delay between photons, i.e., 0  , and Equation (15) can then be 
simplified to 

† †
(2)

2†
(0) ss

ss

a a aa
g

a a
  (16) 

where ‘ss’ means steady state. In the weak excitation limit, (2) (0)g  can be roughly estimated by the 
system density matrix element expanded in the bare state subspace. That is, 

8 8
† † † † † †

88
0 , 0

( ) 2ss mnss
k m n

a a aa Tr a a aa k a a aa m n k  
 

     (17) 

8 8
† † †

0 , 0

33 55 66 88 33

( )

2

ss mnss
k m n

a a Tr a a k a a m n k 

    
 

 

    

   (18) 

where k  in k  is the index corresponding to the bare states listed in Section 2. 
The detuning with respect to the driving light is an important factor affecting the photon 

blockade effect. We plot the equal-time second-order correlation function (2) (0)g  as a function of 
the scaled detuning / a  in Figure 4, where 1a b       . The red dashed curve in Figure 4 is 
calculated according to Equations (16)–(18), and the blue curve is obtained by solving Equation (14) 
numerically. These two curves match well in the parameter domain. Thus, we can analyze the peaks 
and dips of the second correlation curve based on the profiles of the 33  and 88  curves. As shown 

Figure 3. Time evolution of the average photon numbers in Cavity A in unit of 2π/κa. The parameters
are κb = κa, γ = 0.6κa, ∆a = 7κa, ∆a = ∆b = ∆1, ε = 0.5κa, J = 9κa, g = 2κa, and
ntha = nthb = nth1 = 0.

The photon-number statistics in Cavity A can be evaluated by the result of the photon correlation
function, which is defined in the steady-time limit as

g(2)(τ) = lim
t−>∞

〈
a†(t)a†(t + τ)a(t + τ)a(t)

〉
〈a†(t)a(t)〉2

. (15)

We assume that there is zero delay between photons, i.e., τ = 0, and Equation (15) can then be
simplified to

g(2)(0) =

〈
a†a†aa

〉
ss

〈a†a〉2ss

(16)

where ‘ss’ means steady state. In the weak excitation limit, g(2)(0) can be roughly estimated by the
system density matrix element expanded in the bare state subspace. That is,

〈
a†a†aa

〉
ss
= Tr(a†a†aaρss) ≈

8

∑
k=0
〈k|a†a†aa

8

∑
m,n=0

ρmn|m〉〈n|k〉 = 2ρ88 (17)

〈
a†a
〉

ss = Tr(a†aρss) ≈
8
∑

k=0
〈k|a†a

8
∑

m,n=0
ρmn|m〉〈n|k〉

= ρ33 + ρ55 + ρ66 + 2ρ88 ≈ ρ33

(18)

where k in |k〉 is the index corresponding to the bare states listed in Section 2.
The detuning with respect to the driving light is an important factor affecting the photon blockade

effect. We plot the equal-time second-order correlation function g(2)(0) as a function of the scaled
detuning ∆/κa in Figure 4, where ∆ = ∆a = ∆b = ∆1. The red dashed curve in Figure 4 is calculated
according to Equations (16)–(18), and the blue curve is obtained by solving Equation (14) numerically.
These two curves match well in the parameter domain. Thus, we can analyze the peaks and dips of
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the second correlation curve based on the profiles of the ρ33 and ρ88 curves. As shown in Figure 4,
ρ33 � ρ88 with ρ33 = 〈1, 0, g|ρss|1, 0, g〉 and ρ88 = 〈2, 0, g|ρss|2, 0, g〉. There are three peaks in the ρ33

curve that are caused by the resonance transitions of the system. As shown in Figure 2b, there are three
resonant transition channels for a single photon, i.e., |ψ0〉 →

∣∣ψ−1 〉 , |ψ0〉 →
∣∣ψ0

1
〉

, and |ψ0〉 →
∣∣ψ+

1
〉

.
The positions of these three peaks can be calculated from the eigenvalues of these states. The positions
of the left peak, the middle one, and the right one are obtained based on the resonant transition
conditions in the rotating frame E+

1 − E0 = 0, E0
1 − E0 = 0, and E−1 − E0 = 0. According to Equations

(5)–(8) and based on parameters used in Figure 4, one can obtain the positions of these three peaks:
−9.1782, 0, and 9.1782. The five peaks in the ρ88 curve are caused by the resonant transition of two
photons, whose position can be calculated in the same way as those in the ρ33 curve, and the values
are −6.6446, −4.2683, 0, 4.2683, and 6.6446, respectively. The other two peaks in the ρ88 curve, whose
positions are the same as the left one and right one in the ρ33 curve, are induced by a single photon
resonant transition. The dips in the ρ33 and ρ88 curves are induced by the destructive quantum
interference effect between different transition paths, as shown in Figure 2b. The locations of the
two peaks in the correlation function g(2)(0) correspond to the two dips in the ρ33 curve, where the
excitation of the single photon resonant transition is low. There is a single photon resonant transition
and a two-photon resonant transition at ∆/κa = 0 in the ρ33 and ρ88 curves. The dip at ∆/κa = 0 in
the correlation function g(2)(0) curve means the single photon resonant transition is far stronger than
the two-photon resonant transition at that position. The locations of the other dips in the g(2)(0) curve
correspond to those in the ρ88 curve.
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Figure 4. Plots of the density matrix element ρ33, ρ88 and the second-order correlation function g(2)(0)
as functions of the scaled detuning of Cavity A for ε = 0.1κa and g = 1.8κa. Other parameters are the
same as in Figure 3.

To investigate the influence of the coupling strength g and the hopping interaction strength J on
the correlation function, in Figure 5, we plot the equal-time second correlation function as the two
scaled parameters, g/κa and J/κa, with the fixed detuning ∆ = 0, which is a detuning of the single
photon resonant transition. From Figure 5, we can see that, when the coupling strength between Cavity
B and the atom is larger than κa, i.e., g/κa > 1, one can obtain a minimum value of g(2)(0) at the ratio
between the hopping interaction strength and the coupling strength J/g ≈ 1.25. At this ratio, the
two photon transition is suppressed and the single photon transition is far stronger. As illustrated in
Figure 5, two-photon antibunching can also be obtained when the coupling strength between Cavity
B and the atom is weaker than the decay rate of Cavity A. That is, the single photon blockade effect
can be obtained in our system under weak nonlinearity, which is induced by the atom in Cavity B in
our system with g < κa. Around the other region at g ≈ 0.5κa, one can obtain a low value of g(2)(0)
as described in Figure 5. However, if we continue to decrease the coupling strength below 0.3κa, the
photon blockade effect will disappear, and a two-photon bunching effect will become obvious.
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∆b = ∆1 = 0. Other parameters are the same as in Figure 4.

3.2. Unconventional Photon Blockade with Atom-Cavity Detuning

In this section, we focus on the unconventional photon blockade when Cavity A, Cavity B, and
the atom are out-of resonance based on weak nonlinearities. By solving Equation (14) numerically, we
plot the equal-time second order correlation function log10 g(2)(0) as a function of the scaled cavity
detuning ∆/κa and the scaled atom detuning ∆1/κa in Figure 6, where Cavity B is resonant with Cavity
A. Based on the parameters of Figure 6, when the atom is weakly coupled to Cavity B by g = 0.67κa

and the interaction strength between the two cavities is J = 2κa, one can obtain an irregular single
photon blockade region at the center of the figure while the detuning of Cavity A, Cavity B, and
the atom are all within [−2κa,+2κa]. By increasing the coupling strength and the hopping strength
to g = 0.8κa and J = 4κa, we can obtain the other two symmetric photon block detuning regimes
located at about [−κa,−3κa] and [+κa,+3κa], as shown in Figure 6b. With the fixed coupling strength
g = 0.67κa and based on the condition that the atom in Cavity B is resonant with the driving laser,
i.e., ∆1 = 0, Figure 7 shows the correlation function log10 g(2)(0) as a function of different detunings
of Cavities A and B for photon hopping strength between the two cavities J = 3κa in Figure 7a and
J = 6κa in Figure 7b. One can see from Figure 7 that the single photon blocked region (log10 g(2)(0) < 0)
is symmetrical and centered on ∆a = 0 and ∆b = 0. As the moderate increase of the hopping strength
J, the single photon blocked region stretches to both the red sideband and blue sideband of Cavity A.Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 14 
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Here, we consider the system evolution under the condition that the three components Cavity 
A, Cavity B, and the atom are resonant, i.e., 1a b       , and the bandwidth of Cavity A 

Figure 6. The equal-time second-order correlation function log10 g(2)(0) as a function of the scaled
detuning ∆/κa = ∆a/κa = ∆b/κa and ∆1/κa for (a) g = 0.67κa and J = 2κa; (b) g = 0.8κa and J = 4κa.
Other parameters are the same as in Figure 4.
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4. Optimal Parameters for Sub-Poissonian Characters Derived by the Non-Hermitian Effective
Hamiltonian Method

In this section, we focus on the analytical optimal conditions for the system parameters that
maximize the sub-Poissonian character of Cavity A. In the weak driving limit, the system states can be
expressed as an expansion on the bare states mentioned in Section 2:

|ψ(t)〉 = c000|00g〉+ c001|00e〉+ c010|01g〉+ c100|10g〉
+c011|01e〉+ c101|10e〉+ c110|11g〉+ c020|02g〉+ c200|20g〉

(19)

The system is governed by a stochastic Schrodinger equation as (assuming } = 1)

i
d
dt
|ψ(t)〉 = He f f |ψ(t)〉 (20)

where the non-Hermitian effective Hamiltonian [17,18,26] can be written as

He f f = (∆a − i κa
2 )a†a + (∆b − i κb

2 )b
†b + (∆1 − i γ

2 )σ
†σ

+g(σ†b + σb†) + J(a†b + ab†) + ε(a† + a)
(21)

Here, we consider the system evolution under the condition that the three components Cavity
A, Cavity B, and the atom are resonant, i.e., ∆a = ∆b = ∆1 = ∆, and the bandwidth of Cavity A
equals that of Cavity B, i.e., κa = κb = κ. The time-dependent coefficients cmnp(t) can be obtained from
Equations (20) and (21). According to the idea of performing a consistent expansion of the elements to
dominant order in powers of ε/κa [30], we neglect the subleading order in the driving laser amplitude
and obtain the equations of cmnp(t):

i
•

c001 = (∆− i
γ

2
)c001 + gc010 (22)

i
•

c010 = (∆− i
κ

2
)c010 + gc001 + Jc100 (23)

i
•

c100 = (∆− i
κ

2
)c100 + Jc010 + εc000 (24)

i
•

c011 = (∆− i
κ

2
)c011 + (∆− i

γ

2
)c011 +

√
2gc020 + Jc101 (25)

i
•

c101 = (∆− i
κ

2
)c101 + (∆− i

γ

2
)c101 + gc110 + Jc011 + εc001 (26)
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i
•

c110 = (2∆− iκ)c110 + gc101 +
√

2Jc020 +
√

2Jc200 + εc010 (27)

i
•

c020 = (2∆− iκ)c020 +
√

2gc011 +
√

2Jc110 (28)

i
•

c200 = (2∆− iκ)c200 +
√

2Jc110 +
√

2εc100. (29)

The relationship between different cmnp(t) in Equations (22)–(29) once again illustrates the
multi-transition channels between different system states, which is consistent with that in Figure 2a.
The amplitudes of the coefficient cmnp(t) in Equation (19) can be divided into three levels with
respect to ε/κa. That is, the amplitudes of c000(t) is of the zero order of ε/κa, {c001(t), c010(t),
and c100(t)} of the first order and {c011(t), c101(t), c110(t), c020(t), c200(t)} of the second order,
i.e., c000(t) � c001(t), c010(t), c100(t) � c011(t), c101(t), c110(t), c020(t), c200(t). The average photon
occupations in Cavity A and the equal-time second-order correlations then approximate to

na =
〈

a†a
〉
=
∣∣∣c100

∣∣∣2+∣∣∣c101

∣∣∣2+∣∣∣c110

∣∣∣2 + 2
∣∣∣c200

∣∣∣2 '∣∣∣c100

∣∣∣2 (30)

g(2)(0) =
〈

a†a†aa
〉

n2
a

' 2
|c200|2

|c100|4
. (31)

The expressions of c100 and c200 can be obtained by solving Equations (22)–(29) for the steady
state |ψ〉ss with

•
cmnp = 0 and c000 = 1.

c100 =
2[−4ig2 + (γ + 2i∆)(−iκ + 2∆)]ε

4g2(κ + 2i∆) + [4J2 + (κ + 2i∆)2(γ + 2i∆)]
(32)

c200 = −2
√

2
{

32g6 + 2g2X2
1(16J2 + X2)− 8g4(4J2 − X1X3) + X3

1X5

}
ε2M−1 (33)

M = 32g6X2
1 + 2g2(4J2 + X2

1)(X2
1X2 + 4J2X4)

+8g4X1[X2
1X3 + J2(8γ− 4κ + 8i∆)] + X5[4J2 + X2

1 ]
2X1

(34)

where, X1 = κ + 2iγ∆, X2 = 2κ2 + 7κγ + 5γ2 + 22iκ∆ + 34iγ∆− 56∆2, X3 = 3κ + 4γ + 14i∆, X4 =

2κ2 − κγ + γ2 + 6iκ∆ + 2iγ∆− 8∆2 and X5 = [4J2 + (κ + γ + 4i∆)2](γ + 2i∆).
The optimal parameter for single photon blockade in Cavity A can be obtained by set c200 = 0

under the condition c100 6= 0. Based on Equation (33), one can obtain the optimal parameter
pairs of the coupling strength g and the detuning ∆ with fixed hopping strength J and atom
decay rate γ. When J is fixed at 2.5κa and γ = 0.6κa, we can obtain the real solution of the
optimal parameter pairs {{ g→ −7.63415κa , ∆→ −6.89979κa }, {g→ −7.63415κa , ∆→ 6.89979κa },
{ g→ −0.924508κa , ∆→ −1.32075κa }, { g→ −0.924508κa , ∆→ 1.32075κa }, {g→ 0.924508κa ,
∆→ −1.32075κa }, {g→ 0.924508κa , ∆→ 1.32075κa }, {g→ 7.63415κa , ∆→ −6.89979κa },

{g→ 7.63415κa , ∆→ 6.89979κa }}.
We verify the solution by plotting the equal-time second-order correlation function g(2)(0) as

a function of the scaled detuning for different coupling strength g in Figure 8. As expected, the
values of g(2)(0) are much smaller when we use the {g, ∆} pairs listed above than others, i.e., it
shows two strong photon antibunching effects at ∆ ' 1.3κa with g = 0.924508κa in Figure 8a
and ∆ ' 6.9κa with g = 7.63415κa in Figure 8b. We also see the symmetric property from
optimal {g, ∆} solutions, that is, when the coupling strength g is fixed at one of the optimal values,
there are two symmetric optimal detunings for Cavity A, Cavity B, and the atom with respect to
the driving laser, and vice versa. The underlying physical mechanism of the optimal solution
for a single photon blockade lies in the destructive interference between different paths of two
photon excitation in Cavity A. As illustrated in Figure 2a and Equation (29), the occupation of
|2, 0, g〉 can be minimized by reducing the contribution from |1, 0, g〉 and |1, 1, g〉. When destructive
interference between the direct excitation path |0, 0, g〉 → |1, 0, g〉 → |2, 0, g〉 and the indirect excitation
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paths |0, 0, g〉 → |1, 0, g〉 → |0, 1, g〉 → |0, 0, e〉 → (|1, 0, e〉 ↔ |0, 1, e〉 ↔ |0, 2, g〉 ↔ |1, 1, g〉)→ |2, 0, g〉
occurs, the occupation of |2, 0, 0〉 will be reduced; hence, the value of g(2)(0) is decreased.
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Figure 8. Plots of equal-time second-order correlation function g(2)(0) as a function of the scaled
detuning for (a) g = 0.6κa, g = 0.8κa, and g = 0.924508κa; (b) g = 7κa, g = 7.63415κa, and g = 8κa with
fixed J = 2.5κa. Other parameters are the same as in Figure 4.

Figure 9 shows several optimal {g, ∆} pairs for different atom decay rate γ. When
γ = 0.25κa, one can get {{g→ ±0.782092κa, ∆→ ±1.19804κa}, {g→ ±7.89333κa, ∆→ ±7.17599κa}},
and {{g→ ±0.817538κa, ∆→ ±1.22938κa}, {g→ ±7.81893κa, ∆→ ±7.09409κa}} with γ = 0.35κa,
{{g→ ±0.857111κa, ∆→ ±1.26361κa}, {g→ ±7.74537κa, ∆→ ±7.01522κa}} with γ = 0.45κa.
As shown in Figure 9, with the increase in the atom lifetime, the optimal coupling strength g decreases
in the UPB regime where g < κa and increases in the conventional photon blockade regime where
g > κa.Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 14 
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5. Supplementary Discussion

In the above sections, we find that Cavity A is weakly driven by a continuous laser field and
Cavity B is not. If the cavities in our system are both driven by a laser field, the Hamiltonian of the
system reads

H = ∆aa†a + ∆bb†b + ∆1σ†σ + g(σ†b + σb†) + J(a†b + ab†) + εa(a† + a) + εb(b† + b). (35)
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There will then also be direct and indirect excitation paths from state |0, 0, g〉 to |0, 2, g〉, which
provides a fundamental condition for the photon blockade in Cavity B.

We plot the equal-time second-order correlation function in Figure 10 as a function of the two
scaled parameters g/κa and J/κa under the condition that the two driving lasers are of the same
frequency. With zero detuning, i.e., Cavity A, Cavity B, and the atom are resonant with the pump
laser; we can see from Figure 10 that there is a single photon blockade in both Cavity A and Cavity
B. However, the parameter regimes for the photon blockade are different in Cavity A and Cavity B.
As shown in Figure 10a, the two-photon antibunching effect is apparent in Cavity A when g ≥ κa and
the ratio between J and g is approximately equal to one for a minimum g(2)(0), whereas the photon
blockade effect in Cavity B appears when g < κa (κb) with J > g. We obtain two different types of
photon blockades at the same time: a conventional photon blockade is apparent in the linear cavity A
and an unconventional photon blockade is dominant in the nonlinear cavity B, here Cavity A, Cavity
B, and the atom in Cavity B are all resonant with the pump laser.
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6. Conclusions

In summary, we have studied the photon statistics of a coupled cavity QED system that consists
of a linear cavity and a nonlinear cavity that consists of a two-level atom. The linear cavity is weakly
driven by a continuous laser field, and the two cavities are coupled by hopping strength J. The single
photon blockade effect can be observed in the linear cavity, both conventional and unconventional.
Compared with existing schemes, we can achieve a conversion between a conventional photon
blockade and an unconventional photon blockade in the same system; more importantly, we can also
achieve the coexistence of two different photon blockades. In addition, we obtain the coupling between
two cavities via photon hopping interactions, which can be realized by current experimental techniques.
The photon blockade provides an effective method for obtaining a single photon source, which is the
basis of realizing optical quantum information technology. Thus, our work has potential applications
in quantum information processing and quantum communication. Being a theoretical work, we
provide detailed theoretical derivation and numerical analysis. In our model, these photon blockade
effects are mainly achieved by the quantum destructive interference between different excitation paths.
We have analyzed the values of the equal-time second-order correlation function in the truncated
Hilbert space by solving the master equation of the coupled cavities. In the same parameter regime, we
also derived the optimal atom-cavity coupling strength and cavity detuning parameter pairs, which
once again verify the symmetric photon blockade regime for the linear cavity. We also extend our
model by adding a pump laser to Cavity B. We find that, under the condition of driving these two
cavities simultaneously, the conventional photon blockade in Cavity A is dominant, while in Cavity
B the unconventional photon blockade is apparent. In our scheme, the introduction of a two-level
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atom provides an efficient method for the realization of an unconventional photon blockade in Cavity
B. When Cavity B is manipulated by the pump laser, the interaction between the cavity and atom
can be effectively controlled, which may affect the nonlinearity of the total system. Thus, we obtain
the unconventional photon blockade in the case of weak nonlinearity. Here the pump laser and the
two-level atom are well controlled experimentally, and the unconventional photon blockade is not
obviously dependent on the decay rate of cavity. Therefore, we provide a feasible scheme for the
realization of an unconventional photon blockade.
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