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Abstract: Motor vehicles have been identified as a growing contributor to air pollution, such that
analyzing the traffic policies on energy and environment systems (EES) has become a main concern
for governments. This study developed a dual robust stochastic fuzzy optimization—energy and
environmental systems (DRSFO-EES) model for sustainable planning EES, while considering the
traffic sector through integrating two-stage stochastic programming, robust two-stage stochastic
optimization, fuzzy possibilistic programming, and robust fuzzy possibilistic programming methods
into a framework, which can be used to effectively tackle fuzzy and stochastic uncertainties as
well as their combinations, capture the associated risks from fuzzy and stochastic uncertainties,
and thoroughly analyze the trade-offs between system costs and reliability. The proposed model
can: (i) generate robust optimized solutions for energy allocation, coking processing, oil refining,
heat processing, electricity generation, electricity power expansion, electricity importation, energy
production, as well as emission mitigation under multiple uncertainties; (ii) explore the impacts
of different vehicle policies on vehicular emission mitigation; (iii) identify the study of regional
atmospheric pollution contributions of different energy activities. The proposed DRSFO-EES model
was applied to the EES of the Beijing-Tianjin-Hebei (BTH) region in China. Results generated from
the proposed model disclose that: (i) limitation of the number of light-duty passenger vehicles and
heavy-duty trucks can effectively reduce vehicular emissions; (ii) an electric cars’ policy is enhanced
by increasing the ratio of its power generated from renewable sources; and (iii) the air-pollutant
emissions in the BTH region are expected to peak around 2030, because the energy mix of the
study region would be transformed from one dominated by coal to one with a cleaner pattern.
The DRSFO-EES model can not only provide scientific support for the sustainable managing of
EES by cost-effective ways, but also analyze the desired policies for mitigating pollutant emissions
impacts with a risk adverse attitude under multiple uncertainties.

Keywords: dual robust optimization; risk aversion; energy and environmental systems; vehicular
emissions; multiple uncertainties
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1. Introduction

1.1. Background

China has experienced severe environmental pollution in recent years, which pose a critical
threat to public health and sustainable development [1,2]. Energy-related activities are the dominant
sources of air pollution [3], with the amounts of carbon dioxide (CO2) and air pollutant emitted
from electricity generation plants accounting for approximately 40% and 30% of the total CO2 and
air pollutant emissions, respectively [2,4]. Further, motor vehicles have been identified as growing
contributors to air pollution due to the rapid growth of transportation, accounting for approximately
20–67% of carbon monoxide (CO) emissions, 12–36% of oxynitride (NOx) emissions, and 12–39% of
hydrocarbon compound (HC) emissions [5,6]. The scale of emissions of most of China’s regions has
exceeded the capacity of self-purification and air-pollutants’ diffusion from the atmosphere. There is
currently a severe conflict between increasing energy demand, excessive vehicle population, and “high
coal” energy mix on the one hand, and the imperative of mitigating air pollution on the other hand [7].
To tackle the above-mentioned problems, several policies and measures have been implemented
with regard to the development of renewable energy resources: adjustment of the energy structure;
encouragement of the use of electric cars (EVs); improvement of energy conversion efficiencies; and
enhancement of vehicular emission standards. However, it remains unclear how much pollution
reduction can be achieved by these control measures and policies. This situation has forced local
managers to propose ambitious schemes for planning energy and environment systems (EES), and to
deeply analyze the impacts of different emission mitigation policies and measures on these EES [8,9].
However, EES are complicated by many systemic uncertainties regarding the relevant environmental,
economic, energy, and social factors. For instance, electricity demands are often shown as stochastic
uncertainties that vary over time based on extant policies and highly variable conditions [10]. Moreover,
many economic data and energy demands often exhibit ambiguity [11,12]. Failure to consider these
uncertainties may result in less robust decision support [8,13]. Therefore, EES planning as well as
considering uncertainty information are required to help confront such problems of EES, and to ensure
sustainable economic development and environmental protection [14,15].

1.2. Literature Review

Numerous non-deterministic programming approaches have been used to handle uncertainties
in EES. Table 1 lists some previous studies on non-deterministic programming problems.

Table 1. Previous studies related to the subject.

Ref. No.
Non-Deterministic Programming Research Area Considering Traffic Sector

TSP RTSO FPP RFPP Energy Systems Others Yes No

[5]
√ √ √

[17]
√ √ √

[18]
√ √ √

[19]
√ √ √

[20]
√ √ √

[21]
√ √

[22]
√ √ √ √

[23]
√ √ √

[24]
√ √ √ √

[25]
√ √ √ √

[26]
√ √ √

[27]
√ √ √ √

[28]
√ √ √ √

[29]
√ √ √

[30]
√ √ √

[31]
√ √ √

[32]
√ √ √ √

Note: TSP, two-stage stochastic programming; RTSO. robust two-stage stochastic optimization; FPP, fuzzy
possibilistic programming; and RFPP, robust fuzzy possibilistic programming.
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Among them, two-stage stochastic programming (TSP) has been widely used to tackle
uncertainties expressed as a probability distribution [3,16–18]. For instance, Gong et al. [16] proposed a
two-stage programming method to optimize electric power systems considering air pollutant emissions
and CO2 mitigation. Mavromatidis et al. [19] developed a two-stage integer linear program model to
optimize distributed energy systems, enable cost-optimized design decisions regarding technology
selection and sizing before the determination of uncertain parameters. Mohan et al. [20] presented
a two-stage stochastic method for managing the energy reserve of a microgrid system, with an
emphasis on the different levels and sources of uncertainties. However, the TSP is unable to regard the
variability of stochastic recourse values because it is based on the assumption that the manager adopts
a risk-neutral attitude. Thus, TSP may become infeasible when managers are risk-averse under the
conditions of high variability [21].

The robust two-stage stochastic optimization (RTSO) method is an attractive method for tackling
the above shortcomings of TSP. It is specifically used to penalize the costs of the second-stage that are
greater than the expected values and capture the associated risk of stochastic uncertainties [22–24].
In the last few decades, the RTSO method has been extensively employed in many research
areas, such as supply chain systems, electric power systems, solid waste management, and water
resource allocation [3,23,25]. For example, Govindan and Cheng [26] developed a stochastic robust
programming method for improving retail supply chain planning through supply chain coordination,
risk reduction, vendor selection, and sustainability assessment. Xu et al. [24] proposed a robust
TSP method for tackling water resource allocation problems, enabling the handling of uncertainties
expressed as stochastic, and analysis of policy scenarios regarding economic penalties for the violation
of predefined policies.

However, in the real world, many economic parameters and energy demands often exhibit
ambiguities, which can be shown as fuzzy sets [27,28]. Fuzzy possibilistic programming (FPP)
theory can effectively address the fuzzy uncertainties of goals and constraints [29]. For instance,
Vahdani et al. [30] employed an FPP method for closed-loop recycling collection networks, in which
some uncertainty information (e.g., distance, capacity, demand, costs, as well as returned products
quantity) were tackled by FPP. Lu et al. [31] proposed an interval FPP method for managing China’s
energy systems with CO2 emissions constraints, which could address the uncertainties presented in
terms of fuzzy-boundary intervals in both the objective and constraints.

However, an FPP algorithm is unable to ensure the minimization of objective function under
all conditions because minimizing of the expected objective value is used as the objective function.
This can result in significant deviations of the optimized decision schemes, even in the event of
system optimization failure. Robust fuzzy possibilistic programming (RFPP) was developed by
Pishvaee et al. [32] to overcome the drawbacks of FPP methods and involves the extension of robust
optimization from stochastic algorithms to fuzzy algorithms. RFPP considers three sections in objective
function: (i) the minimization of the weight sum of the expected objective values; (ii) the difference
between two possible extreme objective values; and (iii) the penalty for constraint violation as the
objective function [27,33]. It has, however, been limitedly applied to EES planning.

Generally, although previous research works can effectively deal with EES issues under multiple
uncertainties, several gaps still need to be remedied. Firstly, few of the previous studies considered the
traffic sector, which has been identified as a growing contributor to air pollution. Currently, a series of
traffic policies have been adopted to alleviate the air pollution caused by motor vehicles. However, it
remains unclear how much pollution reduction can be achieved by these control measures and policies.
Secondly, most of these studies are incapable of considering the system risks from the stochastic and
fuzzy uncertainties during the optimization process, which may lead to significant deviations in the
optimized decision schemes, even in the event of system optimization failure. Thirdly, the RFPP
method is commonly used to plan water resource allocation, and solid management, and is scarcely
applied to plan EES systems.
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1.3. Objective

The objective of this study was the development of a dual robust stochastic fuzzy
optimization—energy and environmental systems (DRSFO-EES) model for planning EES while
considering the traffic sector. This study is the first attempt at planning an EES while considering
the traffic sector by integrating TSP, FPP, RTSO, and RFPP into a single framework. The proposed
model can effectively tackle stochastic and fuzzy uncertainties as well as their combinations, capture
associated risks from fuzzy and stochastic uncertainties, and thoroughly analyze trade-offs between
system costs and reliability. The proposed DRSFO-EES model was applied to the Beijing-Tianjin-Hebei
(BTH) region in China, which experiences severe smog and haze associated with high concentrations
of air pollutants. The following is a detailed enumeration of the capabilities of the proposed model:
(i) exploration of the impacts of different vehicle policies (such as regarding EVs usage, EV’s power
source, and vehicular emission standards) on vehicular emission mitigation via scenario analysis;
(ii) generation of robust optimized solutions for energy allocation, coking processing, oil refining,
heat processing, electricity generation, electricity power expansion, electricity importation, energy
production, as well as emission mitigation under multiple uncertainties; (iii) identification of the study
regional atmospheric pollution contributions of different energy activities such as coke processing,
heat processing, oil refining, electricity generation, and motor vehicle operation.

2. Methodology

The robust two-stage stochastic optimization (RTSO) method brings risk aversion into stochastic
programming methods, and finds robust schemes for system management [33,34]. The RTSO method
can deal with the stochastic uncertainties of real-world management problems, analyze the policy
scenarios associated with economic penalties when the predefined policies of the first-stage are violated,
capture the variability of the second-stage costs that are greater than the expected values, and evaluate
trade-offs between system economy and risk [23,24]. An RTSO method is formulated as follows:

Min f = CT1
X +

s

∑
h=1

phDT2
Yh + ρ1

s

∑
h=1

ph V (1)

subject to
ArX ≤ Br, r ∈ M; M = 1, 2, . . . , m1 (2)

ArX + A′rhYh ≥ w′ ih, i ∈ M; i = 1, 2, . . . , m2; h = 1, 2, . . . , s (3)

xj ≥ 0, xj ∈ X; j = 1, 2, . . . , n1 (4)

yjh ≥ 0, yjh ∈ Y; j = 1, 2, . . . , n2; h = 1, 2, . . . , v (5)

V = DT2
Yh −

s

∑
h=1

phDT2
Yh + 2θh, h = 1, 2, . . . , s (6)

vjh ≥ 0, vjh ∈ V; j = 1, 2, . . . , n2; h = 1, 2, . . . , s (7)

where, X and Yh denote the decision variables of the first-stage and the second-stage, respectively;

ph are occurrence probability of scenario h,
H
∑

h=1
ph = 1; C represent coefficients of X and Dh are

coefficients of Yh; w′ ih are random variables with probability levels ph; Ar is the fixed coefficient of X;
Arh
′ are coefficients of Yh. Br represent the boundary vectors of the right-hand side of constraints. θh

denote slack variables used for achieving looser constraints. ρ1 denotes a goal programming weight
of stochastic uncertainties; the managers can regulate the variability of the stochastic recourse cost
through adjusting the ρ1 level [24,35]. When ρ1= 0, the RTSO model becomes a conventional TSP,
which indicates that the managers adopt risk-neutral attitudes and the variability of the stochastic
uncertain recourse costs is not considered. However, when ρ1 = 1, the managers adopt risk- aversive
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attitudes and the variability of the second-stage cost is considered. V denotes the deviation of an
expected value from the given scenario’s cost [3]. Besides, constraints (6) and (7) can define the positive
variability of the recourse costs.

However, RTSO is inefficient in addressing the uncertainties expressed by fuzzy sets. Thus, fuzzy
possibilistic programming (FPP) is joined to RTSO as a hybrid robust stochastic-fuzzy optimization
(RSFO) model as follows:

Min f̃ = C̃T1
X +

s

∑
h=1

phD̃T2
Yh + ρ1

s

∑
h=1

ph V (8)

subject to
Cr{B̃|ArX ≤ B̃r} ≥ α, r ∈ M; M = 1, 2, . . . , m1 (9)

ArX + A′rhYh ≥ w′ ih, i ∈ M; i = 1, 2, . . . , m2; h = 1, 2, . . . , s (10)

xj ≥ 0, xj ∈ X; j = 1, 2, . . . , n1 (11)

yjh ≥ 0, yjh ∈ Y; j = 1, 2, . . . , n2; h = 1, 2, . . . , v (12)

V = DT2
Yh −

s

∑
h=1

phDT2
Yh + 2θh, h = 1, 2, . . . , s (13)

vjh ≥ 0, vjh ∈ V; j = 1, 2, . . . , n2; h = 1, 2, . . . , s (14)

where Cr{·} represents the credibility measure of a fuzzy event in {·}; C̃T1
and D̃T2

are cost coefficients
expressed as a triangular fuzzy number; B̃r(Br

1, Br
2, Br

3) is the boundary vectors of the right-hand
side of constraints, which expresses as triangular fuzzy sets with its membership functions µ(B̃r). α

denotes the predetermined confidence-level. Cr{B̃|ArX ≤ B̃r} ≥ α denotes the credibility of satisfying
ArX ≤ B̃r is higher than or equal to confidence-level α. According to reference [29], the detailed
solution procedures of model (2) can be summarized as: firstly, transforming objective function (8) into
its expected value form; secondly, converting constraints (9) into their crisp equivalents. A series of
solutions can be obtained under difference confidence-levels [25].

However, an FPP algorithm cannot ensure the minimization of objective function under all
conditions because the expected objective value is used as the objective function. This may result in
significant deviations of the optimized decision solutions, even in the event of system optimization
failure. Robust fuzzy possibilistic programming (RFPP) was developed by Pishvaee et al. [32] to
overcome the above-mentioned drawbacks of FPP methods. Additionally, the RFPP method is scarcely
applied to EES systems, which are commonly used to plan water resource allocation, and solid
management [25,27].

Therefore, this study developed a dual robust stochastic fuzzy optimization (DRSFO) method
through integrating TSP, RTSP, FPP, and RFPP methods in a single framework, which can be used
to effectively tackle fuzzy and stochastic uncertainties as well as their combinations, capture the
associated risks from fuzzy and stochastic uncertainties, as well as thoroughly analyze the trade-offs
between system costs and reliability. In detail, it is formulated as follows:
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Min f̃ = f + λ1·( fmax − f ) + λ2·( f − fmin) + ρ2·[BR(α)− Br
1]

= 0.25·(C1
T1
+ 2·C2

T1
+ C3

T1
)·X + λ1·[C3

T1
− 0.25·(C1

T1
+ 2·C2

T1
+ C3

T1
)]·X

+λ2·[0.25·(C1
T1
+ 2·C2

T1
+ C3

T1
)− C1

T1
]·X

+0.25·(D1
T2
+ 2·D2

T2
+ D3

T2
)·

s
∑

h=1
ph·Yh

+λ1·[D3
T2
− 0.25·(D1

T2
+ 2·D2

T2
+ D3

T2
)]·

s
∑

h=1
ph·Yh

+λ2·[0.25·(D1
T2
+ 2·D2

T2
+ D3

T2
)− D1

T2
]·

s
∑

h=1
ph·Yh

+ρ1·
s
∑

h=1
ph V+ ρ2·[BR(α)− Br

1]

(15)

subject to:
Cr{B̃|ArX ≤ B̃r} ≥ α, r ∈ M; M = 1, 2, . . . , m1 (16)

ArX + A′rhYh ≥ w′ ih, i ∈ M; i = 1, 2, . . . , m2; h = 1, 2, . . . , s (17)

xj ≥ 0, xj ∈ X; j = 1, 2, . . . , n1 (18)

yjh ≥ 0, yjh ∈ Y; j = 1, 2, . . . , n2; h = 1, 2, . . . , v (19)

V = DT2
Yh −

s

∑
h=1

phDT2
Y + 2θh, h = 1, 2, . . . , s (20)

vjh ≥ 0, vjh ∈ V; j = 1, 2, . . . , n2; h = 1, 2, . . . , s (21)

where f denotes the expected value of objective function (8); fmax and fmin are the maximum value
and minimum value of objective function (8); BR(α) is the maximum values of all potential values, i.e.,
BR(α) = sup{B

∣∣B = µ−1(α)
}

, µ−1 is the inverse of µ. The first section in the objective function (i.e., f )
is used to denote the system cost, while minimizing the weight sum among the expected objective
values; the second section [i.e., λ1· ( fmax − f ) + λ2· ( f − fmin)] represents the differences between
two extreme possible values, which can enhance the robustness of optimization solutions, where
λ1 and λ2 represent their respective weight coefficients; and the last section (i.e., ρ2·[BR(α)− Br

1])
denotes the difference between the extreme values of fuzzy uncertainty information, which can control
the feasibility robustness of the generated solution. ρ2 is a goal programming weight for fuzzy
uncertainties [25]. The evaluation of the trade-offs between system cost and risk can be obtained
under different coefficients λ1, λ2, ρ1, ρ2, and α. The constraint (16) can be tackled by a conventional
FPP algorithm.

3. Applications

3.1. Statement of Problem

The BTH region is regarded as China’s economic, political, cultural, and technological innovation
center, representing the most dynamic urban cluster in the country, including 11 prefecture-level
cities of Hebei Province, as well as two megacities (Beijing and Tianjin) [36,37]. The region has
experienced rapid economic development, with a high annual growth rate of 6.64% for gross domestic
product (GDP) over the last five years [1–3]. The BTH region’s energy demands have dramatically
increased along with its rapid urbanization, industrialization, and economic development. According
to the National Bureau of Statistics of the People’s Republic of China, the region’s electricity demand
reached 50.92 million kWh in 2016, representing an increase of 13.31% compared with five years
earlier. The domestic energy structure is heavily dependent on coal resources, with coal-based power
accounting for 85.04% of the region’s electricity power generation, while renewable energy contributes
only 8%.
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Fossil fuels in general are the major contributor to air pollution. For example, approximately
50%, 70%, 90%, and 65% of the total CO2 emissions, nitrogen oxide (NOx), sulfur dioxide (SO2), and
particulate matter (PM) are contributed by coal resources [4,38]. In addition, the BTH region is one
of the high-traffic regions of China, with a vehicle population of 20.67 million in 2016, representing
an increase of 63% from 2011. Motor vehicles are recognized as a major contributor of regulated
pollutants such as CO, NOx, HC, and PM. Based on several references, vehicular emissions contributed
approximately 20–67% of CO emission, 12–36% of NOx emission, and 12–39% of HC emissions [5].

The BTH region experiences severe air pollution due to increasing energy consumption and
vehicle population, as well as a “high coal” energy mix characteristic. Cities in the region generally
occupy more than half of the top-ten spots for the most polluted cities in China [39]. The scale of
emissions in the BTH region has exceeded the capacity of self-purification and air-pollutants’ diffusion
from the atmosphere [25,33]. This situation has forced local managers to propose ambitious schemes
for planning the EES of the BTH region.

To tackle the above-mentioned problems, several policies and measures have been implemented
with regard to the development of renewable energy resources: adjustment of the energy structure;
encouragement of the use of EVs; improvement of energy conversion efficiencies; and enhancement
of vehicular emission standards. For example, several strategies have been proposed for reducing
vehicular emissions, such as the deployment of EVs and the implementation of the China VI vehicular
emission standard. However, it remains unclear how much pollution reduction can be achieved
by these control measures and policies. As noted earlier, this paper proposed the DRSFO-EES
model for the assessment of the impacts of different emission mitigation policies and measures
on EES; development of robust optimization solutions for EES planning; determination of the regional
atmospheric pollution contributions of different energy sectors such as energy processing, electricity
generation, and vehicular traffic.

3.2. Schematic Overview of This Study

The proposed DRSFO-EES model was applied to EES planning for the BTH region. As shown
in Figure 1, the considered EES included several energy-related activities such as heat processing,
coke processing, oil refining, electricity conversion, EVs expansion, and energy import. The electricity
demands of the BTH region are supplied by local power plants and import from adjacent power grids.
The major local electricity conversion technologies include natural gas-based, coal-based, wind and
solar power. The vehicle population consists of heavy-duty passenger vehicles (HDVs), light-duty
passenger vehicles (LDVs), light duty trucks (LDTs), heavy duty trucks (HDTs), EVs, and “others”.
The DRSFO-EES model was used in this study to determine the air pollutants and greenhouse gases
(NOx, SO2, PM, CO, HC, and CO2) emitted from the different energy related-activities in the region.
The EES considered a number of uncertainties (such as electricity demand, and many economic
parameters expressed as random variables and fuzzy sets) that would affect the optimization scheme.
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Figure 1. Schematic overview of this study.

3.3. Development of DRSFO-EES Model

Minimizing the system cost is the objective of DRSFO-EES, which includes costs for coke
processing, heat processing, input for coal-based power, oil refining, input for natural gas-based
power, imported electricity, first-stage of electricity generation, second-stage of electricity generation,
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electricity expansion, energy production, subsidy for solar power generation, subsidy for wind power
generation, EVs charging piles, EVs charging stations, pollutants treatment, and risk recourse for the
stochastic and fuzzy uncertainties. The proposed DRSFO-EES can be solved by Lingo 11.0 software.
The schematic diagram of DRAOM-EWNS model is presented in Figure 2.
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Figure 2. The schematic diagram of dual robust stochastic fuzzy optimization—energy and
environmental systems (DRSFO-EES).

In the DRSFO-EES, t denotes the planning periods, period 1 (2020), period 2 (2025), and period 3
(2030); i denotes the primary energy production type, i = 1 is coal, i = 2 is natural gas, and i = 3 is crude
oil; k denotes the electric conversion technology, k = 1 is coal-based power, k = 2 is natural gas-based
power, k = 3 is solar power, and k = 4 is wind power; h expresses the electricity demand-level, h = 1
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(low demand level), h = 2 (medium demand level), h = 3 (high demand level),
3
∑

h=1
ph = 1; g are the

vehicles types, g = 1 is HDVs, g = 2 is LDVs, g = 3 is TDTs, g = 4 is HDTs, and g = 5 is others. The
proposed DRSFO-EES is formulated as follows:

Objective:
Min f̃ = f + λ1( fmax − f ) + λ2( f − fmin) + VFt

= f1 + f2 + f3 + f4 + f5 + f6 + f7

+ f8 + f9 + f10 − f11 − f12 + f13 + f14

+ f15 + f16

(22)

where f̃ represents the system cost; f̃1 denotes the heat processing cost; f̃2 denotes oil refining cost; f̃3

denotes coke processing cost; f̃4 denotes the cost of coal inputs for coal-based power; f̃5 denotes the
cost of natural gas inputs for natural gas-based power; f̃6 denotes importing electricity cost; f̃7 denotes
the cost of first-stage electricity generation; f̃8 denotes the cost of second-stage electricity generation; f̃9

denotes electricity expansion cost; f̃10 denotes the energy production cost; f̃11 denotes the subsidy for
solar power; f̃12 denotes the subsidy for wind power; f̃13 denotes the cost of charging pile; f̃14 denotes
the cost of changing station; f̃15 denotes air-pollutants removal cost; f̃16 denotes the risk recourse costs
of stochastic and fuzzy uncertainties. VFt represents the positive deviation between maximum values
and worst value of fuzzy parameters. λ1 and λ2 represent their respective weight coefficients, where it
is assumed λ1 and λ2 are fixed (i.e., λ1 = λ2 = 1).

(1) Cost of heat processing. This cost is used for heat processing, and it is calculated based on the
unit-price and amount of heat processing.

f̃1 =
3
∑

t=1
[0.25(HPPt

1+2HPPt
2 + HPPt

3) ·HGAt

+ λ1·
3
∑

t=1
[HPPt

3 − 0.25(HPPt
1+2HPPt

2 + HPPt
3)] HGAt

+ λ2·
3
∑

t=1
[0.25(HPPt

1+2HPPt
2 + HPPt

3)− HPPt
1] HGAt

(23)

where HP̃Pt(HPPit
1, HPPit

2, HPPit
3) is the cost for unit of heat processing, which is expressed as a

triangular fuzzy number; HGAt is the heat processing amount.
(2) Cost for oil refining. This cost is calculated in terms of the unit-price and the amount of

oil refining.

f̃2 =
3
∑

t=1
[0.25(PVOt

1+2PVOt
2 + PVOt

3) ·OFOILt

+ λ1·
3
∑

t=1
[PVOt

3 − 0.25(PVOt
1+2PVOt

2 + PVOt
3)]OFOILt

+ λ2·
3
∑

t=1
[0.25(PVOt

1+2PVOt
2 + PVOt

3) − PVOt
1] OFOILt

(24)

where PṼOt (PVOt
1, PVOt

2, PVOt
3) is the cost for unit of oil refining; OFOILt is the crude oil

consumption of oil refining. (3) Cost for coke processing. This cost is calculated in terms of the
unit-price and the amount of coke processing.

f̃3 =
3
∑

t=1
[0.25(PWOt

1+2PWOt
2 + PWOt

3) ·CKPAt

+
3
∑

t=1
[PWOt

3 − 0.25(PWOt
1+2PWOt

2 + PWOt
3)] CKPAt

+
3
∑

t=1
[0.25(PWOt

1+2PWOt
2 + PWOt

3) − PWOt
1] CKPAt

(25)
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where PW̃Ot(PWOt
1, PWOt

2, PWOt
3) is the cost for unit of coke processing; and CKPAt is the coke

processing amount.
(4) Cost for purchasing coal resources. This cost is used for purchasing coal resources, and it is

calculated based on the unit-price and the amount of coal resource.

f̃4 =
3
∑

t=1
[0.25(NSCt

1+2NSCt
2 + NSCt

3)] ·ECOALMt

+ λ1·
3
∑

t=1
[NSCt

3 − 0.25(NSCt
1+2NSCt

2 + NSCt
3)]ECOALMt

+ λ2·
3
∑

t=1
[0.25(NSCt

1+2NSCt
2 + NSCt

3) − NSCt
1] ECOALMt

(26)

where NS̃Ct(NSCt
1, NSCt

2, NSCt
3) is the price for unit of coal resource; and ECOALMt is the coal

consumption of coal-based power.
(5) Cost for purchasing natural gas resources. This cost is used for purchasing natural gas

resources, and it is calculated based on the unit-price and the amount of natural gas resource.

f̃5 =
3
∑

t=1
[0.25(NSNt

1+2NSNt
2 + NSNt

3)] ·ENGMt

+ λ1·
3
∑

t=1
[NSNt

3 − 0.25(NSNt
1+2NSNt

2 + NSNt
3)]ENGMt

+ λ2·
3
∑

t=1
[0.25(NSNt

1+2NSNt
2 + NSNt

3) − NSNt
1] ENGMt

(27)

where NS̃Nt(NSNt
1, NSNt

2, NSNt
3) is the price for unit of natural gas resource; and ENGMt is the

natural gas consumption of natural gas-based power.
(6) Cost for importing electricity. This cost is calculated in terms of the unit-price and the amount

of importing electricity.

f̃6 =
3
∑

t=1

3
∑

h=1
[0.25(NEt

1+2NEt
2 + NEt

3) ·EDth

+ λ1·
3
∑

t=1

3
∑

h=1
[NEt

3 − 0.25(NEt
1+2NEt

2 + NEt
3)]EDth

+ λ2·
3
∑

t=1

3
∑

h=1
[0.25(NEt

1+2NEt
2 + NEt

3) − NEt
1] EDth

(28)

where NẼt(NEt
1, NEt

2, NEt
3) is the price for unit of imported electricity; EDth is the amount of

imported electricity.
(7) Operation cost for first-stage electricity generation. The cost represents the operation cost of

first-stage electricity generation facilities (i.e., coal-based power, gas-based power, wind power and
solar power) during the planning periods. It is calculated in terms of the operation costs and the amount
of electricity generation for each of the electricity generation facilities. Furthermore, the first-stage is
given by W±kt = W−kt + rrkt·∆W, where rrkt denotes the decision variables, ∆W = W+

kt −W−kt .

f̃7 =
4
∑

k=1

3
∑

t=1
[0.25(PVkt

1 + 2·PVkt
2 + PVkt

3) ]· (Wkt
− + rrkt·∆Wkt)

+λ1
4
∑

k=1

3
∑

t=1
[PVit

3 − 0.25(PVkt
1 + 2·PVkt

2 + PVkt
3) ]· (Wkt

− + rrkt·∆Wkt)

+λ2
4
∑

k=1

3
∑

t=1
[0.25(PVkt

1 + 2·PVkt
2 + PVkt

3) − PVkt
1]· (Wkt

− + rrkt·∆Wkt)

(29)
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where PṼkt(PVkt
1, PVkt

2, PVkt
3) denotes the operation cost of different power conversion technologies;

Wkt
± = Wkt

− + rrkt·∆Wkt is the first-stage electricity generation amount, which is determined by
decision variables rrkt (∆W = W+

kt −W−kt and rrkt ∈ [0, 1]).
(8) Penalty cost for second-stage electricity generation amounts (i.e., shortage electricity amount

of first-stage). It is calculated in terms of the penalty costs and the amount of second-stage electricity
generation by each electricity generation technology.

f̃8 =
4
∑

k=1

3
∑

t=1

3
∑

h=1
[0.25(PPkt

1+2·PPkt
2+ PPkt

3)]·pth·Ykth

+ λ1·
4
∑

k=1

3
∑

t=1

3
∑

h=1
[PPkt

3 − 0.25(PPkt
1+2·PPkt

2+ PPkt
3)]· pth·Ykth

+λ2·
4
∑

k=1

3
∑

t=1

3
∑

h=1
[0.25(PPkt

1+2·PPkt
2+ PPkt

3)− PPkt
1]· pth·Ykth

(30)

where PP̃kt(PPkt
1, PPkt

2, PPkt
3) is the operating cost for the second-stage electricity generation amount

(Ykth). Ykth is the second-stage electricity generation amount.
(9) Fixed and variable costs for electric capacity expansion. These costs include the fixed

and variable electric capacity expansion costs of four electricity generation technologies in the
planning horizon.

f̃9 =
4
∑

i=1

3
∑

t=1

3
∑

h=1
pth[0.25(Akt

1+2·Akt
2+ Akt

3)]·Qkth

+λ1·
4
∑

i=1

3
∑

t=1

3
∑

h=1
pth[Akt

3 − 0.25(Akt
1+2·Akt

2+ Akt
3)]·Qkth

+λ2·
4
∑

i=1

3
∑

t=1

3
∑

h=1
pth[0.25(Akt

1+2·Akt
2+ Akt

3)− Akt
1]·Qkth

+
4
∑

i=1

3
∑

t=1

3
∑

h=1
pth[0.25(Bkt

1+2·Bkt
2+ Bkt

3)]·Zkth

+λ1·
4
∑

i=1

3
∑

t=1

3
∑

h=1
pth[Bkt

3 − 0.25(Bkt
1+2·Bkt

2+ Bkt
3)]·Zkth

+λ2·
4
∑

i=1

3
∑

t=1

3
∑

h=1
pth[0.25(Bkt

1+2·Bkt
2+ Bkt

3)− Bkt
1]·Zkth

(31)

where Ãkt(Akt
1, Akt

2, Akt
3) denote fixed-charge cost for different electric capacity expansion. Qkth are

binary variables for identifying whether or not the capacity expansion needs to be undertaken by
power conversion technology k. B̃kt(Bkt

1, Bkt
2, Bkt

3) denote the variable cost of capacity expansion.
Zkth denotes the continuous variable of the capacity expansion amount.

(10) Generation costs for primary energy resources. This cost is calculated in terms of the unit-price
of primary energy (i.e., coal, natural gas, and crude oil) and the amount of primary generation.

f̃10 =
3
∑

i=1

3
∑

t=1
0.25(EPPit

1 +2·EPPit
2 + EPPit

3)· EPAit

+λ1·
3
∑

i=1

3
∑

t=1
[EPPit

3 − 0.25·(EPPit
1+2·EPPit

2 + EPPit
3)]· EPAit

+λ2·
3
∑

i=1

3
∑

t=1
[0.25·(EPPit

1+2·EPPit
2 + EPPit

3)− EPPit
1]· EPAit

(32)

where EP̃Pit(EPPit
1, EPPit

2, EPPit
3) is the production cost per unit of energy resource; and EPAit is the

production amount.
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(11) Subsidy for solar power. The government provides a subsidy for units of electricity generated
by solar power, and it is calculated in terms of the unit-subsidy of solar power and the amount of
electricity generation amount of solar power.

f̃11 =
3
∑

t=1
[0.25(SPt

1+2SPt
2 + SPt

3) ·(W3t
− + rr3t·∆W3t)

+
3
∑

t=1
[SPt

3 − 0.25(SPt
1+2SPt

2 + SPt
3)] (W3t

− + rr3t·∆W3t)

+
3
∑

t=1
[0.25(SPt

1+2SPt
2 + SPt

3) − SPt
1] (W3t

− + rr3t·∆W3t)

(33)

where SP̃t(SPt
1, SPt

2, SPt
3) is the solar subsidy provided by government for unit of electricity generated

by solar power.
(12) Subsidy for wind power. The government provides a subsidy for units of electricity generated

by wind power, and it is calculated in terms of the unit-subsidy of wind power and the amount of
electricity generation amount of wind power.

f̃12 =
3
∑

t=1
[0.25(WPt

1+2WPt
2 + WPt

3) ·(W4t
− + rr4t·∆W4t)

+
3
∑

t=1
[WPt

3 − 0.25(WPt
1+2WPt

2 + WPt
3)] (W4t

− + rr4t·∆W4t)

+
3
∑

t=1
[0.25(WPt

1+2WPt
2 + WPt

3) −WPt
1] (W4t

− + rr4t·∆W4t)

(34)

where WP̃t(WPt
1, WPt

2, WPt
3) is the wind subsidy provided by government for unit of electricity

generated by wind power.
(13) Costs for battery charging piles. It is calculated in terms of the average charging pile amount

for unit of electric vehicle, the EVs population, as well as the investment cost per EV charging pile.

f13 =
3

∑
t=1

EVAtRECtFCDt (35)

where EVAt is the EVs population; RECt is the average charging pile amount for unit of electric vehicle;
FCDt is the investment cost per EV charging pile.

(14) Costs for battery changing station. It is calculated in terms of the average changing station
amount for unit of electric vehicle, the EVs population, as well as the investment cost per EV
changing station.

f14 =
3

∑
t=1

EVAtREVtFVDt (36)

where REVt is the average changing station amount for unit of electric vehicles; FVDt is the investment
cost per EV changing station.

(15) Costs for pollutant reduction. These costs include reduction costs for three pollutants, i.e.,
SO2, NOX, and PM emissions.

f̃15 = f̃15s + f̃15N + f̃15PM (37)

where f̃15s is the cost of desulfurization; SO2Kt is the SO2 emissions from coking processing; SO2CEt

is the SO2 emissions from coal-based power; SO2NEt is the SO2 emissions from natural gas-based
power; SO2Ht is the SO2 emissions from heating processing; SO2Ot is the SO2 emissions from oil
refining; TP̃St(TPSt

1, TPSt
2, TPSt

3) is the desulfurization cost of per unit of SO2 emission; ηs is the
desulfurization efficiency.
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(15a) Costs for SO2 emissions reduction. The cost is calculated in terms of the total SO2 emissions,
the desulfurization cost per unit of SO2 emission, and the desulfurization efficiency.

f̃15S = {
3
∑

t=1
(SO2Kt + SO2CEt + SO2NEt + SO2Ht + SO2Ot)

·0.25· (TPSt
1 + TPSt

2 + TPSt
3 )· ηs

}
+λ1·{

3
∑

t=1
(SO2Kt + SO2CEt + SO2NEt + SO2Ht + SO2Ot)

·[TPSt
3 − 0.25· (TPSt

1 + TPSt
2 + TPSt

3 )]· ηs
}

+λ2·{
3
∑

t=1
(SO2Kt + SO2CEt + SO2NEt + SO2Ht + SO2Ot)

·[0.25· (TPSt
1 + TPSt

2 + TPSt
3 )− TPSt

1]· ηs
}

(38)

where f̃15s is the cost of desulfurization; SO2Kt is the SO2 emissions from coking processing; SO2CEt

is the SO2 emissions from coal-based power; SO2NEt is the SO2 emissions from natural gas-based
power; SO2Ht is the SO2 emissions from heating processing; SO2Ot is the SO2 emissions from oil
refining; TP̃St(TPSt

1, TPSt
2, TPSt

3) is the desulfurization cost per unit of SO2 emission; ηs is the
desulfurization efficiency.

(15b) Costs for NOX emissions reduction. The cost is calculated in terms of the total NOx emissions,
the desulfurization cost per unit of NOx emission, and the desulfurization efficiency.

f̃15N = {
3
∑

t=1
(NOXKt + NOXCEt + NOXNEt + NOXHt + NOXOt)

·0.25· (TPNt
1 + TPNt

2 + TPNt
3 )· ηN

}
+λ1·{

3
∑

t=1
(NOXKt + NOXCEt + NOXNEt + NOXHt + NOXOt)

·[TPNt
3 − 0.25· (TPNt

1 + TPNt
2 + TPNt

3 )]· ηN
}

+λ2·{
3
∑

t=1
(NOXKt + NOXCEt + NOXNEt + NOXHt + NOXOt)

·[0.25· (TPNt
1 + TPNt

2 + TPNt
3 )− TPNt

1]· ηN
}

(39)

where f̃15N is the cost of denitration; NOXKt is the NOx emissions from coking processing; NOXCEt

is the NOx emissions from coal-based power; NOXNEt is the NOx emissions from natural gas-based
power; NOXHt is the NOx emissions from heat processing; NOXOt is the NOx emissions from oil
refining; TP̃Nt(TPNt

1, TPNt
2, TPNt

3) is the denitration cost per unit of NOx emission; ηN is the
denitration efficiency.

(15c) Costs for PM emissions reduction. The cost is calculated in terms of the total PM emissions,
the desulfurization cost per unit of PM emission, and the desulfurization efficiency.

f̃15PM = {
3
∑

t=1
(PMKt + PMCEt + PMNEt + PMHt + PMOt)

·0.25· (TPPMt
1 + TPPMt

2 + TPPMt
3 )· ηPM

}
+λ1·{

3
∑

t=1
(PMKt + PMCEt + PMNEt + PMHt + PMOt)

·[TPPMt
3 − 0.25· (TPPMt

1 + TPPMt
2 + TPPMt

3 )]· ηPM
}

+λ2·{
3
∑

t=1
(PMKt + PMCEt + PMNEt + PMHt + PMOt)

·[0.25· (TPPMt
1 + TPPMt

2 + TPPMt
3 )− TPPMt

1]· ηPM
}

(40)

where f̃15PM is the PM removal cost; PMKt is the PM emissions from coking processing; PMCEt is
the PM emissions from coal-based power; PMNEt is the PM emissions from natural gas-based power;
PMHt is the PM emissions from heating processing; PMOt is the NOX emissions from oil refining;
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TP̃PMt(TPPMt
1, TPPMt

2, TPPMt
3) is the treatment cost per unit of PM emission; ηPM is the PM

removal efficiency.
(16) Costs for risk recourse of stochastic and fuzzy uncertainties.

f̃16 = VT̃S + VT̃F = ρ1·
I

∑
i=1

T

∑
t=1

H

∑
h=1

pth(Vith + VCith] + ρ2·
3

∑
t=1

VFt (41)

where VT̃S denotes the risk recourse cost for stochastic uncertainties; VT̃F denotes the risk recourse
cost of fuzzy uncertainties, with capturing the difference between the extreme values of fuzzy
parameters. The nonnegative factors ρ1 and ρ2 represent robust levels (its range from 0 to 1), which
can help managers make trade-offs between system economy and reliability.

Constraints:
The constraints of the proposed DRSFO-EES model include traffic sector, heat processing, coke

processing, oil refining, electricity generation, energy production, air-pollutants treatment, and risk
recourse cost for stochastic uncertainties and risk recourse for fuzzy uncertainties.

(1) Constraints for traffic sector.
This constraint represents that the optimized vehicles population must be not less than the

lower bounds of vehicle population. Cr{MÃLgt

∣∣∣MAgt ≥ MÃLgt

}
≥ α means the credibility of the

MAgt ≥ MÃLgt is higher than or equal to confidence-level α.

Cr{MÃLgt

∣∣∣MAgt ≥ MÃLgt

}
≥ α (42)

where MAgt is the optimized solutions of vehicles population; MÃLgt(MALgt
1, MALgt

2, MALgt
3) is

the lower bounds of vehicle population, which is expressed as a triangular fuzzy number.
Constraints for vehicle-emissions, including CO, NOx, HC, and PM emissions. These constraints

represent that the vehicle-emissions are calculated in terms of the annual average mileage, the
proportion of electric vehicles and the emission factors of CO, NOx, HC and PM emissions.

TRCOgt|g=1,3,4,5 = MAgt|g=1,3,4,5·MQgt|g=1,3,4,5·TRCOEgt|g=1,3,4,5 (43)

TRCO2t = (MAgt −MAgt·REVt)·MQgt·TRCOEgt (44)

TRNOXgt|g=1,3,4,5 = MAgt|g=1,3,4,5·MQgt|g=1,3,4,5·TRNOEgt|g=1,3,4,5 (45)

TRNOX2t = (MAgt −MAgt·REVt)·MQgt·TRNOEgt (46)

TRHCgt|g=1,3,4,5 = MAgt|g=1,3,4,5·MQgt|g=1,3,4,5·TRHCgt|g=1,3,4,5 (47)

TRHC2t = (MAgt −MAgt·REVt)·MQgt·TRHCgt (48)

TRPMgt|g=1,3,4,5 = MAgt|g=1,3,4,5·MQgt|g=1,3,4,5·TRPMgt|g=1,3,4,5 (49)

TRPM2t = (MAgt −MAgt·REVt)·MQgt·TRPMgt (50)

where TRCOgt is CO emissions from vehicle g in period t; MQgt is the annual average mileage; REVt is
the proportion of electric vehicles; TRCOEgt the emission factor of CO; TRNOEgt the emission factor
of NOX; TRHCgt the emission factor of HC; TRPMgt the emission factor of PM.

Constraints of the electricity demands of EVs. This constraint is calculated in terms of the
electricity consumption amounts per hundred kilometers of EVs and the amount of EVs.

EVECt = MA2t·REVt·MQ2t·ECPEVt (51)

where EVECt is the electricity consumption amounts of EVs; ECPEVt is the electricity consumption
amounts per hundred kilometers of EVs.
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(2) Constraints of heat processing. Constraint (52) depicts that the heat generation amounts must
not be less than the heat demands, and Cr{DM̃Ht

∣∣∣HGAt ≥ DM̃Ht

}
≥ α means the credibility of the

HGAt ≥ DM̃Ht is higher than or equal to confidence-level α. Constraints (53) and (54) represent the
consumption amounts of natural gas and coal for heat processing.

Cr{DM̃Ht

∣∣∣HGAt ≥ DM̃Ht

}
≥ α (52)

CFHGCt = CFHt·HGAt·HCPt (53)

CFHGNt = CFHt·HGAt·HNPt (54)

where DM̃Ht(DMHt
1, DMHt

2, DMHt
3) is the heat demand; CFHt denotes the energy consumption

for the unit of kerosene processing. CFHGCt denotes the coal consumption of heat processing;
CFHGNt is the natural gas consumption of heat processing; HCPt denotes the ratio of coal consumption
of heat processing; HNPt denotes the ratio of natural gas consumption of heat processing.

(3) Constraints of oil refining. The constraint depicts the input amounts of crude oil for oil refining.

OFOILt = ZCYt·ZCYEt + ZQYt·ZQYEt + ZMYt·ZMYEt

+ ZRLYt · ZRLYEt + ZSNYt · ZSNYEt

+ ZSJYt · ZSJYEt + ZLPGt · ZLPGEt + ZQTt

(55)

where ZCYt is the diesel processing amount; ZCYEt denotes the crude oil consumption for unit of diesel
processing; ZQYt is the processing amount of gasoline; ZQYEt denote the crude oil consumption
for unit of gasoline processing; ZMYt is the processing amount of kerosene; ZMYEt denotes the
crude oil consumption for unit of kerosene processing; ZRLYt is the fuel oil processing amount;
ZRLYEt is the crude consumption for unit of fuel oil processing; ZSNYt is the processing amount
for naphtha; ZSNYEt denotes the crude oil consumption for unit of naphtha processing; ZSJYt is
the processing amount of asphaltic pyrobitumen; ZSJYEt denotes the crude oil consumption for unit
of asphaltic pyrobitumen processing; ZLPGt is the processing amount of LPG; ZLPGEt denotes the
crude consumption for unit of LPG processing; ZQTt denotes the crude oil consumption of other oil
products.

(4) Constraints of coke processing. Constraint (56) means that the amount of coke processing is
not less than the coke demands, and Cr{DMC̃Jt

∣∣∣CKPAt ≥ DMC̃Jt

}
≥ α means the credibility of

the CKPAt ≥ DMC̃Jt is higher than or equal to confidence-level α. Constraint (57) depicts the coal
consumption amount for coke processing.

Cr{DMC̃Jt

∣∣∣CKPAt ≥ DMC̃Jt

}
≥ α (56)

CFCJt = CKPAt/CTCKEt (57)

where DMC̃Jt(DMCJt
1, DMCJt

2, DMCJt
3) is the coke demand expressed as a triangular fuzzy number.

CTCKEt denotes the coal consumption for unit of coke processing; CFCJt is the coal consumption of
coke processing.

(5) Constraints of electricity generation.
Constraints for mass balance of coal and natural gas resources. These constraints are established

to calculate the consumption amounts of coal and natural gas for electricity generation.

[(W−1t + rr1t·WC1t) + Y1th + EVECt]·FE1t = ECOALMt (58)

[(W−2t + rr2t·WC2t) + Y2th]·FE2t = ENGMt (59)



Appl. Sci. 2019, 9, 928 17 of 39

where FEit is the coal (i = 1) and natural gas (i = 2) consumption for a unit of electricity generation.
Constraints of electricity demand and supply balance. Constraint (60) is established to ensure

the electricity demand be satisfied by domestic electricity generation and importation. And

Cr{D̃th|
4
∑

i=1

3
∑

t=1
[(W−it + rritWCit) + Yith + EVECt] + Edth ≥ D̃th

}
≥ α means the credibility of the

4
∑

i=1

3
∑

t=1
[(W−it + rritWCit) + Yith + EVECt] + Edth ≥ D̃th is higher than or equal to confidence-level

α. For constraint (61), the optimized amount of electricity generated in the first-stage is given by
W±kt = W−kt + rrkt·∆W, where rrkt denotes the decision variables, and rrkt ∈ [0, 1].

Cr{D̃th|
4

∑
i=1

3

∑
t=1

[(W−it + rritWCit) + Yith + EVECt] + Edth ≥ D̃th} ≥ α (60)

0 ≤ rrit ≤ 1 (61)

where D̃th is the electricity demand under various electricity demand levels, which show the
characteristics of stochastic and fuzzy sets. rrit denotes the decision variable of first-stage
electricity generation.

Constraints for electricity capacities. These constraints mainly depict that the amount of generated
electricity must not exceed its existing and expanded capacities, which are established to ensure that
the available electricity-generation capacity is greater than the generated electricity.

4

∑
i=1

(W−it + rrit·WCit) + Yith + EVECt ≤
2

∑
i=1

[CFit·(RCit + Zith)] (62)

4

∑
i=1

(RCi + Zith) ≥ Ut; ∀t, h (63)

4

∑
i=1

(RCi + Zith) ≤ USt; ∀t, h (64)

4

∑
i=1

Yith ≤
4

∑
i=1

CFit·Zith (65)

0 ≤ Yith ≤ (W−it + rrit·WCit); ∀i, t, h (66)

Qith =

{
= 1, if capacity expansion of is undertaken ∀i, t, h
= 0, if otherwise

(67)

where CFkt is the operating hours of electricity conversion technology k; RCkt is the original capacity;
Ut is the lower bound of load demands; USt is the upper bound of load demands.

(6) Constraints of energy production. The constraint is established to ensure the primary energy
production amount must be less than the lower bound and higher than the upper bound.

EPAL ≤ EPAit ≤ EPAUit (68)

where EPAUit is the upper bound of amount of primary energy production. EPALit is the lower bound
of amount of primary energy production.

(7) Constraints for air-pollutants management.
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SO2 emissions. Constraints (69) to (74) represent the SO2 emissions from energy activities (i.e.,
coke processing, heat processing, electricity generation, and oil refining). Constraints (74) are used for
ensuring that the SO2-emissions are satisfied by the pollutant-emission permits.

SO2Kt = CFCJt·CSt (69)

SO2CEt = ECOALMt· CSt (70)

SO2NEt = NEGMt·CSt (71)

SO2Ht = CFHGCt·CSt + CFHGNt·NSt (72)

SO2Ot = OFOILt·OSt (73)

(SO2Kt + SO2CEt + SO2NEt + SO2Ht + SO2Ot) · (1− ηs) ≤ TSt (74)

where CSt is the SO2 emission factor of coal; NSt is the SO2 emission factor of natural gas; OSt is the
SO2 emission factor of crude oil; ηs is the desulfurization efficiency; TSt is the upper bounds of SO2

emission.
NOX emissions. Constraints (75) to (79) represent the NOx emissions from energy activities (i.e.,

coke processing, heat processing, electricity generation, and oil refining). Constraints (80) are used for
ensuring that the NOx-emissions are satisfied by the pollutant-emission permits.

NOXKt = CFCJt·CNt (75)

NOXCEt = ECOALMt· CNt (76)

NOXNEt = NEGMt·NNt (77)

NOXHt = CFHGCt·CNt + CFHGNt·NNt (78)

NOXOt = OFOILt·ONt (79)

(NOXKt + NOXCEt + NOXNEt + NOXHt + NOXOt) · (1− ηN) ≤ TNt (80)

where CNt is the NOx emission factor of coal; NNt is the NOx emission factor of natural gas; ONt is
the NOx emission factor of crude oil; ηN is the denitration efficiency; TNt is the upper bounds of NOx

emission.
PM emissions. Constraints (81) to (85) represent the PM emissions from energy activities (i.e.,

coke processing, heat processing, electricity generation, and oil refining). Constraints (86) are used for
ensuring that the PM-emissions are satisfied by the pollutant-emission permits.

PMKt = CFCJt·CPMt (81)

PMCEt = ECOALMt· CPMt (82)

PMNEt = NEGMt·NPMt (83)

PMHt = CFHGCt·CPMt + CFHGNt·NPMt (84)

PMOt = OFOILt·OPMt (85)

(PMKt + PMCEt + PMNEt + PMHt + PMOt) · (1− ηPM) ≤ TPMt (86)

where CPMt is the PM emission factor of coal; NPMt is the PM emission factor of natural gas; OPMt

is the PM emission factor of crude oil; ηPM is the PM removal efficiency; TPMt is the upper bound of
PM emission.
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CO2 emissions. Constraints (81) to (85) represent the CO2- emissions from energy activities (i.e.,
coke processing, heat processing, electricity generation, and oil refining).

CO2Kt = CFCJt·CCO2t (87)

CO2CEt = ECOALMt· CCO2t (88)

CO2NEt = NEGMt·NCO2t (89)

CO2Ht = CFHGCt·CCO2t + CFHGNt·NCO2t (90)

CO2Ot = OFOILt·OCO2t (91)

where CCO2t is the CO2 emission factor of coal; NCO2t is the CO2 emission factor of natural gas;
OCO2t is the CO2 emission factor of crude oil.

(8) The expected deviations for stochastic uncertainties. These constraints are used for capturing the
risk from stochastic uncertainties.

Vith = PP̃it·Y±ith −
H

∑
h=1

pthPP̃itY
±
ith + 2θh; ∀i, t, h (92)

VCith = (ÃitQith + B̃itZith)−
H

∑
h=1

pth(ÃitQith + B̃itZith) + 2θh; ∀i, t, h (93)

V±ith ≥ 0, VC±ijcth ≥ 0; (94)

where θh ≥ 0 are slack variables that can achieve looser constraints; Vith and Vijcth are the weighted
values of the expected deviations from stochastic uncertainties.

(9) The expected deviations for fuzzy uncertainties. These constraints are used for capturing the risk
from fuzzy uncertainties.

VFt = (DMCJt
R(α)− DMCJt

1) + (DMHt
R(α)− DMHt

1)

+
5
∑

g=1
(MALgt

R(α)−MALgt
1) +

3
∑

h=1
[Dth

R(α)− Dth
1]; ∀g, t, h (95)

VFt ≥ 0 (96)

where VFt represents the positive deviation between maximum values and worst value of fuzzy
parameters of right-side of constraints. DMCJt

R(α), DMHt
R(α), MALt

R(α), and Dth
R(α) are the

maximum values of all potential values, i.e., DMCJt
R(α) = sup{B

∣∣B = µ−1(α)
}

, µ−1 is the inverse
of µ. DMCJt

1(α), DMHt
1(α), MALt

1(α), and Dth
1(α) represent the possible worst values of fuzzy

numbers DMC̃Jt(α), DM̃Ht(α), MÃLt(α), and D̃th(α), respectively.

(10) Non-negative constraints. This constraint assures that only positive variables are considered in
the solutions, eliminating infeasibility while calculating the solution.

MAgt, EPAit, HGAt, CFHGCt, CFHGNt, OFOILt,
CKPAt, ECOALMt, ENGMt, Edth, rrit, EVECt,
Yith, Qith, Zith ≥ 0

(97)

3.4. Data Acquirement

The data sources of the DRSFO-EES are related references, government reports, and statistical
yearbooks. The data regarding the vehicle population of the BTH region in particular was obtained from
reference [38]. The annual average vehicle kilometers travelled (VKT) data were obtained from related
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reference [40–42]. Table 2 details the vehicular emission factors of China-V and China-VI [40,41,43–48].
Table 3 gives the electricity demands and representative technical data [1,23,49–52]. The electricity
demands were expressed as stochastic uncertain with three probability levels (20%, 60%, and 20%
corresponding to low, medium, and high levels of electricity demand, respectively). The residual
capacities and operation times of the different electricity generation technologies were obtained
from [49]. The CO2 and air-pollutant emission factors were acquired from related references and
Intergovernmental Panel on Climate Change (IPCC) reports [2,3,53,54].

Table 2. Vehicular emission factors with different emissions standards (mg/km•unit).

CO NOX HC PM

HDV
China-V 300 4610 35 100
China-VI 300 4610 35 100

LDV
China-V 1400 60 230 5
China-VI 700 35 115 5

LDT
China-V 5800 60 1200 5
China-VI 2900 35 600 5

HDT
China-V 200 3530 35 100
China-VI 200 3530 35 100

Other
China-V 2750 150 855 20
China-VI 2750 150 855 20

Table 3. Electricity demand and technological data.

Period

Period 1 Period 2 Period 3

Electricity demand (109 kWh)

Low demand level [517.71, 537.71, 557.71] [553.82, 573.82, 593.82] [594.67, 614.67, 634.67]
Medium demand level [547.25, 567.25, 587.25] [595.73, 615.73, 635.73] [636.18, 656.18, 676.18]

High demand level [559.07, 579.07, 599.07] [646.05, 666.05, 686.05] [686.87, 706.87, 726.87]

Electricity generation target (109 kWh)

Coal-fired power [221.07, 279.81] [213.27, 268.01] 208.93, 269.50]
Gas-fired power [58.41, 63.41] [76.91, 80.91] [91.88, 95.88]

Wind [40.19, 49.55] [45.79, 56.48] [51.01, 61.94]
Solar power [1.20, 1.70] [3.20, 3.60] [5.99, 6.22]

Energy consumption amounts per unit of electricity production

Coal (ton of SCE/103 kWh) 30.50 30.50 30.50
Natural gas (m3/103 kWh) 142.80 142.80 142.80

Coal consumption amounts per unit of coke processing (ton of SCE/ton)

1.35 1.35 1.35

Energy consumption amounts for unit of heat processing (ton of SCE/109 kJ)

36.00 36.00 36.00

4. Results analysis

4.1. Analysis of Vehicular Emissions of BTH Region

Several policies on vehicular emission mitigation, such as the development of EVs, EV power
sources and vehicular emission standards, have been proposed by the government of China. In this
study, five scenarios labeled S1–S5 were designed to analyze the potentials of different emission
mitigation strategies and policies for reducing vehicular emissions (NOx, HC, CO, and PM) in the
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BTH region. Table 4 gives the parameter settings of the different scenarios. Following is a description
of each scenario:

S1: Without consideration of EVs, and with the local governments implementing the China V vehicular
emission standard.
S2: With consideration of EVs, which account for 1.5% of the LDVs population. EV power sources are
100% based on coal-based power, and the China V vehicular emission standard is implemented.
S3: With consideration of EVs, which account for 1.5% of the LDVs population. EV power sources are
based 50% on coal-based and 50% on renewable power. It is assumed that coal-based power is local
coal-based power, and renewable power included wind, solar power and imported electricity. The
China V vehicular emission standard is implemented.
S4: With consideration of EVs, which account for 1.5% of the LDVs population and with power sources
based 100% on renewable energy. The China V vehicular emission standard is implemented.
S5: With consideration of EVs, which account for 1.5% of the LDVs population and with power sources
based 100% on renewable energy. The China VI vehicular emission standard (gasoline standard)
is implemented.

Table 4. Parameter settings of scenarios.

Vehicular Emissions Standards The Proportion of EVs Power Sources for EVs

S1 China V 0% —
S2 China V 1.50% 100% coal-fired power based

S3 China V 1.50% 50% coal-fired power based,
50% renewable energy based

S4 China V 1.50% 100% renewable energy based
S5 China VI 1.50% 100% renewable energy based

4.1.1. Contributions of Different Vehicle Categories to Vehicular Emissions

Numerous results were obtained by the DRSFO-EES model, and the situation of α = 0.5, ρ = 0.2,
and scenario S2 is used here as an example to illustrate the optimized solutions for the EES. The
rapid development of traffic systems has led to large amounts of vehicular emissions such as CO,
HC, NOx, and PM. Figure 3 presents the contributions of the different vehicle categories to vehicular
emissions in the BTH region over the planning periods. As indicated in Figure 3a–d, due to the sharp
growth of LDVs, the total CO, NOx, HC, and PM emissions are expected to increase by 23.28%, 17.07%,
17.19%, and 22.22% over the planning periods, respectively. The results indicated that LDVs are the
major contributors of CO and HC emissions, to which they contribute 65.46–73.72% and 60.15–69.15%,
respectively, over the planning horizon. It is therefore necessary for local governments to limit the
number of LDVs through appropriate measures and policies such as improvement of the public transit
system and encouragement of the use of EVs.

Further, HDTs are the major contributor of NOx and PM, to which they are expected to contribute
67.07–63.08% and 58.58%–54.98%, respectively, between 2020 and 2030. Limiting the development of
HDTs would therefore be effective for reducing vehicular NOx and PM emissions. The results also
indicated that the traffic sector is set to be one of the major emitters for NOx in the BTH region. For
example, the NOx emission from vehicles will account for 58.65%, 60.13%, and 61.90% of the total
NOx emission (the total NOx emission includes contributions from oil refining, coke processing, heat
processing, natural gas-based power, and coal-based power) in 2020, 2025, and 2030, respectively.
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4.1.2. Analysis of the Impact of Traffic Policies on Vehicle Pollutants

Figure 4 shows the vehicular emissions for different scenarios and can be used to analyze the
pollutant emission mitigation potential of different vehicle policies. As per the results, implementation
of the stringent China VI emission standard is effective for mitigating vehicular emissions, especially
CO and HC emissions. The standard is specifically projected to afford CO, HC, NOx, and PM emission
reductions of 49.08%, 49.00%, 4.88%, and 0.00%, respectively, in 2020. As also indicated in Figure 4,
the adoption of an EVs policy could reduce CO, NOx, HC, and PM emissions from vehicles by
25.01×103, 1.07×103, 4.11×103, and 0.08×103 ton, respectively, by 2020. However, approximately
2.6×109, 3.2×109, and 3.7×109 kWh of electricity would have to be added by 2020, 2025, and 2030,
respectively, to meet the power requirements of EVs. This implies the emission of additional air
pollutants (SO2, NOx, PM, and CO2) through the increased electricity generation. Further analysis is
thus required to explore the comprehensive impact of the adoption of EVs on pollutant emissions.

The sources of electricity for EVs generally include coal-based power and renewable energy.
In this study, it is assumed that electricity from coal-based power was locally generated and renewable
power means solar, wind power and imported electricity. Based on different power sources of EVs,
there would be different impacts on the environment. Figure 5 shows the additional CO2 and air
pollutant (PM, SO2, and NOx) emissions that result from the additional electricity generation required
by the adoption of EVs. As can be seen, an EVs policy promises to effectively mitigate CO and HC
emissions in all the scenarios. However, it increases SO2 and CO2 emissions. Moreover, no reduction
in NOx and PM emissions would be achieved by the EVs policy if the power required by the EVs were
entirely generated by coal-based power. Actually, in such a case, the total NOx emission would increase
by 0.72×103 ton by 2020, 0.87×103 ton by 2025, and 1.32×103 ton by 2030. Conversely, if the power for
EVs was generated 50% by coal-based and 50% from renewable sources, as in scenario S3, the EVs
policy would reduce NOx emission by 0.17×103 ton by 2020, 0.21×103 ton by 2025, and 0.24×103 ton
by 2030. If the EVs power was entirely generated from renewable sources, as in scenario S4, the policy
would remarkably reduce NOx emission by 1.07×103 ton by 2020, 1.29×103 ton by 2025, and 1.49×103

by 2030. These results indicate that the vehicle-emissions could be reduced directly; but through the
extra electricity generated from local region, leading to additional air-pollutants. Thus, an EVs policy
should be enhanced by increasing the ratio of the needed power generated from renewable sources.
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Figure 4. Vehicular emissions from traffic systems under different scenarios.
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Figure 5. Additional emissions caused by electric vehicles under different scenarios.

4.2. Optimized Robust Solutions for Energy and Environment Systems

4.2.1. Optimized Schemes of Energy Allocation

Figure 6 shows the optimized energy consumption of energy processing (heat processing, coke
processing, and oil refining) and electricity generation (natural gas-based power and coal-based
power) between period 1 and period 3. The use of natural gas is expected to substantially increase
toward achieving a sustainably developed society. For example, the natural gas inputs to heat
processing and natural gas-based power generation are projected to respectively increase by 47.16%
(from 3.15 × 109 m3 in 2020 to 4.63× 109 m3 in 2030) and 53.86% (from peak m 9.51× 109 m3 to 14.63×
109 m3) between 2020 and 2030. Crude oil input to oil refining, coal input to coke processing, and coal
input to heating processing are expected gradually increase by 10.88%, 10.95%, and 3.86%, respectively,
in periods 1, 2 and 3. Conversely, the coal consumption of coal-based power generation is expected
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to decrease by 2.69% between 2020 and 2030, specifically from 79.83 × 106 ton to 77.68 × 106 ton
between period 1 and period 3. An appropriate energy mix can thus be effectively used to reduce coal
consumption, and hence mitigate pollutant emissions.
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Figure 6. Optimized solutions of energy input amounts for energy processing and electricity generation
between 2020 and 2030. CFO represents crude oil input to oil refining; CFH represents coal input to
heat processing; NFH represents natural gas input to heat processing; CFC represents coal input to
coke processing; CFF represents coal input to coal-fired power; NFC represents natural gas input to
coal-fired power.

4.2.2. Optimized schemes of electricity supply

Figure 7a shows the optimized electricity generation scheme between 2020 and 2030. The major
electricity power conversion technologies in the BTH region include gas-based, coal-based,
wind, and solar power. Optimized electricity generation is defined by the following equation:
OEGkth opt = W±kt opt + Ykth opt, where W±ktopt and Yktopt are the amounts of electricity generated in
the first and second stages. Coal-based power is expected to play the dominant role, contributing
what would be 259.06 × 109 kWh, 265.41 × 109 kWh, and 250.97 × 109 kWh in periods 1, 2 and 3
(h = 3), respectively. With the implementation of a series of energy mix policies for pollutant emission
mitigation, such as the “Paris Agreement” and “Chinese Action Plan of Air Pollution Prevention and
Control”, the ratio of coal-based power generation would decrease from 68.79% in 2020 to 55.48% in
2030. The utilization of natural gas-based and renewable energy would rapidly develop from 2020
to 2030. Natural gas-based power, wind power, solar power and generation are projected to increase
by 53.86%, 87.96%, and 266.34% over the planning horizon, contributing 22.65%, 20.44%, and 1.44%,
respectively to the total power generation by 2030.

Further, the amount of locally generated electricity is insufficient for the needs of the BTH region,
with approximately 36% of the consumed electricity imported from other regions. Figure 7b describes
imported electricity under different electricity demand levels between 2020 and 2030. Imported
electricity is expected to increase from 202.47 × 109 to 254.47 × 109 kWh over the planning horizon
under a high electricity demand level. This indicates that imported electricity is expected to play an
increasingly important role from period 1 to period 3, especially at a high demand level.



Appl. Sci. 2019, 9, 928 28 of 39
Appl. Sci. 2019, 9, x FOR PEER REVIEW  28 of 40 

 

Figure 7. Optimized solutions for electricity supply of the Beijing-Tianjin-Hebei (BTH) region 

between 2020 and 2030. 

4.2.3 Optimized schemes of energy processing 

Figure 8 shows the amounts of processed secondary energy (i.e., coke, heat, diesel, gasoline, 

fuel oil, liquefied petroleum gas, kerosene, naphtha, and tar) during periods 1 to 3. With the rapid 

development of society over the entire considered time, the energy processing amounts for heat, 

gasoline, coke, kerosene, naphtha, fuel oil, tar, and liquefied petroleum gas (LPG) are expected to 

respectively increase by 10.37%, 29.98%, 10.59%, 19.97%, 1.11%, 7.48%, 6.90%, and 8.84%, between 

2020 and 2030. 

0

50

100

150

200

250

300

h=1 h=2 h=3 h=1 h=2 h=3 h=1 h=2 h=3 h=1 h=2 h=3

i = 1 i = 2 i = 3 i = 4

T
h

e 
o

p
ti

m
iz

ed
 s

o
lu

ti
o

n
s 

o
f 

el
ec

tr
ic

it
y
 

g
en

er
at

io
n

 a
m

o
u

n
ts

 (
1

0
9

k
W

h
) 

(a) Optimized solutions of electricity generation

2020 2025 2030

2020

2025

2030

0

50

100

150

200

250

300

h=1
h=2

h=3

161.1 
190.64 202.47 

164.9 

206.8 
239.8 194.7 

236.22 254.47 

Im
p

o
r 

el
ec

tr
ic

it
y
 a

m
o

u
n

ts
  

(1
0

9
k

W
h

)

(b) Optimized solutions of electricity importation

Figure 7. Optimized solutions for electricity supply of the Beijing-Tianjin-Hebei (BTH) region between
2020 and 2030.

4.2.3. Optimized Schemes of Energy Processing

Figure 8 shows the amounts of processed secondary energy (i.e., coke, heat, diesel, gasoline,
fuel oil, liquefied petroleum gas, kerosene, naphtha, and tar) during periods 1 to 3. With the rapid
development of society over the entire considered time, the energy processing amounts for heat,
gasoline, coke, kerosene, naphtha, fuel oil, tar, and liquefied petroleum gas (LPG) are expected to
respectively increase by 10.37%, 29.98%, 10.59%, 19.97%, 1.11%, 7.48%, 6.90%, and 8.84%, between 2020
and 2030.
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Figure 8. Optimized solutions for energy processing between 2020 and 2030.

4.2.4. Pollutant Emissions from Energy Activities

Figure 9 shows the CO2 and air pollutant (NOx, SO2, and PM) emissions from natural gas-based
power generation, coal-based power generation, heat processing, coke processing, and oil refining) over
the planning horizon. As can be observed, CO2, NOx, SO2, and PM emissions are expected to gradually
increase by 9.37%, 5.25%, 4.43%, and, 3.59%, respectively, between 2020 and 2030. The air-pollutants
emissions would approach their peak values around 2030. For example, the SO2 emission would
increase by 4.14% between 2020 and 2025, and by 0.27% between 2025 and 2030, indicative of peaking
around 2030. Coal-based power generation would be the major contributor of NOx, SO2, and
PM emissions, respectively accounting for 36.66–33.90%, 41.89–39.03%, and 47.33–44.46% of these
emissions between 2020 and 2030, with the specific contributions progressively decreasing. Coke
processing would contribute 30.86–32.53%, 35.26%–37.46%, and 39.84%–42.67% of NOx, SO2, and PM
emissions, respectively.

As indicated in Figure 9d, oil refining, coal-based power generation, and coke processing would be
the major sources of CO2 emissions between 2020 and 2030 in BTH region, accounting for 33.83–34.30%,
28.08–24.99%, and 23.64–23.98%, respectively. In conclusion, coal-based power generation and coke
processing would be the major enablers of SO2, NOx, and PM emissions reduction, while oil refining,
coal-based power generation, and coke processing would be the major contributors of CO2 emission.Appl. Sci. 2019, 9, x FOR PEER REVIEW  30 of 40 
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4.2.5. Analysis of system cost

The system costs are composed of 16 main components, namely, the costs of heat processing,
coke processing, oil refining, coal input to coal-based power generation, natural gas input to natural
gas-based power generation, imported electricity, first-stage of electricity generation, second-stage
of electricity generation, electricity expansion, subsidy for solar power generation, subsidy for wind
power generation, energy production, EVs charging piles, EVs charging stations, pollutants treatment,
and risk recourse for the stochastic and fuzzy uncertainties. As shown in Figure 10, the costs of
electricity generation, imported electricity, energy production, and coal input for coal-based power
generation account for 30.51%, 16.90%, 16.67%, and 11.98% of the total system costs, respectively.
Solar and wind power would be subsidized by the local government because their current price and
technology limitations make them uncompetitive in the market. Government subsidies for wind and
solar power would be RMB ¥ 40.99 × 109, and RMB ¥ 6.52 × 109, respectively.Appl. Sci. 2019, 9, x FOR PEER REVIEW  32 of 40 
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5. Discussion

5.1. Analysis of Stochastic Uncertainties

In EES in the real-world, many parameters are expressed as random distribution (i.e., electricity
demand, electricity generation, and electricity expansion). In this study, the TSP method was used to
tackle the stochastic uncertainties. The decision variables of the electricity generation were divided into
two subsets, namely, W±ktopt and Yktopt, which are respectively the amounts of electricity generated in
the first-stage (which must be predetermined) and the second-stage (obtained after the determination
of the random variables) [55]. Generally, shortages may occur if the electricity demand-levels are
continuously high, and the second-stage electricity generation amount Yktopt would be undertaken to
avoid insufficient electricity supply.

In the TSP method, the final optimized electricity generation schemes were equal to W±kt + Y±kth.
In detail, the optimized amount of electricity generated in the first-stage is given by W±kt = W−kt +

rrkt·∆W, where rrkt denotes the decision variables, ∆W = W+
kt −W−kt , and rrkt ∈ [0, 1]. Take period

1 for example, λ11opt = 0.55, λ21opt = 1, λ31opt = 1.00, and λ41opt = 1.00, indicating that the optimized
electricity generation amounts for coal-based power, natural gas-based power, solar power and wind
power are supposed to be (221.08 + 0.52 × 58.74) × 109, (58.41 + 1.00 ×5.00) × 109 kWh, (1.78 + 1.00 ×
0.50) × 109 kWh, and (49.54 + 1.00 × 9.36) × 109 kWh, respectively. Generally, the variation of rrkt
represents diverse policies of electricity generation under stochastic electricity demands. When rrkt =
0, the cost would be relatively low, although a higher penalty may have to be paid when the generated
electricity does not meet the demand. On the contrary, when rrit = 1, the cost would be higher, but
accompanied by a lower risk of violating the target, and hence of incurring a lower penalty.

5.2. Analysis of Fuzzy Uncertainties

In the real world, energy price and energy demands often exhibit vagueness and ambiguity
because of the subjectivity of human judgment [25]. According to FPP theory, the minimum, medium,
and maximum values of these parameters are sufficient for expressing a triangular fuzzy parameter.
And the proposed DRSFO-EES model can be used to effectively address the uncertainties expressed
as triangular fuzzy parameter of the objectives and constraints. For FPP, the confidence level α is an
indication of the manager’s violation risk attitude towards imprecise information [56,57]. In the present
application of the DRSFO-EES model, four confidence levels (α = 0.5, 0.6, 0.8, and 0.9) were used to
examine the impacts of different confidence levels on the EES. Generally, a higher confidence level
implies a higher likelihood of satisfying the fuzzy confidence constraints, resulting in less uncertainty
about the imprecise constraints. For instance, a confidence level of 0.8 indicates that the credibility
of the constraint (e.g., Cr{MÃLgt

∣∣∣MAgt ≥ MÃLgt

}
≥ α) is greater than or equal to 0.8. However, a

higher confidence level increases the system costs. Contrarily, a lower confidence level implies a more
aggressive attitude of the decision maker regarding the expected total system costs, and increases
the uncertainty of the fuzzy constraints, resulting in a higher risk of violating the energy demand.
Table 5 gives the optimized solution under different confidence levels α during the planning periods.
As can be seen, a higher α increases the coefficients of the right-side constraints, further necessitating
electricity import and increasing pollutant emission and the system costs. Vehicle ownership, heat
processing, and coke processing also increase with α, all accompanied by pollutant emissions.
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Table 5. (a) Optimized solutions under different α levels in 2020.

α = 0.5 α = 0.6 α = 0.8 α = 0.9

Traffic system and its relative pollutants

Vehicle ownership (106) 22.11 22.34 22.80 23.03
CO emissions (103 ton) 2534.02 2561.58 2616.70 2644.26

NOX emissions (103 ton) 679.66 685.44 696.98 702.75
HC emissions (103 ton) 452.69 457.67 467.62 472.59
PM emissions (103 ton) 22.09 22.28 22.67 22.86

Heat processing (1012 kJ)

707.31 708.31 710.31 711.31

Coke processing (106 ton)

69.61 70.11 71.11 71.61

Import electricity amounts (109 kWh, h = 1 )

161.10 163.10 167.10 169.10

Air pollutants and CO2 from energy processing and electricity generation (103 ton)

SO2 emissions 667.86 669.95 674.12 676.20
NOX emissions 476.67 479.17 484.17 486.67
PM emissions 83.92 84.18 84.69 84.95
CO2 emissions 560593.92 564482.45 572259.52 576148.05

(b) Optimized solutions under different α levels in 2025.

α = 0.5 α = 0.6 α = 0.8 α = 0.9

Traffic system and its relative pollutants

Vehicle ownership (106) 26.16 26.39 26.84 27.07
CO emissions (103 ton) 2886.63 2914.19 2969.31 2996.87

NOX emissions (103 ton) 754996.10 760.77 772.31 778.09
HC emissions (103 ton) 510.96 515.93 525.88 530.86
PM emissions (103 ton) 24.75 24.94 25.33 25.52

Heat processing (1012 kJ)

748.38 749.38 751.38 752.38

Coke processing (106 ton)

73.84 74.34 75.34 75.84

Import electricity amounts (109 kWh, h = 1 )

164.89 166.89 170.89 172.89

Air pollutants and CO2 from energy processing and electricity generation (103 ton)

SO2 emissions 689.20 691.28 695.45 697.53
NOX emissions 497.49 499.95 504.85 507.30
PM emissions 87.16 87.41 87.93 88.18
CO2 emissions 594920.14 598809.23 606587.42 610476.51

(c) Optimized solutions under different α levels in 2030.

α = 0.5 α = 0.6 α = 0.8 α = 0.9

Traffic system and its relative pollutants

Vehicle ownership (106) 29.69 29.92 30.38 30.61
CO emissions (103 ton) 3127.77 3155.33 3210.45 3238.01

NOX emissions (103 ton) 819.79 825.56 837.11 842.88
HC emissions (103 ton) 547.42 552.40 562.35 567.32
PM emissions (103 ton) 27.01 27.21 27.59 27.78

Heat processing (1012 kJ)

780.64 781.64 783.64 784.64

Coke processing (106 ton)

77.24 77.74 78.74 79.24

Import electricity amounts (109 kWh, h = 1)

194.72 195.44 196.88 197.60

Air pollutants and CO2 from energy processing and electricity generation (103 ton)

SO2 emissions 688.19 690.27 694.44 696.52
NOX emissions 501.10 503.75 509.05 511.70
PM emissions 86.79 87.05 87.56 87.81
CO2 emissions 612669.67 617113.59 626001.42 630445.34
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5.3. Risk Analysis

A robust optimization method can be effectively used to determine the associated risk from
stochastic and fuzzy uncertainties. In this study, two risk recourse actions were adopted to make
the model robust, which were used to capture the risks from stochastic and fuzzy uncertainties,
respectively. Figure 11 presents the weighted values of the expected deviations from the stochastic

uncertainties (VT̃S = ρ·
I

∑
i=1

T
∑

t=1

H
∑

h=1
pth(Vith +VCijcth]) and fuzzy uncertainties (VT̃F = ρ·

3
∑

t=1
VFt) under

different robustness levels of 0.2, 0.6, 0.8, and 1.0, respectively. ρ is a goal programming weight,
through varying the ρ level, the decision makers can then control the variability of the recourse cost.
Generally, a lower ρ corresponds to a lower weight value of the expected deviations and system costs,
indicating an aggressive attitude of the manager regarding the system costs. However, this might
be associated with a higher risk level because of the expected deviations from the uncertainties. On
the contrary, a plan with a higherρwould better resist a deviation from the uncertainties of the EES.
A decision with a higher robust level would thus correspond to a lower risk of system failure and
higher system reliability. As results, the weighted values of the expected deviations from the stochastic
and fuzzy uncertainties increased with increasing robustness level ρ. For instance, VT̃S would be RMB
5.17× 109 when ρ = 0.2, RMB 15.54× 109 when ρ = 0.6, RMB 20.71× 109 when ρ = 0.8, and 25.89× 109

when ρ = 1. This analysis demonstrates the trade-offs between system costs and reliability. The results
enable the manager to plan with a reasonable consideration of both system costs and reliability.
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6. Conclusions

In this study, a DRSFO-EES model was developed for planning an EES while considering the
traffic sector, which integrates the TSP, FPP, RTSO, and RFPP methods in a single framework for the
effective handling of EES uncertainties expressed as fuzzy sets and stochastic uncertainties as well
as their combinations, capturing of the associated risks from the stochastic and fuzzy uncertainties,
and analyzing the trade-offs between system costs and reliability. Four confidence levels (α = 0.5,
α = 0.6, α = 0.8, and α = 0.9) and four robust levels (ρ = 0.2, ρ = 0.6, ρ = 0.8, and ρ = 1.0) were used for
examining the impacts of uncertainties on the objective function, constraints and optimized solutions
of the DRSFO-EES model.

The proposed model was applied to the EES of the BTH region in China. Following is a summary
of the findings and the identified policy implications:

(1) Limiting the numbers of LDVs and HDTs could effectively reduce vehicular emissions. LDVs are
expected to be the major contributors of CO and HC emissions, and HDTs are expected to be the
major contributors of NOx and PM emissions.

(2) A EVs policy would be enhanced by increasing the ratio of power generated for EVs from
renewable sources. The emission reduction effect of an EVs policy would thus be limited,
especially with regard to NOx and PM emissions, if the EVs power source was entirely coal-based.

(3) Optimizing the energy mix and developing the renewable energy can effectively reduce
air-pollutant and CO2 emissions. Air-pollutant amounts of NOx, SO2, and PM emissions in
the BTH region are expected to peak around 2030, because the energy mix of the study region
would be transformed from one dominated by coal to one with a cleaner pattern, with vigorous
development of the utilization of natural gas and renewable energy.

(4) Enhancement of the energy utilization efficiencies of coal-based power generation, oil refining,
and coke processing would effectively reduce CO2 and air-pollutant emissions. Coal-based
power generation and coke processing are expected to be the major contributors of air-pollutant
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missions, while oil refining, coal-based power generation and coke processing would be the chief
sources of CO2 emissions.

Although the DRSFO method was the first attempt for planning an EES while considering the
traffic sector of the BTH region, results indicated that DRSFO-EES could: (i) explore the impacts of
different vehicle policies (i.e., EVs deployment, EVs power source for EVs, and vehicular emission
standards) on vehicular emissions; (ii) generate robust optimized solutions for energy allocation,
oil refining, coking processing, heat processing, electricity generation and expansion, electricity
importation, as well as emission mitigation under multiple uncertainties; (iii) identify the atmospheric
pollution contributions of different energy activities such as coke processing, electricity generation,
heat processing, oil refining, and motor vehicle operation. The proposed model could help to balance
the contradiction between increasing energy demands and an increasing vehicle population, “high
coal” energy systems, and the pressures of emission mitigation. Moreover, the proposed model could
be applied at both city and regional scales, which would support policymakers adjusting current
energy and environmental strategies in sustainable and robust ways.

However, the DRSFO-EES also has potential limitations and extensions should be addressed
in future study. Firstly, the developed model, based on historical data of annual electricity demand
to predict future electricity demands, does not consider the specific parameters such as hourly or
seasonal electricity load curves, which may result in significant deviations from the optimized decision
schemes, even in the event of electricity shortage. Thus, further study is required for considering the
hourly and seasonal electricity load curves; secondly, the TSP, FPP, RTSO, and RFPP methods were
combined into a single framework to formulate the DRSFO-EES model, leading to relatively high
computational requirements. As a result, simplifying the calculation procedure could be required in
the further study work; thirdly, the DRSFO-EES model mainly focused on economic objectives, whilst
scarcely considering the trade-off between economic and environmental objectives. Therefore, further
study should make improvements in the handling of multi-objective problems and better balance the
tension between energy and environmental systems.
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