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Abstract: In recent years, artificial intelligence technologies have been widely used in computer vision,
natural language processing, automatic driving, and other fields. However, artificial intelligence
systems are vulnerable to adversarial attacks, which limit the applications of artificial intelligence
(AI) technologies in key security fields. Therefore, improving the robustness of AI systems against
adversarial attacks has played an increasingly important role in the further development of AI.
This paper aims to comprehensively summarize the latest research progress on adversarial attack
and defense technologies in deep learning. According to the target model’s different stages where the
adversarial attack occurred, this paper expounds the adversarial attack methods in the training stage
and testing stage respectively. Then, we sort out the applications of adversarial attack technologies
in computer vision, natural language processing, cyberspace security, and the physical world.
Finally, we describe the existing adversarial defense methods respectively in three main categories,
i.e., modifying data, modifying models and using auxiliary tools.
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1. Introduction

The applications of artificial intelligence technologies in various fields have been rapidly
developed recently. Due to high performance, high availability and high intelligence, artificial
intelligence technologies have been applied in image classification, object detection, voice control,
machine translation and more advanced fields, such as drug composition analysis [1], brain circuit
reconstruction [2], particle accelerator data analysis [3,4], and DNA mutation impact analysis [5].

Since Szegedy et al. [6] proposed that neural networks are vulnerable to adversarial attacks,
the research on artificial intelligence adversarial technologies has gradually become a hotspot,
and researchers have constantly proposed new adversarial attack methods and defense methods.
According to the different stages of the target model, the adversarial attacks can be divided into
three categories: attacks in the training stage, attacks in the testing stage and attacks in the model
deployment stage. Since the attack methods in the model deployment stage are very similar to the
methods in the testing stage, for the sake of simplicity, this paper only discusses the attacks in the
training stage and attacks in the testing stage.

The training stage adversarial attacks refer to the fact that, in the training stage of the target model,
the adversaries carry out attacks by modifying the training dataset, manipulating input features or
data labels. Barreno et al. [7] changed the original distribution of the training dataset by modifying or
deleting training data, which belongs to modifying the training dataset. The method of manipulating
labels is shown in the work of Biggio et al. [8], and they reduced the performance of the Support Vector
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Machine (SVM) classifier by randomly flipping 40% of training labels. In the works of Kloft et al. [9,10],
Biggio et al. [11,12] and Mei et al. [13], the adversaries injected malicious data generated carefully
into the training dataset to change the decision boundary, which can be divided into manipulating
input features.

The testing stage adversarial attacks can be divided into white-box attacks and black-box attacks.
In white-box scenarios, the adversaries have access to the parameter, algorithms, and structure of
the target model. Adversaries can construct adversarial samples to carry out attacks by utilizing
this knowledge. Papernot et al. [14] introduced an adversarial crafting framework, which can be
divided into the direction sensitivity estimation step and perturbation selection step. On this basis,
the researchers have proposed a variety of different attack methods. Szegedy et al. [6] proposed a
method called Large-BFGS (here, BFGS is the initial of four people names: Broy-den, C. G., Fletcher, R.,
Goldforb, D., and Shanno, D. F.), to search for adversarial samples. Goodfellow et al. [15] proposed a
Fast Gradient Sign method (FGSM) which calculates the gradient of the cost function relative to the
inputs. Kurakin et al. [16] proposed three variants of FGSM, named One-step Target Class method,
Basic Iterative method, and Iterative Least-likely Class method, respectively. Papernot et al. [17]
proposed a method to find a sensitivity direction by using the Jacobian matrix of the model. Su et al. [18]
showed an attack method, which only changes one pixel in the image. Moosavi-dezfooli et al. [19]
proposed to compute a minimal norm adversarial perturbation for a given image in an iterative
manner, to find the decision boundary closest to the normal sample and find the minimal adversarial
samples across the boundary. Cisse et al. [20] proposed a method called HOUDINI, which deceives
gradient-based machine learning algorithms.

Instead, in the black-box scenarios, the adversaries cannot obtain information about the target
model, but they can train a local substitute model by querying the target model, utilizing the
transferability of adversarial samples or using a model inversion method. Papernot et al. [21] firstly
used synthetic input to train a local substitute model, and then used the adversarial samples generated
for the substitute model to attack the target model, which utilizes cross-model transferability of
adversarial samples. Fredrikson et al. [22] carried out a model inversion attack, which uses machine
learning (ML) application programming interfaces (APIs) to infer sensitive features. Tramèr et al. [23]
demonstrated a successful model extraction attack against online ML service providers such as BigML
and Amazon Machine Learning.

Adversarial attack technologies have been gradually applied in academia and industry. In this
paper, we summarize applications in four fields. In the computer vision field, there are adversarial
attacks in image classification [15,17,24–26], semantic image segmentation, and object detection [27,28].
In natural language processing fields, there are adversarial attacks in machine translation [29] and
text generation [30]. In the cyberspace security field, there are adversarial attacks in cloud service [21],
malware detection [31–33], and network intrusion detection [34]. The adversarial attacks in the physical
world were showed in road sign recognition [35], spoofing camera [16], machine vision [36], and face
recognition [37,38].

In order to improve the robustness of neural network against the adversarial attack, researchers
have proposed a mass of adversarial defense methods, which can be divided into three main categories:
modifying data, modifying models and using auxiliary tools.

The methods of modifying data refer to modifying the training dataset in the training stage or
changing the input data in the testing stage. There are five methods to modify data. Adversarial
training is a widely used method of modifying data; Szegedy et al. [6] injected adversarial samples
and modified their labels to improve the robustness of the target model. By using adversarial training,
Goodfellow et al. [15] reduced the misidentification rate on the Mixed National Institute of Standards
and Technology (MNIST) [39] dataset from 89.4% to 17.9%, Huang et al. [40] increased the robustness of
target model by punishing misclassified adversarial samples. However, it is unrealistic to introduce all
unknown attack samples into the adversarial training. The second method is called gradient hiding [41];
it hides gradient information of the target model from the adversaries. However, by learning the
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proxy black-box model with gradient and using the adversarial samples generated by this model
[21], this method can easily be fooled. Since the transferability attribute holds even if the neural
networks have different architectures or trained on the disjoint dataset, the third method is blocking the
transferability to prevent the black-box attack. Hosseini et al. [42] proposed a Three-step Null Labeling
method to prevent the transferability of adversarial samples. The advantage of this method is marking
the perturbation input as an empty label rather than classifying it as the original label. The fourth
method is data compression, which improves the robustness by compressing data. Dziugaite et al. [43]
and Das et al. [44] used JPG compression and a JPEG compression method to prevent FGSM attacks,
respectively. The limitation of this method is that a large amount of compression will lead to an
accuracy decrease of original image classification, while a small compression is often not enough
to remove the impact of disturbance. The last one of modifying data is data randomization [45].
Wang et al. [46] used a data conversion module separated from the network model to eliminate the
possible adversarial disturbance in the image, and conducted data expansion operations in the training
process, which could slightly improve the robustness of the target model.

Modifying model refers to modifying the target neural networks and can be divided into six types.
The first method is regularization, which aims to improve the generalization ability of the target model
by adding regular terms. Biggio et al. [8] used a regularization method to limit the vulnerability of
data when training an SVM model. The works [47–49] used the regularization method to improve the
robustness of the algorithm and achieved good results. The second method is defensive distillation [14],
which produced a model with a smoother output surface and less sensitivity to disturbance, so as
to improve the robustness of the model, and can reduce the success rate of adversarial attack by
90%. Moreover, Papernot et al. [50] proposed extensible defense distillation technology to guarantee
the effectiveness in black-box attacks. The third method is feature squeezing [51], which aims to
reduce the complexity of the data representation and reduce the adversarial interference due to low
sensitivity. For image data, there are two kinds of methods, reducing the color depth at the pixel level
and using a smooth filter on the image. Although this method can effectively prevent adversarial
attacks, it reduces the accuracy of the classification of real samples. The fourth method is using a
deep contractive network (DCN) [52], which uses noise reduction automatic encoder to reduce the
adversarial noise. The fifth method is inserting a mask layer before processing the classified network
model [53]. The mask layer is used to encode the differences between original images and the output
features of the previous network model layers. The last method of modifying model is using Parseval
networks [20]. This network adopts hierarchical regularization by controlling the global Lipschitz
constant of the network.

Using an auxiliary tool refers to using additional tools as an auxiliary tool for the neural network
model. Samangouei et al. [54] proposed a mechanism, called Defense Generative Adversarial
Nets (defense-GAN), applicable to both white-box and black-box attacks to reduce the efficiency
of adversarial perturbance. This method utilizes the power of a generative adversarial network [55];
the main idea is to “project” input images onto the range of the generator G by minimizing the
reconstruction error

∥∥G (z)− x2
2

∥∥, prior to feeding the image x to the classifier. However, the training
of GAN is challenging, i.e., without proper training, the performance of defense-GAN will obviously
decline. Meng et al. [56] proposed a framework called MagNet, which reads the output of the last
layer of the classifier as a black-box. MagNet uses a detector to identify legal and adversarial samples.
The detector measures the distance between a given sample under test and the manifold and rejects the
sample if the distance exceeds the threshold. Liao et al. [57] introduced the High-Level Representation
Guided Denoiser (HGD) to design a robust target model against white-box and black-box adversarial
attacks. The author proposed three different HGD training methods. The advantage of using HGD is
that it can be trained on a relatively small dataset and can be used to protect models other than the one
guiding it.

In this paper, we review recent studies on an artificial intelligence adversarial attack and defense
technologies. In Section 2, we introduce the causes and characteristics of the adversarial samples,
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as well as the adversarial capabilities and goals; in Section 3, we analyze the adversarial attack
methods in training stage and testing stage, respectively. In Section 4, we sort out the applications of
adversarial attack technologies in four fields, including computer vision, natural language processing,
cyberspace security, and physical world. In Section 5, we conclude the existing defense methods
against adversarial attacks. We conclude in Section 6.

2. Adversarial Samples and Adversarial Attack Strategies

In this section, we mainly introduce the adversarial samples and the adversarial attack strategies,
including the causes and characteristics of adversarial samples, as well as the capabilities and goals of
the adversarial attacks.

2.1. Adversarial Example (AE)

Szegedy et al. [6] firstly proposed the concept of adversarial samples, which are constructed by
adding tiny perturbations that could not be recognized by human eyes to the input samples of the
model, and caused the adversarial images to be misclassified by the target model with high confidence.
Suppose there is a machine learning model M and an original sample x that can be classified correctly,
i.e., M(x) = ytrue; by adding a slight perturbation to x, the adversary could construct an adversarial
sample x

′
which is similar to x but can be misclassified by M, i.e., M(x

′
) 6= ytrue. Figure 1 shows the

adversarial process [15].

Figure 1. The model considers the original image as a “panda” (57.7%). Indeed, the image added a
tiny perturbation is classified as a “gibbon” by the same model (99.3%), while the human eyes cannot
identify the difference (Image Credit: Goodfellow et al. [15]).

2.1.1. Causes of Adversarial Examples

Researchers have proposed some explanations for the existence of adversarial samples. Some [58]
believe that the reason is the over-fitting or under-regularization of the model led to the insufficient
generalization ability that learning models predict unknown data, while others [21] consider that the
adversarial samples are caused by the extreme nonlinearity of the deep neural network. However,
Goodfellow et al. [15] added perturbation to the input of a regularization model and a linear model
which has enough dimensions, and demonstrated that both models’ effectiveness of defending
adversarial attacks were not significantly improved.

Goodfellow et al. [15] believe that the cause of adversarial samples is the linear behavior in high
dimensional space. In a high dimensional linear classifier, each input feature is normalized, so that
slight perturbation for one dimension of each input will not change the overall prediction of the
classifier, while small perturbations to all dimensions of the inputs will lead to effective change. As is
shown in Figure 2, the score of class “1” is increased from 5% to 88% by adding or subtracting 0.5 from
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each dimension in a specific direction of the original sample x, which proves that the linear models are
vulnerable to the adversarial samples.

Figure 2. The probability of class “1” before and after perturbation. Before perturbating, the score of
class “1” is 5%; however, the score is increased to 88% by adding or subtracting 0.5 from each dimension
in a specific direction of the original sample (Image Credit: Zhang et al. [59]).

2.1.2. Characteristics of Adversarial Examples

Adversarial samples have three basic characteristics [59], i.e., transferability, regularization effect,
and adversarial instability.

• Transferability. When constructing adversarial samples for an attack against one target model
M1, it is unnecessary to obtain the architecture or parameters of model M1 if the adversary has
knowledge of M2, as long as model M2 is trained to perform the task that model M1 performs as
well.

• Advsarial instability. After physical transformation, such as translation and rotation, it is easy to
lose its own adversarial for adversarial samples. In this case, adversarial samples will be correctly
classified by target models.

• Regularization effect. Adversarial training [15] is a regularization method that can reveal the
defects of models and improve the robustness of samples. Compared to other regularization
methods, the cost of constructing adversarial samples is expensive.

2.2. Adversarial Capabilities and Goals

The security of machine learning models is measured by the capabilities and goals of adversaries.
This section describes the adversarial capabilities and goals, respectively.

2.2.1. Adversarial Capabilities

The term Adversarial Capabilities refers to the amount of information about the target model
that can be obtained and used by the adversary. Obviously, the adversaries who have access to more
information are strictly “stronger” than others. The classification of adversarial capabilities is shown in
Figure 3. We discuss the range of adversarial capabilities as they relate to training and testing stages.
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Figure 3. The classification of adversarial capabilities.

Training Stage Capabilities

Attacks in the training stage attempt to influence or corrupt a target model directly by changing
the dataset used for training. In this case, the most straightforward and weakest attack is to access
part or all of the training data. The attack strategies in the training stage based on the adversarial
capabilities can be divided into three categories:

• Data Injection. The adversary does not have any access to the training data and learning
algorithms but has the ability to add new data to the training dataset. The adversary can corrupt
the target model by inserting adversarial samples into the training dataset.

• Data Modification. The adversary does not have access to the learning algorithms but has access
to full training data. The adversary can poison the training data by modifying the data before it is
used for training the target model.

• Logic Corruption. The adversary has access to meddle with the learning algorithms of the
target model.

Testing Stage Capabilities

The adversarial attacks during the testing stage do not tamper with the target model but force it to
produce incorrect outputs. In addition, the effectiveness of such attacks mainly depends on the amount
of information about the model available to the adversaries. In testing time, the attacks can be divided
into white-box attacks and black-box attacks. Before discussing these attacks, we suppose that there is
a target model f that is trained on input pair (X, y) from the data distribution µ with a randomized
training procedure train having randomness r (e.g., random weight initialization, dropout, etc.).
The model parameters θ are learned after training, i.e.,

θ ← train( f , X, y, r) (1)

Now, we describe the white-box attacks and black-box attacks in the testing stage in
detail, respectively.

White-box Attacks In white-box attacks, the adversaries have total knowledge about the target
model f , including algorithm train, data distribution µ, and model parameters θ. The adversaries
identify the most vulnerable feature space of target model f by utilizing available information, and then
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alter an input by using adversarial samples generating methods. The accessing of the model’s internal
weight for white-box attacks corresponds to a strong adversarial capability.

Black-box Attacks The adversaries have no knowledge about target model f in black-box
attacks. They instead analyze the model’s vulnerability by using information about the past
input/output pairs, e.g., the adversaries attack a model by inputting a series of adversarial samples and
observing corresponding outputs. Black-box Attacks can be divided into non-adaptive, adaptive and
strict black-box attacks.

• Non-Adaptive Black-Box Attack. The adversaries can only access to the training data distribution
µ of target model f . Therefore, adversaries choose a training procedure train

′
for model f

′
,

and train a local model on samples from the data distribution µ to approximate the target model.
Then, adversaries generate adversarial samples by using white-box attack strategies on model f

′

and apply these samples to model f to lead misclassification.
• Adaptive Black-Box Attack. The adversaries cannot access to any information about the target

model but can access the model f as an oracle. In this case, adversaries query the target model
to obtain output label y by inputting data X, and then adversaries choose a training procedure
train

′
and a model f

′
to train a local model on tuples (X, y) obtained from querying the target

model. Finally, adversaries apply adversarial samples generated by the white-box attack on local
model f

′
to the target model.

• Strict Black-Box Attack. The adversaries cannot access to the data distribution θ but can collect
input–output pairs (X, y) from the target model. It differs from the adaptive black-box attack in
that it cannot change the inputs to observe the changes in outputs.

Compared with the white-box attacks, the black-box attacks do not need to learn the randomness
r or parameters θ of the target model. The target for adversaries is using data distribution µ to train
a local model f

′
in non-adaptive attacks and querying the target model by using carefully selected

dataset in adaptive attacks.

2.2.2. Adversarial Goals

The adversarial goals can be inferred from the uncertainties of models. According to the impact
on models’ output integrity, adversarial goals can be divided into four categories, i.e., confidence
reduction, misclassification, targeted misclassification, and source/target misclassification.

• Confidence Reduction. The adversaries attempt to reduce the confidence of prediction for the
target model, e.g., the adversarial samples of a “stop” sign is predicted with lower confidence.

• Misclassification. The adversaries attempt to change the output classification of input to any
class different from the original class, e.g., an adversarial sample of a “stop” sign is predicted to
be any class different from the “stop” sign.

• Targeted Misclassification. The adversaries attempt to change the output classification of the
input to a special target class, e.g., any adversarial samples inputted into a classifier is predicted
to be a “go” sign.

• Source/Target Misclassification. The adversaries attempt to change the output classification of a
special input to a special target class, e.g., a “stop” sign is predicted to be a “go” sign.

3. Adversarial Attacks

Unlike other attack techniques, adversarial attack techniques mainly occur in the adversarial
samples generation process. Since adversarial attacks can occur in the training and testing stages,
this section describes adversarial attack techniques in detail in the training and testing stages,
respectively.
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3.1. Training Stage Adversarial Attacks

As shown in Section 2.2.1, the adversarial capabilities in the training stage can be divided as data
injection, data modification, and logical corruption. Corresponding to different capabilities, training
stage adversarial attacks can generally be carried out in three ways:

• Modify Training Dataset. Barreno et al. [7] firstly proposed the term poisoning attacks, a common
adversarial attack method. They changed the original distribution of training data by modifying
or deleting training data or injecting adversarial samples, in order to make the learning algorithm
logically changed. Kearns et al. [60] showed that, when the model’s prediction error is smaller
than ε, the probability b of maximum tolerance to modify the training dataset should satisfy:

b ≤ ε

ε + 1
(2)

• Label Manipulation. If an adversary only has the capabilities to modify the training labels with
some or all knowledge of the target model, he needs to find the most vulnerable labels. Perturbing
labels randomly, one of the most basic methods to modify labels, refers to select a label from the
random distribution as the label of training data. Biggio et al. [8] showed that randomly flipping
40% of training labels is enough to reduce the performance of classifiers using SVMs.

• Input Feature Manipulation. In this case, the adversaries are powerful enough to manipulate
labels as well as the input features of training points analyzed by the learning algorithm.
This scenario also assumes that the adversaries have knowledge of the learning algorithm.
Biggio et al. [11] and Mei et al. [13] showed the adversaries injected malicious data generated
carefully to change the distribution of training dataset. Therefore, the decision boundary of the
trained model changes accordingly, which reduces the accuracy of the model in the test stage,
even, leads the model to output the specified misclassification labels. Kloft et al. [9] showed that
inserting malicious points into a training dataset can gradually change the decision boundary of
an anomaly detection classifier. Similar works have been done in articles [10,12].

3.2. Testing Stage Adversarial Attacks

In the testing stage, the adversaries cannot modify the training dataset but can access the target
model to obtain effective information, so as to attack the model and lead the model to misclassify in
prediction. According to the amount of target model knowledge an adversary obtains, the adversarial
attacks in the test stage can be divided into white-box attacks and black-box attacks.

3.2.1. White-Box Attacks

In white-box attacks, the adversaries know the structure and parameters of the target model,
although it is difficult to achieve in practice, once the adversaries access to the target model, it will
pose a great threat to a machine learning model, as an adversary can construct adversarial samples
by analyzing the structure of the target model to carry out attacks. Papernot et al. [14] introduced
an adversarial crafting framework, which can be divided into two steps, i.e., direction sensitivity
estimation and perturbation selection—as is shown in Figure 4.
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Figure 4. Adversarial crafting framework. This is an adversarial sample generative process for image
classification using the Deep Neural Network (DNN), which can be generalized for any supervised
learning algorithm (Image Credit: Papernot et al. [14]).

Suppose X is an input sample, f is a trained DNN classification model, the objective of the
adversary is to generate an adversarial sample X

′
= δX + X by adding a perturbation δX with X,

so that f (X
′
) = Y

′
where Y

′ 6= f (X) is the target output that depends on the adversary’s objective.
This framework includes two steps:

• Direction Sensitivity Estimation. The adversary evaluates the sensitivity of the change to each
input feature by identifying directions in the data manifold around sample X in which the model
f is most sensitive and likely to result in a class change.

• Perturbation Selection. The adversary then exploits the knowledge of sensitive information to
select a perturbation δX in order to obtain an adversarial perturbation which is most efficient.

Note that both two steps replace X by δX + X at the beginning of each new iteration until the
disturbed sample is satisfied with the adversarial goal.

The total perturbation used to generate an adversarial sample from an original sample needs
to be as small as possible, which is the key to ensure that the adversarial sample is not recognized
by human eyes. Suppose the norm ‖·‖ is used to describe the differences between points in the
DNN input field, the adversarial samples in model f can be formalized as a solution to the following
optimization problem:

X∗ = X + arg min
δX

{‖δX‖ : f (X + δX) 6= f (X)} (3)

It is difficult to find closed solutions since most DNN models make Formula (3) nonlinear and
non-convex. Now, we discuss the methods used in the two steps above in detail.

Direction Sensitivity Estimation

Direction sensitivity estimation aims to find the dimensions of X that produce expected adversarial
performance with minimal disturbance, which can be generally achieved by changing the input
components of X and evaluating the sensitivity of the trained DNN model f to these changes. Some
current techniques of direction sensitivity estimation are described below.

• L-BFGS. Szegedy et al. [6] firstly introduced the term adversarial sample and formalized the
minimization problem, as shown in Formula (3) to search for an adversarial sample. Since this
problem is complex, they turned to solve a simplified problem, that is, to find the minimum loss
function additions, so that the neural network could make a false classification, which transformed
the problem into a convex optimization process. Although this method has good performance, it
is expensive to calculate the adversarial samples.
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• Fast Gradient Sign Method (FGSM). Goodfellow et al. [15] proposed a Fast Gradient Sign
method, which calculates the gradient of the cost function relative to the neural network input.
Adversarial samples are produced by the following formula:

X
′
= X + ε ∗ sign (∇x J (X, ytrue)) (4)

Here, J is the cost function of model f , ∇x indicates the gradient of the model with respect to
a normal sample X with correct label ytrue, ε denotes the hyper-parameter which controls the
amplitude of the disturbance. Although this is an approximate solution based on linear hypothesis,
it also enables the target model to achieve 89.4% misclassification on the MNIST dataset.

• One-Step Target Class Method [16]. This method, a variant of FGSM, maximizes the probability
P(ytarget|X) of some specific target class ytarget, which is unlikely to be a true class for a given
sample. For a model with cross-entropy loss, the adversarial samples could be made following
Formula (5) in the one-step target class method:

X
′
= X− ε ∗ sign

(
∇x J

(
X, ytarget

))
(5)

• Basic Iterative Method (BIM) [16]. This is a straightforward extension of FGSM to apply FGSM
multiple times with small step size:

X
′
0 = X, X

′
n+1 = ClipX,ε

{
X
′
n + α ∗ sign

(
∇X J

(
X
′
n, ytrue

))}
(6)

Here, the α denotes step length, and ClipX,ε {A} is the element-wise clipping of X. This method
generally does not rely on the approximation of the model and produces additional harmful
adversarial samples when this algorithm runs for more iterations. The articles [26,61] have
conducted research on this basis and produced good results.

• Iterative Least-Likely Class Method (ILCM) [16]. By using the class with the smallest recognition
probability (target class) to replace the class variable in the disturbance, and get adversarial
examples which are misclassified in more than 99% of the cases:

X
′
0 = X, X

′
n+1 = ClipX,ε

{
X
′
n − α ∗ sign

(
∇X J

(
X
′
n, ytrue

))}
(7)

• Jacobian Based Saliency Map (JSMA). Papernot et al. [17] proposed a method to find the
sensitivity direction by using the Jacobian matrix of the model. This method directly provides the
gradient of the output component relative to each input component, and the obtained knowledge
is used in the complex saliency map method to produce the adversarial samples. This method
limits the l0 norm of the perturbations, which means only a few pixels of the image need to be
modified. This method is especially useful for source/target misclassification attacks.

• One Pixel Attack. Su et al. [18] proposed an extreme attack method, which can be achieved by
changing an only one-pixel value in the image. They used the differential evolution algorithm to
iteratively modify each pixel to generate a sub-image and compared it with the parent image to
retain the sub-image with the best attack effect according to the selection criteria to realize the
adversarial attacks.

• DeepFool. Moosavi-dezfooli et al. [19] proposed to compute a minimal norm adversarial
perturbation for a given image in an iterative manner, in order to find the decision boundary
closest to the normal sample X and find the minimal adversarial samples across the boundary.
They solved the problem of choosing the parameter ε under FGSM [15] and carried out the
attack against the general nonlinear decision functions by using multiple linear approximations.
They demonstrated that the perturbations they generate are smaller than FGSM and have a similar
deception rate.

• HOUDINI. Cisse et al. [20] proposed a method called HOUDINI, which deceives gradient-based
machine learning algorithms. It realized the adversarial attack by generating adversarial sample
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specific to the task loss function, i.e., using the gradient information of the differentiable loss
function of the network to generate disturbance. They demonstrated that HOUDINI can be used
to deceive not only an image classification network but also a speech recognition network.

Perturbation Selection

An adversary can use the target model’s sensitivity for input information to evaluate the
dimension of target misclassification that is most likely to cause minimal disturbance. The methods of
disturbing input dimension can be of two categories:

• Perturb all the input dimensions. Goodfellow et al. [15] proposed a method to interfere with
each input dimension, but the amount of interference to calculate the gradient sign direction by
the FGSM method is small. This method effectively reduces the Euclidean distance between the
original samples and the corresponding adversarial samples.

• Perturb the selected input dimension. Papernot et al. [17] chose a more complex process
involving the saliency map and only selected a limited number of input dimensions to perturb.
This method effectively reduces the amount of perturbation with the input features when
generating adversarial samples.

The first method is suitable for rapidly generating a large number of adversarial samples, but
it is more easily detected because of its relatively large disturbance. The second method reduces the
perturbation at the price of higher calculation cost.

3.2.2. Black-Box Attacks

As shown in Section 2.2.1, black-box attacks can be divided into non-adaptive, adaptive and strict
black-box attacks.

In the non-adaptive and strict black-box scenario, the adversaries cannot access the internal
structure and parameters of the target model but can train a local substitute model which approximates
the decision boundary of the target model by accessing the target model through the API interfaces.
In particular, the machine learning models in the cloud environment are more accessible by API
interfaces. Once the substitute model is trained with high confidence, any white box attack strategies
can be applied to the substitute model to generate adversarial samples and then deceives the target
model by using the transferability of adversarial samples.

In the adaptive black-box scenario, adversaries cannot access the model but can observe the
output corresponding to specific input and establish a substitute model similar to the target model by
querying the target model as an oracle. The effectiveness of Oracle attack is closely related to the input
and query times of asking the target model.

There are mainly three categories of black-attack methods:

• Utilizing Transferability. Papernot et al. [21] used cross-model transferability of adversarial
samples to carry out black-box attack, which used synthetic input generated by the adversary
to train a local substitute model and used this substitute model to make adversarial samples,
which could be misclassified by the original target model. The articles [14,62] demonstrated
that adversarial attacks can lead the misclassification reach 84.24% on MetaMind, an online
DNN training model, and then the author used this method on the Amazon cloud service which
achieves logical regression, and the misclassification can reach 96%. The greedy heuristic followed
by the adversaries is to prioritize the samples when querying oracle labels to obtain a substitute
DNN model that approximates decision boundaries of the target model.

• Model Inversion. Fredrikson et al. [22] tried to eliminate the limitations of their previous
work [63] and proved that, for a black-box model, adversaries also can predict the genetic markers
of patients. These model inversion attacks use machine learning (ML) APIs to infer sensitive
features that are used as decision tree models for lifestyle surveys and as input to recover images
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from API access to facial recognition services. The attack successfully tested facial recognition
using multiple neural network models, including softmax regression, multilayer perceptron
(MLP), and stacked denoising autoencoder network (DAE). When accessing to the model and
the name, the adversaries can recover the face images. The reconstruction results of these three
algorithms are shown in Figure 5. Because of the richness of the deep learning model structure,
the model inversion attacks can only recover a small number of prototype samples that are similar
to the actual data of the defined classes.

• Model Extraction. Tramèr et al. [23] proposed a simple attack method, a strict black-box attack,
to extract the target model for popular models, such as logistic regression, neural network,
and decision tree. Adversaries can build a local model which has a similar function with the target
model. The author demonstrated the model extraction attack against online ML service providers
such as BigML and Amazon Machine Learning. The ML APIs provided by the ML-as-Service
providers return exact confidence values and class labels. Since the adversaries do not have
any information about the model or the distribution of training data, he can attempt to solve
mathematically for unknown parameters or features given the confidence value and equations by
querying d + 1 random d-dimensional inputs for unknown d + 1 parameters.

Figure 5. The reconstruction results of model inversion attacks (Image Credit: Fredrikson et al. [22]).

4. Adversarial Attack Applications

Since adversarial attack technologies have been applied to academia and industry, this section
describes the applications of adversarial attack in several fields, including computer vision, natural
language processing, cyberspace security, and the physical world.

4.1. Computer Vision

In this section, we discuss the applications of adversarial attack in computer vision field. We will
describe the applications of adversarial attack in image classification, semantic image segmentation,
and object detection, respectively.

4.1.1. Image Classification

In image classification, researchers have proposed a large number of adversarial attack methods.
We list the relevant articles and their main ideas of their methods in Table 1.
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Table 1. Applications of adversarial attack in image classification field.

Articles Methods Main Ideas

Szegedy et al. [6] L-BFGS using L-BFGS algorithm to optimize the objective equation
arg min

r
f (x + r) = l s.t. (x + r) ∈ D.

Goodfellow et al. [15] FGSM FGSM is used to calculate the gradient of the cost function relative
to the input of the neural network, calculate Formula (4) to get
adversarial samples and lead the target model to achieve 89.4%
misclassification on the MNIST dataset.

Kurakin et al. [16] One-Step Target Class Calculating the Formula (5) to get adversarial samples.
Kurakin et al. [16] BIM The adversarial samples generated by FGSM are used in each

iteration to generate final adversarial samples by small step length
iteration.

Kurakin et al. [16] ILCM Replacing the target label in the BIM method with the most
unlikely labels predicted by the classifier.

Papernot et al. [17] JSMA Directly providing the gradient of the output component to each
input component, and the resulted knowledge is used in complex
saliency map methods to generate adversarial samples.

Su et al. [18] One Pixel Only modifying one pixel per image to generate adversarial
samples.

Carlini et al. [24] Carlini & Wagner Limiting the l0 norm, l2 norm and l∞ norm of the perturbations.
Moosavi-Dezfooli et al. [19] DeepFool Calculating the minimum norm adversarial perturbation iterative

method.
Moosavi-Dezfooli et al. [64] Universal perturbation Generating image independent general adversarial perturbation

for many different models.
Sarkar et al. [65] UPSET Universal Perturbations for Steering to Exact Targets (UPSET)

introduced residual generation network, whose input is target
class t and output is image unknown disturbance R(t).

Sarkar et al. [65] ANGRI Antagonistic Network for Generating Rogue Images (ANGRI)
calculated image detail perturbation in a closely related way.

Cisse et al. [20] HOUDINI Deceiving the gradient-based learning machine by generating
adversarial samples that can be customized for task loss.

Baluja et al. [66] ANTs The Adversarial Transformation Networks (ATNs) used a
feed-forward neural network to generate adversarial samples.

Chen et al. [25] ZOO Using the zero-order (ZOO) random coordinate descent method
combined with dimensionality reduction, hierarchical attack, and
importance sampling technique to carry out black-box attacks
effectively.

Ilyas et al. [67] variant of NES The variant of Natural Evolution Strategies (NES) Proposing the
adversarial sample generation method under query limit setting,
partial information setting and label only setting respectively.

Li et al. [68] Active learning Using the white-box attack method to generate samples
for queries, and introducing an active learning strategy to
significantly reduce the number of queries required.

Adate et al. [69] GAN-based Using GAN to generate adversarial noise and classify the
individual image.

Dong et al. [26] Momentum Proposing an iterative algorithm based on momentum to enhance
the success rate of adversarial attack.

4.1.2. Semantic Image Segmentation and Object Detection

Xie et al. [45] extended the adversarial attacks to more difficult semantic image segmentation and
object detection. The author thinks that segmentation and detection are based on the classification
of multiple objects on the image. Based on this idea, they proposed a new algorithm called Dense
Adversary Generation (DAG), which produces large categories of adversarial samples suitable for
segmentation and detection in the most advanced deep network. The authors also pointed out that
adversarial disturbances can be transmitted through networks based on different architectures with
different training data, even for different identification tasks. Figure 6 shows a typical example of a
network spoofing that uses the methods in [45] for image segmentation and detection.
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Figure 6. Adversarial example of image semantic segmentation and object detection. Left column
(top-down): Clean image, normal segmentation (the purple region is predicted as a dog) and detection
results. Right column (top-down): Perturbation 10x, fooled segmentation (the light green region is
predicted as train and the pink region as a person) and detection results (Image Credit: Xie et al. [45]).

Xiao et al. [27] proposed a method to characterize adversarial samples based on spatial background
information in semantic segmentation. They pointed out that semantic segmentation requires
additional components, such as extended convolution and multiscale processing. They observed
that, even though powerful adaptive adversaries can access models and detection strategies, we can
use spatial consistency information to effectively detect adversarial samples. The authors demonstrated
that the adversarial samples based on the attacks considered in this article [27] hardly move from
model to model.

Wei et al. [28] proposed a method to generate adversarial images and videos based on generative
adversarial network (GAN) framework [55] combined the high-level class loss and low-level feature
loss to jointly train the adversarial sample generator. In order to enhance the transferability of the
adversarial samples, they broke the feature graph extracted from the feature network. The overall
framework of their framework is shown in Figure 7. Experiments conducted on PASCAL VOC
and ImageNet VID datasets showed that the author’s method could effectively generate images
and video adversarial samples with good transferability, which could simultaneously attack two
representative object detection models: proposed based models, such as the Faster Region-based
Convolutional Neural Network method (Faster-RCNN), and regressive based models, such as the
Single Shot multiBox Detector (SSD).
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Figure 7. The overall framework of the Unified and Efficient Adversary (UEA). They formulate the
high-level class loss [45] with the proposed low-level multi-scale feature loss into GAN framework
to jointly train a better generator. For the coming images or video frames, the generator is to output
the corresponding adversarial images or frames to simultaneously fool the different kinds of object
detectors (Image Credit: Wei et al. [28]).

4.2. Natural Language Processing

We discuss the applications of adversarial attacks in testing classification and machine translation
of natural language processing field.

4.2.1. Text Classification

Liang et al. [30] proposed an algorithm to generate adversarial text samples using character-level
CNN [70]. They demonstrated the problem of directly using algorithms like FGSM to produce
adversarial text samples, i.e., the output result is scrambled text which is easily recognized as a noise
sample by human eyes. The Shared TextFool code base [71] can be used to produce adversarial text
samples, with the main idea of modifying existing words in the text samples through their synonyms
and spelling errors.

Hossein et al. [72] showed that the strategic insertion of punctuation marks with selected words
can deceive classifiers and that toxic annotations can be bypassed when the model is used as a file
manager.

Samanta et al. [73] proposed a new method for generating adversarial text samples by modifying
the original samples. This method modifies the original text sample by deleting or replacing important
or prominent words in the text and introducing new words into the text samples. Experimental results
conducted by the authors on IMDB movie review datasets for emotion analysis and Twitter datasets
for gender detection show the effectiveness of the proposed method.

4.2.2. Machine Translation

Belinkov et al. [29] showed that character-level neural machine translation (NMT) was too
sensitive to random character manipulation, and they used a black-box heuristic to generate
character-level adversarial examples. The author showed that the most advanced models are
vulnerable to advertisement adversarial attacks even after the deployment of spell checkers. However,
Zhao et al. [74] searched and generated black-box adversarial samples in the coding sentence space by
perturbation of potential representation.

Ebrahimi et al. [75] proposed to use gradient estimation method to sort the adversarial operations
and use a greedy search or beam search method to search the adversarial samples. The authors also
proposed two specific types of attacks to remove or change a word in a translation.
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4.3. Cyberspace Security

4.3.1. Cloud Service

Papernot et al. [21] launched one of the attacks on deep neural network classifiers in cyberspace.
They trained a substitute network to replace the target black-box classifier on the synthetic data and
carried out attacks on Meta Mind, Amazon and Google remote hosted neural networks. The results
show that the classification error rates of the target networks are 84.24%, 96.19%, and 88.94%,
respectively, for the adversarial samples generated by their methods, which are black-box attacks.

Liu et al. [76] showed that, while transferable non-targeted adversarial examples are easy to
find, targeted adversarial examples generated using existing approaches almost never transfer with
their target labels. They proposed an ensemble-based approach to generating transferable adversarial
examples which can successfully attack Clarifai.com, which is a black-box image classification system;
the results are shown in Figure 8.

Figure 8. Original images and adversarial images evaluated over Clarifai.com. For labels returned
from Clarifai.com, the authors sort the labels firstly by rareness: how many times a label appears in
the Clarifai.com results for all adversarial images and original images, and secondly by confidence.
Only the top five labels are provided (Image Credit: Liu et al. [76]).

4.3.2. Malware Detection

Compared to image recognition, the malware classification field introduces additional constraints,
i.e., hostile settings, such as replacing continuous input domain with discrete input domain, similar
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visual conditions. Hu et al. [77] proposed a model called MalGAN to generate malware adversarial
samples. As is shown in Figure 9, this model contains three DNN models, i.e., generator, discriminator
and substitute model. By utilizing the transitivity of the adversarial samples, MalGAN constructs a
substitute model that can simulate the target model and generates the adversarial malware samples
composed of API call sequences to bypass the malware detection systems.

Figure 9. The architecture of MalGAN (Image Credit: Hu et al. [77]).

In the articles [31,32], they replaced DNN in MalGAN with RNN. Grosse et al. [33] showed
how to build an effective adversarial attack method on the neural network used as the classification
of Android malware. In articles [78,79], successful cases of adversarial attacks against the malware
classification based on deep learning are proposed.

4.3.3. Intrusion Detection

Huang et al. [34] carried out the experiments of adversarial attacks on the software defined
networking (SDN) based deep learning detection system. They proposed a new kind of adversarial
attack, which takes advantage of the vulnerability of deep learning classifier in an SDN environment.
Three typical deep learning models combined with four different adversarial tests have been conducted
in the simulation for complete analysis in their work.

4.4. Attack in Physical World

4.4.1. Spoofing Camera

Kurakin et al. [16] first demonstrated that the threat of adversarial attack also exists in the physical
world. To prove it, they printed out adversarial images and took snapshots with the phone’s camera.
These images were input into the TensorFlow Camera Demo app using the Inception model of Google
for object classification. The results showed that these images were largely misclassified even seen
by the camera. As is shown in Figure 10, they took a clean image from the dataset (a) and used it to
generate adversarial images with various sizes of adversarial perturbation. Then, they printed clean
and adversarial images and used the TensorFlow Camera Demo app to classify them. A clean image (b)
is recognized correctly as a “washer” when perceived through the camera, while adversarial images (c)
and (d) are misclassified.



Appl. Sci. 2019, 9, 909 18 of 29

Figure 10. Demonstration of a black-box attack on a phone app for image classification using physical
adversarial examples (Image Credit: Akhtar et al. [80]).

4.4.2. Road Sign Recognition

Eykholt et al. [35] proposed a white-box adversarial sample generation method to attack their
own trained road sign recognition models, including LISA-CNN models used LISA [81], a U.S. traffic
sign dataset containing 47 different road signs, and GTSRB-CNN models, which trained on the German
Traffic Sign Recognition Benchmark (GTSRB) [82]. They proposed two effective kinds of disturbance
installation methods for road sign recognition scenarios, i.e., posters and stickers, as shown in Figure 11.
They followed Sharif et al. [37] in constructing the loss function and took into account the printability
and location limitations. Their assessment showed that they had achieved a 100% success rate in the
poster installation driving test.

Figure 11. The effect of generating and evaluating physical adversarial perturbations in the real world
(Image Credit: Eykholt et al. [35]).

However, in the work of Lu et al. [16], detectors such as YOLO 9000 [36] and FasterRCNN [6] are
not fooled currently by the attacks introduced by Eykholt et al. [35].

Gu et al. [83] demonstrated an attack framework called BadNets in a real-world scenario,
where they created a street sign classifier that recognizes a stop sign as a speed limit when a special
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sticker was added to the stop sign. Their most challenging attack was in a transfer learning setting;
the attack setup is shown in Figure 12. In this setting, a BadNet trained on U.S. traffic signs was
downloaded by a user who unwittingly uses the BadNet to train a new model to detect Swedish traffic
signs using transfer learning. In addition, the study found that, even after the network was fine-tuned
with additional training data, this method still performs well.

Figure 12. Illustration of the transfer learning attack setup (Image Credit: Gu et al. [83]).

4.4.3. Machine Vision

Melis et al. [36] used the technology in [6] to prove the vulnerability of the robots to the input
image under the adversarial operation. Xu et al. [84] launched an adversarial attack for Visual Turing
test, known as Visual Question Answer (VQA). The result shows that the combined and non-combined
VQA architectures using deep neural networks are vulnerable to adversarial attacks.

4.4.4. Face Recognition

Sharif et al. [37] focused on facial biometric systems, which are widely used in surveillance and
access control. They develop a systematic method to automatically carry out attacks, which are realized
through printing a pair of eyeglass frames. When the eyeglass frame is worn by an adversary whose
image is supplied to a state-of-the-art face-recognition algorithm, the eyeglasses allow him to evade
being recognized or to impersonate another individual. Figure 13 shows impersonation using the
frame. Their investigation focuses on white-box face-recognition systems, but they also demonstrate
how similar techniques can be used in black-box scenarios, as well as to avoid face detection.

Figure 13. An impersonation using frames. Left: Actress Reese Witherspoon [85]. Image classified
correctly with probability 1. Middle: Perturbing frames to impersonate (actor) Russel Crowe. Right:
The target [86] (Image Credit: Sharif et al. [37]).



Appl. Sci. 2019, 9, 909 20 of 29

Zhou et al. [38] studied an interesting example of an actual adversarial attack and found that
infrared light completely invisible to humans can also be used to generate disturbances. As is shown
in Figure 14, the adversary installed some infrared LED on the cap peak, which could illuminate the
attacker’s face with some points from the camera angle, but people nearby would not notice. With this
technique, they successfully attacked the facial authentication system in white-box settings.

Figure 14. The cap with some infrared LED (Image Credit: Zhou et al. [38]).

This method differs from other attack methods in two aspects. Firstly, this method does not
directly optimize perturbation. They established a model describing the infrared points generated by
LED lamps with position, radius, and brightness of the points as parameters. Therefore, the optimizer
optimized the model parameters to accurately search for disturbances close to the real infrared points.
Secondly, they developed a real-time feedback system for adversaries to adjust the LED position to
help adversaries better achieve disturbance. Therefore, adversaries do not need to print disturbance
for each target; instead, they only need to adjust the device to attack different targets.

5. Defense Strategy

Researchers have proposed a number of adversarial attack defense strategies, which can be
divided into the three main categories, i.e., modifying data, modifying models and using auxiliary
tools. We describe them in details, respectively.

5.1. Modifying Data

These strategies refer to modifying the training dataset in the training stage or changing the input
data in the testing stage, including adversarial training, gradient hiding, blocking the transferability,
data compression, and data randomization.

5.1.1. Adversarial Training

The adversarial samples are introduced into the training dataset to improve the robustness of
the target model by training model with the legalized adversarial samples. Szegedy et al. [6] firstly
injected the adversarial samples and modified its labels to make the model more robust in the face
of the adversaries. Goodfellow et al. [15] reduced the misidentification rate on the MNIST dataset
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from 89.4% to 17.9% by using adversarial training. Huang et al. [40] increased the robustness of
the model by punishing misclassified adversarial samples. Tramèr et al. [41] proposed ensemble
adversarial training which can increase the diversity of adversarial samples. However, it is unrealistic
to introduce all unknown attack samples into the adversarial training, which leads to the limitation of
adversarial training.

5.1.2. Gradient Hiding

A natural defense against gradient based attacks presented in [41] and attacks using adversarial
crafting method such as FGSM. This method hides information about model gradient from the
adversaries, i.e., if a model is non-differentiable (e.g., a decision tree, a nearest neighbor classifier, or a
random forest), the gradient-based attack is invalid. However, by learning the proxy black-box model
with gradient and using the adversarial samples generated by this model [21], the method can easily
be fooled in this case.

5.1.3. Blocking the Transferability

Since the transferability attribute holds even if the classifiers have a different architecture or are
trained on the disjoint dataset, the key to preventing the black-box attack is to prevent the transferability
of adversarial samples. Hosseini et al. [42] proposed a three-step NULL Labeling method, in order to
prevent the adversarial samples from one network to another network. Its main idea is adding a new
NULL label to the dataset, and classify them to NULL label by training classifier to resist adversarial
attacks. This method generally includes three main steps, i.e., initial training target classifier, computing
NULL probabilities, and adversarial training, as is shown in Figure 15.

Figure 15. Illustration of the original and null labeling methods on an image from the MNIST dataset,
and three adversarial examples with different perturbations. The classifier assigns a probability vector
to each image. With more perturbation, the NULL labeling method assigns a higher probability to
the NULL label, while the original labeling increases the probabilities of other labels (Image Credit:
Hosseini et al. [42]).

The advantage of this method is marking the perturbation input as an empty label rather than
classifying it as the original label. At present, this method is one of the most effective defense methods
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against the adversarial attacks, which accurately resists the adversarial attacks, as well as does not
affect the classification accuracy of the original data.

5.1.4. Data Compression

Dziugaite et al. [43] found that JPG compression method can improve a large number of network
model recognition accuracy declined caused by FGSM attack disturbance. Das et al. [44] used a
similar JPEG compression method to study a defense method against FGSM and DeepFool attacks.
However, these image compression technologies still cannot serve as an effective defense against
more powerful attacks, such as Carlini & Wagner attacks [24]. Similarly, the Display Compression
Technology (DCT) compression method [44] used in the fight against universal disturbance attacks [87]
has also been proved to be insufficient. The biggest limitation of these defense methods based on data
compression is that a large amount of compression will lead to a decrease in the accuracy of original
image classification, while a small amount of compression is often not enough to remove the impact of
disturbance.

5.1.5. Data Randomization

Xie et al. [45] demonstrated that the operation of random resizing adversarial samples can reduce
the effectiveness of adversarial samples. Similarly, adding some random textures to the adversarial
samples can also reduce their deception to the network model. Wang et al. [46] used a data conversion
module separated from the network model to eliminate the possible adversarial disturbance in the
image, and conducted data expansion operations in the training process, such as adding some Gaussian
randomization processing, which could slightly improve the robustness of the network model.

5.2. Modifying Model

We can modify the neural network model, such as regularization, defensive distillation, feature
squeezing, deep contractive network and mask defense.

5.2.1. Regularization

This method aims to improve the generalization ability of the target model by adding regular
terms which are known as penalty terms to the cost function and make the model have good
adaptability to resist attacks on an unknown dataset in prediction. Biggio et al. [8] used a regularization
method to limit the vulnerability of data when training the SVM model. The articles [47–49] used
regularization method to improve the robustness of the algorithm and achieved good results in
resisting adversarial attacks.

5.2.2. Defensive Distillation

Papernot et al. [14] proposed a defensive distillation method to resist attacks on the basis of
distillation technology [88]. The original distillation technology aims to compress the large-scale model
into small-scale and retain the original accuracy, while the defensive distillation does not change
the scale of the model, and produces a model with a smoother output surface and less sensitivity to
disturbance to improve the robustness of the model. As is shown in Figure 16, they firstly trained an
initial network F on data X with a softmax temperature of T, and then used the probability vector F(X),
which includes additional knowledge about classes compared to a class label, predicted by network F
to train a distilled network Fd at temperature T on the same data X. The authors demonstrated using
defensive distillation can reduce the success rate of adversarial attack by 90%.
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Figure 16. An overview of defense mechanism based on a transfer of knowledge contained in
probability vectors through distillation (Image Credit: Papernot et al. [14]).

However, the effectiveness of defense distillation cannot be guaranteed in black-box attacks.
Therefore, Papernot et al. [50] proposed extensible defense distillation technology.

5.2.3. Feature Squeezing

Feature squeezing is a model enhancement technique [51], whose main idea is to reduce
the complexity of the data representation, thereby reducing the adversarial interference due to
low sensitivity. There are two heuristic methods, one is to reduce the color depth at the pixel
level, i.e., to encode the color with fewer values; the other is using a smooth filter on the image,
i.e., multiple inputs are mapped to a single value, thus making the model safer under noise and
confrontational attack. Although this technique can effectively prevent adversarial attacks, it also
reduces the accuracy of the classification of real samples.

5.2.4. Deep Contractive Network (DCN)

Gu et al. [52] introduced a kind of deep compression network, which uses noise reduction
automatic encoder to reduce the adversarial noise. Based on this phenomenon, DCN adopted a
smoothing penalty similar to a Convolutional Autoencoder (CAE) [89] in the training process, and was
proved to have a certain defensive effect against attacks such as L-BGFS [6].

5.2.5. Mask Defense

Gao et al. [53] proposed to insert a mask layer before processing the classified network model.
This mask layer trained the original images and corresponding adversarial samples and encoded the
differences between these images and the output features of the previous network model layer. It is
generally believed that the most important weight in the additional layer corresponds to the most
sensitive feature in the network. Therefore, in the final classification, these features are masked by
forcing the additional layers with a primary weight of zero. In this way, the deviation of classification
results caused by adversarial samples can be shielded.

5.2.6. Parseval Networks

Cisse et al. [20] proposed a network called Parseval as a defensive method against adversarial
attacks. This network adopts hierarchical regularization by controlling the global Lipschitz constant of
the network. Considering the network can be viewed as a combination of functions at each layer, it is
possible to have robust positive ions for small input perturbations by maintaining a small Lipschitz
constant for these functions, they proposed to control the spectral norm of the network weight matrix



Appl. Sci. 2019, 9, 909 24 of 29

by parameterizing the spectral norm of the network weight matrix through Parseval tight frames [90],
so it was called “Parseval” network.

5.3. Using Auxiliary Tool

This approach refers to using additional tools as an auxiliary tool to the neural network model,
including defense-GAN, MagNet and high-level representation guided denoiser.

5.3.1. Defense-GAN

Samangouei et al. [54] proposed a mechanism applicable to both white-box and black-box attacks
to reduce the efficiency of adversarial perturbance. This method utilizes the power of generative
adversarial network [55], and the main idea is to “project” input images onto the range of the generator
G by minimizing the reconstruction error

∥∥G (z)− x2
2

∥∥, prior to feeding the image x to the classifier.
Therefore, compared with the adversarial samples, the legitimate samples are closer to the range
of G, thus greatly reducing the potential adversarial perturbance. The process of the defense-GAN
mechanism is shown in Figure 17. Although defensive-GAN has been proved to be quite effective
in defense against attacks, its success depends on GAN’s expressiveness and generative ability.
In addition, the training of GAN is challenging, i.e., without proper training, the performance of
defense-GAN will obviously decline.

Figure 17. Overview of the Defense-GAN algorithm (Image Credit: Samangouei et al. [54]).

5.3.2. MagNet

Meng et al. [56] proposed a framework called MagNet, which reads the output of the last layer
of the classifier as a black-box without reading any data of the inner layer or modifying the classifier.
MagNet uses a detector to identify legal and adversarial samples. The detector measures the distance
between a given sample under test and the manifold and rejects the sample if the distance exceeds the
threshold. It also uses a reformer to transform the adversarial sample through an automatic encoder
into a similar legal sample. In white-box attacks, the performance of MagNet decreases significantly
because the adversaries know the parameters of MagNet. Therefore, the author proposed the idea
of using multiple automatic encoders and randomly selecting one at a time to make it difficult for an
adversary to predict which automatic encoder is used.

5.3.3. High-Level Representation Guided Denoiser (HGD)

Different from the standard de-noising device such as pixel-level reconstruction loss function,
which has the problem of error amplification, HGD can effectively overcome this problem by using
a loss function to compare the outputs of the target model to the clean image and de-noising image.
Liao et al. [57] introduced HGD to design a robust target model against white-box and black-box
adversarial attacks. The author proposed three different HGD training methods, as shown in Figure 18.
Another advantage of using HGD is that it can be trained on a relatively small dataset and can be used
to protect models other than the one guiding it.
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Figure 18. Three different training methods for HGD. The square boxes stand for data blobs, the circles
and ovals stand for networks. D stands for denoiser. The Convolutional Neural Network (CNN) is the
model to be defended. The parameters of CNN are shared and fixed (Image Credit: Liao et al. [57]).

6. Conclusions

Since Szegedy et al. proposed that machine learning algorithms are vulnerable to adversarial
attacks, researchers have conducted a large number of studies on adversarial attacks and defense
methods and produced good results. In this paper, the causes and characteristics of adversarial samples,
as well as the adversarial capabilities and goals of the adversaries, are first described. In addition,
we review the adversarial attacks carried out in the training stage and the testing stage of the target
model, respectively. Among them, the training stage adversarial attacks can be implemented in
three ways: modifying the training dataset, label manipulation, and input feature manipulation.
However, such attacks, which occur during the training stage, are not common in the real world.
There are two kinds of the testing stage adversarial attacks: the white-box attacks and black-box attacks.
For the white-box attacks, in the process of carrying out the attacks, the adversaries can obtain the
algorithm, parameters, structure, and other information of the target model and use this information
to generate the adversarial samples. Hence, compared with the black-box attacks, the white-box
attacks have higher success rates, which can enable the target model to achieve an error rate of
approximately 89–99%. Although the attack success rates of black-box attacks, which lead to an
error rate of roughly 84–96%, are not as good as that of white-box attacks, since black-box attacks
do not need to know any information of the target model, the adversarial attacks can be carried out
by utilizing the transferability of adversarial samples, model inversion and model extraction. As a
consequence, the black-box attacks have better applicability in the real world and may well become a
research focus in future research. Furthermore, we summarize the application of adversarial attacks in
four fields and existing defense methods against adversarial attacks. Although some defense methods
have been proposed by researchers to deal with adversarial attacks and achieved good results, which
can reduce the success rate of adversarial attack by 70%–90%, they are generally aimed at a specific
type of adversarial attacks, and there is no defense method to deal with multiple or even all types
of attacks. Therefore, the key to ensuring the security of AI technology in various applications is to
deeply research the adversarial attack technology and propose more efficient defense strategies.
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