
applied
sciences

Article

Texture Construction Edge Detection Algorithm

Shou-Cih Chen and Chung-Cheng Chiu *

Department of Electrical and Electronics Engineering, Chung Cheng Institute of Technology,
National Defense University, Taoyuan 33551, Taiwan; e6986715@gmail.com
* Correspondence: david.cc.chiu@gmail.com; Tel.: +886-3-390-9962

Received: 29 January 2019; Accepted: 26 February 2019; Published: 3 March 2019
����������
�������

Abstract: The edge detection algorithm is the cornerstone of image processing; a good edge detection
result can further extract the required information through rich texture information and achieve
object detection, segmentation, and identification. To obtain a rich texture edge detection technology,
this paper proposes using edge texture change for edge construction and constructs the edge contour
through constructing an edge texture extension between the blocks to reduce the missing edge
problem caused by the threshold setting. Finally, through verification of the experimental results, the
proposed method can effectively overcome the problem caused by unsuitable threshold setting and
detect rich object edge information compared to the adaptive edge detection method.

Keywords: edge detection; edge thinning; texture blocks; texture template

1. Introduction

Object contours play an important role in human visual processing and their composition presents
some meaningful geometric concepts. By defining the contour shape, people can effectively and widely
identify various objects. The contour of an object does not change with color or ambient brightness,
so the object information is stable. It is widely used in object segmentation, object detection, texture
identification, and feature analysis, and is popular in fields such as security monitoring systems, smart
home systems, and smart vehicles. Besides the shape of the outer contour of the object, subtle texture
changes inside the object also imply important object information, so dominant or implicit texture
changes should be selected or retained as each possible object identification feature.

Edge detection technology is the main method used to detect the contour of objects. Recently,
many experts and scholars have been working on various image edge detection technologies. However,
finding rich object edges from target images is still a challenging and popular topic. The traditional
edge detection technology developed in the early days mainly aimed to find the discontinuity in the
gray-level intensity of a pixel. After obtaining the gradient information by a first- or second-order
differential operation, the intensity difference between the center and adjacent pixels was observed
and analyzed to obtain the edge. For example, Robert’s operator [1] uses a 2 × 2 mask to calculate the
difference between adjacent pixels in the diagonal direction to obtain the gradient information and
determines the edge retention through a threshold setting. Because the mask used is 2 × 2 in size and
has no clear center, resulting in an inaccurate range of values, the Prewitt operator [2] was developed,
which uses a 3 × 3 mask for gradient operations, combining horizontal and vertical gradients. In this
operator, the component obtains the gradient information of the entire image, and finally, retains the
edges through a threshold setting. The Sobel [3] operator is similar to the Prewitt [2] operator. One
slight difference between the operators is that the mask center uses the weighting coefficient value and
some noise suppression is achieved by giving the center point a larger weighting value. Finally, one still
has to keep the edges through a threshold setting. Because the setting of the threshold value directly
affects the output of the edge detection, some scholars have proposed an adaptive threshold value

Appl. Sci. 2019, 9, 897; doi:10.3390/app9050897 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/9/5/897?type=check_update&version=1
http://dx.doi.org/10.3390/app9050897
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 897 2 of 25

method to solve the error caused by manual adjustment. Bora and Gupta [4] proposed the combination
of Otsu [5] and Sobel [3] algorithms to achieve image filtering, and used the Watershed algorithm
to achieve image segmentation. Davis et al. [6] used the adaptive threshold method proposed by
Bradely and Roth [7] to calculate the percentage of the average grayscale value of the mask using the
integral image, as compared to the center pixel, as the setting of the image binarization threshold, and
finally, applied the binarized image to object identification. Luo et al. [8] calculated and retained the
maximum of the two statistical values as the basis for determining the edge retention of the adaptive
threshold. One is the sum of the gradient average and the one-half standard deviation in the mask and
the other is a custom threshold. The calculation of the adaptive threshold value significantly improves
the detection effect of the edge detection algorithm, and effectively avoids the error caused by manual
operation. However, since the acquisition of a single threshold value only depends on the statistical
result, when the image grayscale variations are not obvious, the high-threshold setting may cause the
less-obvious edge texture to be filtered out. On the contrary, the low-threshold setting may cause too
much noise or too many false edges to be retained.

To effectively reduce the problem of edge discontinuity or loss, the Canny algorithm [9] proposes
using high-threshold and low-threshold values instead of a single threshold. Since the higher gradient
value is a more pronounced edge, Canny uses the hysteresis effect to track pixels that are held between
the high and low thresholds, as possible for object edge retention. To find the best threshold, some
scholars have proposed a method for detecting high and low thresholds for Canny [9] edge detection;
for example, Gao and Liu [10] used the Otsu method for the gradient magnitude histogram after
non-maximum suppression. The calculated gradient magnitude histogram is used to obtain the high
threshold and sets one-half of the high threshold as a low threshold. However, since the low threshold
setting is determined by the high threshold, it has not been accurately calculated by statistical analysis.
Therefore, it is inaccurate in terms of the setting, which may still lead to edge loss. Song et al. [11] also
used the Otsu method to analyze the gradient magnitude histogram after non-maximum suppression.
They first obtained the high-threshold value and then excluded the gradient value greater than the high
threshold and performed the second operation on the statistical result to obtain a low threshold. The
proposed method of the iteration threshold effectively improves the edge detection discontinuity and
detection errors. Saheba et al. [12] proposed using the mean squared error (MSE) [13] to automatically
detect the high and low thresholds. First, one uses the MSE to quantify the gradient magnitude
histogram after non-maximum suppression. To perform the operation, one first obtains the high
threshold, then excludes the gradient larger than the high threshold, and finally performs the second
operation on the statistical result to obtain the low threshold. The proposed method improves the edge
detection effect in high- and low-brightness images. In addition, the gradient magnitude histogram
proposed by Li and Zhang [14] uses a differential operation to obtain the adaptive high and low
thresholds after non-maximum suppression. The high threshold is obtained by the first zero bin of
the amplitudes difference, and the low threshold is set to 0.4 times the high threshold. The method
improved the ability of noise reduction and made the edge more obvious, but the low threshold is
still dependent on the calculation of the high-threshold value and the setting is less accurate and
may still lead to loss of the edge. Ferdous et al. [15] used the method proposed by Rupalatha et
al. [16] to adaptively solve the high and low thresholds by the operation of two statistical values in
the gradient histogram after non-maximum suppression: one is the average value of the probability
density function and the other is the variation in the probability density function. The proposed
method has better continuity at the detected edge. Although the Canny [9] algorithm uses a high-
and low-threshold strategy to preserve the edges more flexibly, there is still a common problem of
threshold setting. A pixel with a gradient value larger than the high-threshold is used as the starting
point of the edge. Therefore, the high-threshold value directly affects the edge detection result and the
low-threshold value is the lower limit of the gradient value of the edge detection. When the threshold
value is set too high, the edge texture with a lower gradient value is filtered out. Conversely, when
the setting is too low, too much noise or too many false edges are left. Because of the variability of

Appl. Sci. 2019, 9, 897 3 of 25

the image, a fixed set of high and low thresholds cannot effectively be used to preserve the rich edge
information in the image. Therefore, finding the edge of the object in the image by setting the threshold
value is an insurmountable problem.

To solve the excessive or effective edge texture loss caused by unsuitable threshold value setting,
the texture construction edge detection algorithm (TCEDA) is proposed as the edge construction
algorithm. First, an image preprocessing is used to reduce the noise interference caused by the
external environment effects, such as illumination, shooting angle, and visual attributes. Then, using
non-maximum suppression and the thinning texture template, the image output of the edge thinning
process is achieved, and finally, the texture of the object’s edge is extended by the block scanning mask
to realize the construction of the edge texture of the object. The proposed TCEDA can obtain richer
edge detection results as the basis for subsequent object detection, segmentation, and identification.
The rest of the paper is organized as follows: Section 2 introduces the TCEDA and process architecture;
Section 3 shows the experimental results of the TCEDA and the adaptive threshold value algorithms;
and Section 4 summarizes the contribution and follow-up of the TCEDA and applications.

2. Texture Construction Edge Detection Algorithm

This section explains how the TCEDA proposed in this paper uses the block texture change to
extend the edge information of the image. When there is a grayscale change between the adjacent
pixels, it will be included in the algorithm to determine whether to retain it as the edge of the image of
the texture information. As to how to build the edge through the effective block texture feature, this
paper distinguishes it in the following three parts: image pre-processing, the optimal edge thinning
process, and edge texture construction processing. First, the image pre-processing converts the input
color image into a grayscale image. In addition, to reduce the noise interference caused by the
imaging technology and the operation of the optical device during the acquisition process, a Gaussian
smoothing filter is used to weaken the variation of the grayscale value between the adjacent pixels
in the image and the Sobel operator is used to calculate the gradient values of the image. Then, in
order to filter the invalid texture variation features, the redundant pixels and weaker edges of the
gradient change are regarded as noise. Therefore, a fixed threshold is set in the algorithm to filter
noise to reduce its interference with the contour edges of the details in the image. Second, for the
optimal edge thinning process, to avoid excessive unnecessary analysis of the image pre-processing
results and reduce the complexity of the subsequent object edge construction, the algorithm uses the
non-maximum suppression method to find pixels with larger regional gradient values. The point is
used as a candidate edge point and the thinning texture template is then used to filter out redundant
pixels to achieve the optimal thinning effect. Finally, in the edge texture construction processing part,
since the texture change with a long extension has more meaningful edge features, the algorithm
establishes the edge texture through the connection between the central block and the four adjacent
blocks. The steps in the algorithm are described in detail in the subsections below.

2.1. Image Preprocessing

Since the grayscale image retains most of the edge information in the image, the color image
containing the three color components R (red), G (green), and B (blue) is first converted into the
grayscale image. The grayscale image is gray-scaled by the commonly used grayscale formula, which
is expressed as follows:

Gray = 0.299× R + 0.587×G + 0.114× B (1)

Image capture will be affected by imaging application-related technologies, such as the generation
of scattered noise due to a dark current during the operation of the optical device, error propagation
caused by the chromaticity coordinate reading and the color space conversion process, shooting angle,
and external environmental factors such as the rough surface of the object affected by light and shadow,
so the generation of noise is inevitable in the process of image acquisition. Therefore, to reduce

Appl. Sci. 2019, 9, 897 4 of 25

the noise caused by the above reasons, the image edge is obviously disturbed. First, the grayscale
image, f (x, y), is smoothed using a two-dimensional Gaussian function filter. The Gaussian function
aims to calculate the transformation of each pixel in the image by using a normal distribution. The
two-dimensional normal distribution equation h (x, y) is defined as follows:

h(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (2)

where σ (preset value is 1) is the standard deviation of the normal distribution. After image smoothing
is completed, the filter mask of Sobel [3] is used to find the gradient value of each pixel in the image,
using a 3 × 3 horizontal mask hx, as Equation (3), and the vertical mask hy, as Equation (4). After
obtaining the gradient values in the horizontal and vertical directions (i.e., Gx and Gy), the gradient
amplitude and angle of each pixel are obtained by Equations (5) and (6) to obtain the results of the
gradient value (grad f) and the gradient angle (θ), respectively. The relevant operation formula is
expressed as follows:

hx =

 −1 −2 −1
0 0 0
1 2 1

 (3)

hy =

 −1 0 1
−2 0 2
−1 0 1

 (4)

grad f = mag(∇G) =
[

G2
x + G2

y

] 1
2 (5)

θ = tan−1
(

Gy

Gx

)
(6)

Through the gradient amplitude obtained by the above operation, the change between the adjacent
pixels in the image can be observed. This algorithm is included as an effective block texture feature
when the pixel gradient amplitude is not zero. Therefore, when the pixel displays any gradient
amplitude change in the process, it will be included in the subsequent algorithms to be dealt with.
Therefore, to avoid excessive interference of the edge texture in the image to establish an effective block
edge texture feature, the pixel with a smaller gradient amplitude is regarded as noise in the algorithm
and a fixed threshold value is set to filter. In addition, the analysis is retained for further analysis by
retaining valid texture features. After several image experiments, the gradient threshold parameter is
set to 15. Figure 1 shows the process through which the algorithm uses a fixed threshold to filter out
noise. Figure 1a shows the original image, and there are many inconspicuous faint light and shadow
changes in the roof, door panel, and wall surface. Figure 1b shows the binarized image from Figure 1a,
with a gradient amplitude greater than zero after image pre-processing, which produces considerable
noise texture due to noise generation and light and shadow changes. Figure 1c shows the image results
obtained from Figure 1b after filtering the preset threshold value, which effectively filters out the
light and shadow changes that are difficult to observe by most naked eyes and the noise generated
by imaging technology limitations and does not have a significant impact on the main edge texture
changes. After filtering through the preset threshold, most of the non-obvious noise in the image is
still preserved. Further algorithmic methods can be used to filter out more noise and preserve effective
edge texture changes by the following processing.

Appl. Sci. 2019, 9, 897 5 of 25

Appl. Sci. 2019, 9, x 5 of 25

(a) (b)

(c)

Figure 1. Noise filtering process. (a) Original image (640 × 427) [17]; (b) gradient change image before
noise filtering; (c) gradient change image after noise filtering.

2.2. Optimal Edge Thinning Process

The optimal edge thinning process includes the two steps of non-maximum suppression and the
thinning texture template process to achieve optimal edge thinning. Since the edge segments
obtained by the pre-processing steps have different thicknesses, to simplify the subsequent analysis
and determine the texture change combination required for edge construction, the edge thinning
processing is indispensable.

First, the non-maximum suppression method uses the gradient angle obtained by Equation (6)
and divides it into four directions, according to the degree of approximation: 0° (i.e., horizontal), 45°
(i.e., upper right and lower left), 90° (i.e., vertical), and 135° (i.e., upper left and lower right). Then, it
compares the gradient amplitude of the two pixels adjacent to the center pixel according to the
gradient direction of the center pixel. When the gradient amplitudes of the two adjacent points are
smaller than that of the center pixel, the center pixel is included as a candidate edge point.
Conversely, the center pixel is not included as a candidate edge point. Although the method of non-
maximum suppression can achieve preliminary thinning processing, there are still many redundant
pixels in the candidate edge image after non-maximum suppression.

To filter the redundant pixels processed by the maximum suppression method, a block texture
distribution with a center pixel as a redundant pixel is proposed to develop a set of thinning texture
templates and a thinning texture template is used to filter out redundant pixels to achieve optimal
edge thinning. The redundant pixel filtering process uses a raster-scan method to perform a 3 × 3
pixels block texture comparison on the non-maximum suppressed candidate edge image. When the
block texture matches the defined thinning texture template, the redundant pixel in the center of the
block is deleted. Figure 2 shows an example of the thinning process.

Figure 1. Noise filtering process. (a) Original image (640 × 427) [17]; (b) gradient change image before
noise filtering; (c) gradient change image after noise filtering.

2.2. Optimal Edge Thinning Process

The optimal edge thinning process includes the two steps of non-maximum suppression and
the thinning texture template process to achieve optimal edge thinning. Since the edge segments
obtained by the pre-processing steps have different thicknesses, to simplify the subsequent analysis
and determine the texture change combination required for edge construction, the edge thinning
processing is indispensable.

First, the non-maximum suppression method uses the gradient angle obtained by Equation (6)
and divides it into four directions, according to the degree of approximation: 0◦ (i.e., horizontal), 45◦

(i.e., upper right and lower left), 90◦ (i.e., vertical), and 135◦ (i.e., upper left and lower right). Then,
it compares the gradient amplitude of the two pixels adjacent to the center pixel according to the
gradient direction of the center pixel. When the gradient amplitudes of the two adjacent points are
smaller than that of the center pixel, the center pixel is included as a candidate edge point. Conversely,
the center pixel is not included as a candidate edge point. Although the method of non-maximum
suppression can achieve preliminary thinning processing, there are still many redundant pixels in the
candidate edge image after non-maximum suppression.

To filter the redundant pixels processed by the maximum suppression method, a block texture
distribution with a center pixel as a redundant pixel is proposed to develop a set of thinning texture
templates and a thinning texture template is used to filter out redundant pixels to achieve optimal edge
thinning. The redundant pixel filtering process uses a raster-scan method to perform a 3 × 3 pixels
block texture comparison on the non-maximum suppressed candidate edge image. When the block
texture matches the defined thinning texture template, the redundant pixel in the center of the block is
deleted. Figure 2 shows an example of the thinning process.

Appl. Sci. 2019, 9, 897 6 of 25

Appl. Sci. 2019, 9, x 6 of 25

Figure 2. Thinning process example.

When the block texture of the 3 × 3 pixels covered by the center pixel x conforms to the proposed
thinning texture template, it is judged as a redundant pixel and gets filtered out. Then, it gets right-
shifted to make the judgment of the block texture change of the next point, until the processing of the
entire candidate edge image is completed; thus, the image with optimal edge thinning can be
obtained.

Next, a method of binarizing the edge texture changes in the block will be described to facilitate
subsequent analysis and processing. Figure 3 illustrates the binary coding method showing the
change in block texture. When the pixel gradient amplitude value is not 0, the code is “1”, and
otherwise, it is “0”. The coding order starts from the upper left corner of the block and goes in order
from left to right and top to bottom.

Figure 3. Binary coding.

There are up to four texture changes through angle rotation, i.e., 0°, 90°, 180°, and 270°, in the
block. Therefore, after the process of binarization coding is completed, the block binarization coding
of the four rotation angles is obtained by changing the bit arrangement order. Figure 4 shows the
coding order of the different angles in the block. Figure 4a shows the block coding order of 0° and a
coding order of 123456789. Figure 4b shows the block coding order of Figure 4a with a rotation of 90°
to the left and a coding order of 369258147. Figure 4c shows the block coding order of Figure 4a with
a rotation of 180° to the left and a coding order of 987654321. Figure 4d shows the block coding of
Figure 4a with a rotation of 270° to the left and a coding order of 741852963.

(a) (b) (c) (d)

Figure 4. Binary coding order of different angles in a block. (a) 0°; (b) 90°; (c) 180°; (d) 270°.

Figure 2. Thinning process example.

When the block texture of the 3 × 3 pixels covered by the center pixel x conforms to the proposed
thinning texture template, it is judged as a redundant pixel and gets filtered out. Then, it gets
right-shifted to make the judgment of the block texture change of the next point, until the processing
of the entire candidate edge image is completed; thus, the image with optimal edge thinning can
be obtained.

Next, a method of binarizing the edge texture changes in the block will be described to facilitate
subsequent analysis and processing. Figure 3 illustrates the binary coding method showing the change
in block texture. When the pixel gradient amplitude value is not 0, the code is “1”, and otherwise, it is
“0”. The coding order starts from the upper left corner of the block and goes in order from left to right
and top to bottom.

Appl. Sci. 2019, 9, x 6 of 25

Figure 2. Thinning process example.

When the block texture of the 3 × 3 pixels covered by the center pixel x conforms to the proposed
thinning texture template, it is judged as a redundant pixel and gets filtered out. Then, it gets right-
shifted to make the judgment of the block texture change of the next point, until the processing of the
entire candidate edge image is completed; thus, the image with optimal edge thinning can be
obtained.

Next, a method of binarizing the edge texture changes in the block will be described to facilitate
subsequent analysis and processing. Figure 3 illustrates the binary coding method showing the
change in block texture. When the pixel gradient amplitude value is not 0, the code is “1”, and
otherwise, it is “0”. The coding order starts from the upper left corner of the block and goes in order
from left to right and top to bottom.

Figure 3. Binary coding.

There are up to four texture changes through angle rotation, i.e., 0°, 90°, 180°, and 270°, in the
block. Therefore, after the process of binarization coding is completed, the block binarization coding
of the four rotation angles is obtained by changing the bit arrangement order. Figure 4 shows the
coding order of the different angles in the block. Figure 4a shows the block coding order of 0° and a
coding order of 123456789. Figure 4b shows the block coding order of Figure 4a with a rotation of 90°
to the left and a coding order of 369258147. Figure 4c shows the block coding order of Figure 4a with
a rotation of 180° to the left and a coding order of 987654321. Figure 4d shows the block coding of
Figure 4a with a rotation of 270° to the left and a coding order of 741852963.

(a) (b) (c) (d)

Figure 4. Binary coding order of different angles in a block. (a) 0°; (b) 90°; (c) 180°; (d) 270°.

Figure 3. Binary coding.

There are up to four texture changes through angle rotation, i.e., 0◦, 90◦, 180◦, and 270◦, in the
block. Therefore, after the process of binarization coding is completed, the block binarization coding
of the four rotation angles is obtained by changing the bit arrangement order. Figure 4 shows the
coding order of the different angles in the block. Figure 4a shows the block coding order of 0◦ and
a coding order of 123456789. Figure 4b shows the block coding order of Figure 4a with a rotation of
90◦ to the left and a coding order of 369258147. Figure 4c shows the block coding order of Figure 4a
with a rotation of 180◦ to the left and a coding order of 987654321. Figure 4d shows the block coding of
Figure 4a with a rotation of 270◦ to the left and a coding order of 741852963.

Appl. Sci. 2019, 9, x 6 of 25

Figure 2. Thinning process example.

When the block texture of the 3 × 3 pixels covered by the center pixel x conforms to the proposed
thinning texture template, it is judged as a redundant pixel and gets filtered out. Then, it gets right-
shifted to make the judgment of the block texture change of the next point, until the processing of the
entire candidate edge image is completed; thus, the image with optimal edge thinning can be
obtained.

Next, a method of binarizing the edge texture changes in the block will be described to facilitate
subsequent analysis and processing. Figure 3 illustrates the binary coding method showing the
change in block texture. When the pixel gradient amplitude value is not 0, the code is “1”, and
otherwise, it is “0”. The coding order starts from the upper left corner of the block and goes in order
from left to right and top to bottom.

Figure 3. Binary coding.

There are up to four texture changes through angle rotation, i.e., 0°, 90°, 180°, and 270°, in the
block. Therefore, after the process of binarization coding is completed, the block binarization coding
of the four rotation angles is obtained by changing the bit arrangement order. Figure 4 shows the
coding order of the different angles in the block. Figure 4a shows the block coding order of 0° and a
coding order of 123456789. Figure 4b shows the block coding order of Figure 4a with a rotation of 90°
to the left and a coding order of 369258147. Figure 4c shows the block coding order of Figure 4a with
a rotation of 180° to the left and a coding order of 987654321. Figure 4d shows the block coding of
Figure 4a with a rotation of 270° to the left and a coding order of 741852963.

(a) (b) (c) (d)

Figure 4. Binary coding order of different angles in a block. (a) 0°; (b) 90°; (c) 180°; (d) 270°. Figure 4. Binary coding order of different angles in a block. (a) 0◦; (b) 90◦; (c) 180◦; (d) 270◦.

Appl. Sci. 2019, 9, 897 7 of 25

The binarized block texture template of different angles can be obtained using the binarized
block texture template of 0◦. Figure 5 shows the schematic of a block texture template that uses a
permutation order of the binarized coding order to obtain different angles. Figure 5a shows a texture
change at 0◦ and a binarization code of 000011110. Figure 5b shows a texture change with Figure 5a
rotated by 180◦ to the left and a binarization code of 011110000. Therefore, in the subsequent thinning
texture template, only the 0◦ binarized block texture must be retained and the remaining three angle
changed binarized block textures can be obtained by different coding orders.

Appl. Sci. 2019, 9, x 7 of 25

The binarized block texture template of different angles can be obtained using the binarized
block texture template of 0°. Figure 5 shows the schematic of a block texture template that uses a
permutation order of the binarized coding order to obtain different angles. Figure 5a shows a texture
change at 0° and a binarization code of 000011110. Figure 5b shows a texture change with Figure 5a
rotated by 180° to the left and a binarization code of 011110000. Therefore, in the subsequent thinning
texture template, only the 0° binarized block texture must be retained and the remaining three angle
changed binarized block textures can be obtained by different coding orders.

(a) (b)

Figure 5. Block texture template angle change. (a) 0°; (b) 180°.

The binarized coding of the thinning texture template developed at the table is shown in Table
1. According to the number of pixels and the distribution, it can be summarized into 31 patterns and
sorted according to the size of the binarized value. Among them, there are 28 types of templates with
four angle changes, one type of template with two angle changes, and two types of templates with a
single angle change. The four angle changes refer to the four different textures of the template
containing 0°, 90°, 180°, and 270° of angle rotation; the two angle changes refer to the two different
textures of the pixels in the template containing 0° and 90° angle rotation; and the single angle change
means that the template contains a texture of 0°.

Table 1. Thinning texture template binarization coding.

Number of
Pixels

4 Changes in Degree (0°, 90°, 180°, and
270°)

2 Changes in Degree (0°
and 90°)

1 Change in
Degree (0°)

3 000110010
4 000010111 000011110 000110011
 000110110 000111010

5 000011111 000110111 000111011 010111010
 000111110 001011110 001111010
 010111001

6 000111111 001011111 001111011
 001111110 010111011 010111101
 011111001 110111001

7 001111111 010111111 011110111 011111110
 111110011 111111001

8 011111111 101111111
9 111111111

Next, a processing method for filtering out redundant pixels of the candidate edge images
processed by the non-maximum suppression method according to the thinning texture template
prepared will be described. First, the edge point of the candidate edge image is taken as the center
pixel and a block of 3 × 3 pixels is taken out. When there is one pixel in the block, it is regarded as
isolated noise filtering; when the block has two pixels, it is regarded as the end of the edge segment;
and when there are three or more pixels in the block, the thinning texture template in Table 1 and its
angled rotation are compared to see whether the texture changes match according to the number of

Figure 5. Block texture template angle change. (a) 0◦; (b) 180◦.

The binarized coding of the thinning texture template developed at the table is shown in Table 1.
According to the number of pixels and the distribution, it can be summarized into 31 patterns and
sorted according to the size of the binarized value. Among them, there are 28 types of templates
with four angle changes, one type of template with two angle changes, and two types of templates
with a single angle change. The four angle changes refer to the four different textures of the template
containing 0◦, 90◦, 180◦, and 270◦ of angle rotation; the two angle changes refer to the two different
textures of the pixels in the template containing 0◦ and 90◦ angle rotation; and the single angle change
means that the template contains a texture of 0◦.

Table 1. Thinning texture template binarization coding.

Number of Pixels 4 Changes in Degree (0◦ , 90◦ , 180◦ , and 270◦) 2 Changes in Degree (0◦ and 90◦) 1 Change in Degree (0◦)

3 000110010

4 000010111 000011110 000110011
000110110 000111010

5 000011111 000110111 000111011 010111010
000111110 001011110 001111010
010111001

6 000111111 001011111 001111011
001111110 010111011 010111101
011111001 110111001

7 001111111 010111111 011110111 011111110
111110011 111111001

8 011111111 101111111

9 111111111

Next, a processing method for filtering out redundant pixels of the candidate edge images
processed by the non-maximum suppression method according to the thinning texture template
prepared will be described. First, the edge point of the candidate edge image is taken as the center
pixel and a block of 3 × 3 pixels is taken out. When there is one pixel in the block, it is regarded as
isolated noise filtering; when the block has two pixels, it is regarded as the end of the edge segment;
and when there are three or more pixels in the block, the thinning texture template in Table 1 and its
angled rotation are compared to see whether the texture changes match according to the number of
pixels in the block. When they match, the redundant pixels in the candidate edge image are filtered
out sequentially in the raster-scan process to achieve the best edge thinning process.

Appl. Sci. 2019, 9, 897 8 of 25

Figure 6 shows the preliminary thinning candidate edge image obtained in Figure 1c after the
non-maximum suppression method. From the partial enlargement area, it can be observed that
there are still redundant pixels around most of the edges, so it does not achieve the optimal edge
thinning treatment. Figure 7 shows the best edge thinning image obtained after the thinning texture
template processing. Through the partial enlargement area, it can be clearly seen that the image edge
is composed of only a single pixel, which can effectively filter pixels that have not performed the
maximum suppression. There are still redundant pixels around the image edges to achieve optimal
edge thinning. The total number of candidate edge points in Figure 6 is 45,608, and the total number of
optimal thinning edge points in Figure 7 is 38,835. In Figure 7, when compared to Figure 6, the number
of candidate edge points is reduced by 6773, which is about 15% lower than the number of edge points.
The optimal edge thinning results obtained after processing will facilitate the analysis and processing
of the subsequent edge texture construction.

Appl. Sci. 2019, 9, x 8 of 25

pixels in the block. When they match, the redundant pixels in the candidate edge image are filtered
out sequentially in the raster-scan process to achieve the best edge thinning process.

Figure 6 shows the preliminary thinning candidate edge image obtained in Figure 1c after the
non-maximum suppression method. From the partial enlargement area, it can be observed that there
are still redundant pixels around most of the edges, so it does not achieve the optimal edge thinning
treatment. Figure 7 shows the best edge thinning image obtained after the thinning texture template
processing. Through the partial enlargement area, it can be clearly seen that the image edge is
composed of only a single pixel, which can effectively filter pixels that have not performed the
maximum suppression. There are still redundant pixels around the image edges to achieve optimal
edge thinning. The total number of candidate edge points in Figure 6 is 45,608, and the total number
of optimal thinning edge points in Figure 7 is 38,835. In Figure 7, when compared to Figure 6, the
number of candidate edge points is reduced by 6773, which is about 15% lower than the number of
edge points. The optimal edge thinning results obtained after processing will facilitate the analysis
and processing of the subsequent edge texture construction.

Figure 6. Candidate edge image after non-maximum suppression.

Figure 7. Edge image with optimal edge thinning.

2.3. Edge Texture Construction Processing

After the optimal edge thinning process step is completed, the edge image of the component is
extended by the block edge texture template processing for the edge image of the optimal edge
thinning. Since the extended texture change has more meaningful edge features, the edge texture
construction processing is extended by expanding the edge texture template created between
adjacent blocks, which defines a single edge segment as having at least six pixels. With the above
extension length, the edge texture construction processing marks the edge points that satisfy the
abovementioned conditional edge texture changes as valid points. Figure 8 shows the block texture
scan mask of the present process, which is composed of five adjacent 3 × 3 pixels blocks, based on the

Figure 6. Candidate edge image after non-maximum suppression.

Appl. Sci. 2019, 9, x 8 of 25

pixels in the block. When they match, the redundant pixels in the candidate edge image are filtered
out sequentially in the raster-scan process to achieve the best edge thinning process.

Figure 6 shows the preliminary thinning candidate edge image obtained in Figure 1c after the
non-maximum suppression method. From the partial enlargement area, it can be observed that there
are still redundant pixels around most of the edges, so it does not achieve the optimal edge thinning
treatment. Figure 7 shows the best edge thinning image obtained after the thinning texture template
processing. Through the partial enlargement area, it can be clearly seen that the image edge is
composed of only a single pixel, which can effectively filter pixels that have not performed the
maximum suppression. There are still redundant pixels around the image edges to achieve optimal
edge thinning. The total number of candidate edge points in Figure 6 is 45,608, and the total number
of optimal thinning edge points in Figure 7 is 38,835. In Figure 7, when compared to Figure 6, the
number of candidate edge points is reduced by 6773, which is about 15% lower than the number of
edge points. The optimal edge thinning results obtained after processing will facilitate the analysis
and processing of the subsequent edge texture construction.

Figure 6. Candidate edge image after non-maximum suppression.

Figure 7. Edge image with optimal edge thinning.

2.3. Edge Texture Construction Processing

After the optimal edge thinning process step is completed, the edge image of the component is
extended by the block edge texture template processing for the edge image of the optimal edge
thinning. Since the extended texture change has more meaningful edge features, the edge texture
construction processing is extended by expanding the edge texture template created between
adjacent blocks, which defines a single edge segment as having at least six pixels. With the above
extension length, the edge texture construction processing marks the edge points that satisfy the
abovementioned conditional edge texture changes as valid points. Figure 8 shows the block texture
scan mask of the present process, which is composed of five adjacent 3 × 3 pixels blocks, based on the

Figure 7. Edge image with optimal edge thinning.

2.3. Edge Texture Construction Processing

After the optimal edge thinning process step is completed, the edge image of the component
is extended by the block edge texture template processing for the edge image of the optimal edge
thinning. Since the extended texture change has more meaningful edge features, the edge texture
construction processing is extended by expanding the edge texture template created between adjacent
blocks, which defines a single edge segment as having at least six pixels. With the above extension
length, the edge texture construction processing marks the edge points that satisfy the abovementioned
conditional edge texture changes as valid points. Figure 8 shows the block texture scan mask of
the present process, which is composed of five adjacent 3 × 3 pixels blocks, based on the relation

Appl. Sci. 2019, 9, 897 9 of 25

between the edge points of number x1–x5 in the central block X, where the center pixel x is located,
and the adjacent blocks P, Q, R, and S, as well as the change in the texture length, to preserve the edge
texture information.

Appl. Sci. 2019, 9, x 9 of 25

relation between the edge points of number x1–x5 in the central block X, where the center pixel x is
located, and the adjacent blocks P, Q, R, and S, as well as the change in the texture length, to preserve
the edge texture information.

Figure 8. Block texture scan mask.

The edge texture construction processing aims to use the block texture scan mask as the range
to process the edge image with the optimal edge thinning process of the raster-scan method. In order
to preserve the effective edge texture information in the image after the optimal edge thinning
process, the process scans all edge points pixel-by-pixel and sequentially marks the edge points that
meet the conditions. All edge points marked after scanning the entire image are the final edge
detection results. Figure 9 shows the flow of the proposed edge texture construction processing.

Figure 8. Block texture scan mask.

The edge texture construction processing aims to use the block texture scan mask as the range to
process the edge image with the optimal edge thinning process of the raster-scan method. In order to
preserve the effective edge texture information in the image after the optimal edge thinning process,
the process scans all edge points pixel-by-pixel and sequentially marks the edge points that meet the
conditions. All edge points marked after scanning the entire image are the final edge detection results.
Figure 9 shows the flow of the proposed edge texture construction processing.

Each process of the edge texture construction processing is sequentially described in the flowchart
of Figure 9. First, the image with optimal edge thinning is used as the source image input, and then
it is determined whether all edge points in the source image are processed completely. When all
edge points have been processed, the process ends and the edge image with the edge texture mark is
obtained. Conversely, when there is an unprocessed edge point, the raster-scan sequence is moved to
the next edge point and the subsequent pixel is processed with the point as the center pixel.

Then, it is judged whether the nine points in the X block, where the center pixel is located, have
edge points marked as valid points. When there are edge points marked as valid points, the process
proceeds to the next process to perform block X edge point processing. The edge point of the valid
point in x1–x5 is first deducted, and one records the position of all edge points in the X block and
proceeds to the next process to determine whether there is an edge point in x1–x5. When there is no
edge point, one goes to the marking processing step to process all edge points in the X block; when
there are still edge points, the block texture extension analysis is performed in the next step of the
flowchart. When no edge points of the nine points in the X block are marked as valid points, the
number of edge points of the X block in which the center pixel is located is calculated: when the block
contains at least three (inclusive) or more edge points, it goes to the block texture extension analysis;
when there are less than three edge points in the block, the endpoint of the edge segment is regarded
as unmarked, the initial step of the edge texture construction processing is returned to, and the next
edge point is processed.

Next, the method of block texture extension analysis is described as a whole. The block texture
extension analysis is based on the block scan mask range of Figure 8. Through the X block where
the center pixel is located and its extended connection among the four adjacent blocks P, Q, R, and S,
horizontal, vertical, and diagonal edge texture changes are formed. During the processing, the texture

Appl. Sci. 2019, 9, 897 10 of 25

of the adjacent block is first determined. The position of the edge point of x1–x5 in the X block is used
to determine whether there are adjacent points in the adjacent block and the following three cases
are distinguished.
Appl. Sci. 2019, 9, x 10 of 25

Image after
optimal edge

thinning

Whether all edge
points are
processed?

Calculate number
of edge points

within block

Whether block has
over 3 edge

points?

Whether to mark?

Marking process

Completed and result
images obtained

Y

Y

N

Y

N

N

Block texture
extension analysis

Whether block x
has marked edge

point?

N

Y

Use raster-scan to
move onto next

edge point

Block X edge point
processing

Whether x1-x5 has
edge point?Y

N

Figure 9. Edge texture construction process flowchart.

Each process of the edge texture construction processing is sequentially described in the
flowchart of Figure 9. First, the image with optimal edge thinning is used as the source image input,
and then it is determined whether all edge points in the source image are processed completely. When
all edge points have been processed, the process ends and the edge image with the edge texture mark
is obtained. Conversely, when there is an unprocessed edge point, the raster-scan sequence is moved
to the next edge point and the subsequent pixel is processed with the point as the center pixel.

Then, it is judged whether the nine points in the X block, where the center pixel is located, have
edge points marked as valid points. When there are edge points marked as valid points, the process
proceeds to the next process to perform block X edge point processing. The edge point of the valid
point in x1–x5 is first deducted, and one records the position of all edge points in the X block and
proceeds to the next process to determine whether there is an edge point in x1–x5. When there is no
edge point, one goes to the marking processing step to process all edge points in the X block; when
there are still edge points, the block texture extension analysis is performed in the next step of the
flowchart. When no edge points of the nine points in the X block are marked as valid points, the
number of edge points of the X block in which the center pixel is located is calculated: when the block
contains at least three (inclusive) or more edge points, it goes to the block texture extension analysis;
when there are less than three edge points in the block, the endpoint of the edge segment is regarded
as unmarked, the initial step of the edge texture construction processing is returned to, and the next
edge point is processed.

Next, the method of block texture extension analysis is described as a whole. The block texture
extension analysis is based on the block scan mask range of Figure 8. Through the X block where the
center pixel is located and its extended connection among the four adjacent blocks P, Q, R, and S,
horizontal, vertical, and diagonal edge texture changes are formed. During the processing, the texture
of the adjacent block is first determined. The position of the edge point of x1–x5 in the X block is used
to determine whether there are adjacent points in the adjacent block and the following three cases are
distinguished.

Figure 9. Edge texture construction process flowchart.

In the first case, when there is no adjacent point in the adjacent block, the marking process is not
performed and the block texture extension analysis is completed, and the next step of the flowchart
is performed. In the second case, when adjacent blocks have adjacent points and any adjacent point
is marked as valid, the x1–x5 edge points adjacent to the valid points must be deducted; meanwhile,
the positions of all edge points in the X blocks are additionally recorded and it is judged whether
there are edge points in x1–x5. When there is no edge point, the block texture extension analysis is
completed, all edge points of the X block to be marked are recorded, and the next step of the flowchart
is followed. When there are still edge points left, one checks whether there are adjacent points in the
adjacent blocks: when there is no adjacent point, the first case is processed; when there are adjacent
points, the third case is processed to perform the analysis.

In the third case, when the adjacent blocks have adjacent points, but the adjacent points are not
marked as valid, the table lookup and comparison are performed according to the texture distribution
of the adjacent blocks and all block texture templates that may meet the length of the effective edge
line segment, as shown in Tables 2–15. To speed up the table lookup process, the block texture template
converts the binarized code in the block into a decimal number, which is sorted from small to large. The
comparison process is based on the binary search method [18]. If the comparison result is consistent, it
means that the central and adjacent blocks have an edge texture change that satisfies the condition.
Then, the block texture extension analysis is completed and the positions of all edge points in the
X block and the adjacent block to be marked are recorded. It then proceeds to the next step of the
flowchart. On the other hand, if the comparison result does not match, the cross-block texture extension

Appl. Sci. 2019, 9, 897 11 of 25

judgment is performed, where the position of the edge point of x1–x5 in the X block is used as the
starting point and one searches for edge points in the area adjacent to 8 that does not contain the X
block. When there are less than three points in the adjacent area and none of them are marked as
valid, the X block and the adjacent area are not marked. The block texture extension analysis is then
completed and the next step of the flowchart is followed; when the adjacent area is extended to an
area where three edge points (inclusive) are marked as valid, the block texture extension analysis is
completed and all required positions in the X block and adjacent areas are recorded, and the next
step of the flowchart is followed; when the number of adjacent edge points reaches three, the block
texture extension analysis is completed and all required positions in the X block and adjacent areas are
recorded, and the next step of the flowchart is followed.

Table 2. x1 corresponding to block P texture template (decimal).

7 14 19 21 28 35 39 42 46 49 53 56 60 71 73

74 77 78 81 83 85 88 92 99 105 106 109 113 115 117

120 135 137 138 141 142 145 147 149 156 163 167 168 169 170

172 173 177 199 200 201 202 204 205 206 209 213 227 231 232

233 236 237 241 263 270 273 275 277 280 282 284 291 295 298

302 305 312 327 329 330 333 334 337 339 341 344 355 361 362

365 369 391 392 393 394 396 397 398 401 405 419 424 428 455

456 457 458

Table 3. x2 corresponding to block P texture template (decimal).

7 14 19 21 28 35 39 42 46 49 53 56 60 71 74

78 81 82 83 84 85 86 99 106 112 113 114 115 116 117

135 137 138 139 141 142 143 145 147 149 156 163 167 168 169

170 172 173 177 199 202 206 208 209 210 212 213 224 225 226

227 228 229 231 241 263 270 273 275 277 280 282 284 291 295

298 302 305 312 327 330 334 336 337 338 339 340 341 355 362

368 369 391 392 393 394 396 397 398 401 405 419 424 428 448

449 450 451 452 453 454 455 458 480 481 482 484

Table 4. x3 corresponding to block P texture template (decimal).

11 14 15 25 28 29 42 43 46 56 57 60 73 74 75

77 78 79 81 82 83 84 85 86 105 106 107 109 110 112

113 114 116 117 137 138 139 141 142 143 156 168 169 170 172

173 208 209 210 212 213 224 225 226 227 228 229 267 270 280

281 282 284 298 302 312 329 330 333 334 336 337 338 339 340

341 342 344 361 362 363 365 368 369 370 392 393 394 396 397

398 424 425 428 448 449 450 451 452 453 454 455 480 481 482

483 484

Table 5. x3 corresponding to block Q texture template (decimal).

7 11 15 19 21 25 29 35 39 43 49 53 57 71 73

75 77 79 81 83 85 99 105 107 109 113 115 117 135 137

139 141 143 145 147 149 163 167 169 173 177 199 201 205 209

213 227 231 233 237 241 263 273 275 277 281 285 291 295 302

305 327 329 333 337 339 341 355 361 363 365 369 391 393 397

401 405 419 455 457

Appl. Sci. 2019, 9, 897 12 of 25

Table 6. x3 corresponding to block R texture template (decimal).

7 11 14 15 19 21 28 29 35 42 43 52 53 60 71

74 75 78 79 82 83 84 85 92 99 106 107 114 116 117

135 138 139 142 143 146 147 148 149 156 157 162 163 164 165

170 172 173 181 199 202 210 212 213 226 227 228 229 236 263

267 270 271 274 275 276 277 282 284 285 290 291 292 293 298

299 300 301 327 330 334 338 340 341 348 354 355 356 357 362

364 365 391 394 395 398 399 402 404 405 418 420 428 429 455

458 482 484

Table 7. x4 corresponding to block R texture template (decimal).

14 21 25 28 29 35 42 43 46 49 52 53 57 60 73

74 77 78 81 82 84 85 92 99 105 106 107 109 113 114

116 117 137 138 141 142 145 146 148 149 156 157 162 163 164

165 169 170 172 173 177 181 201 202 205 209 210 212 213 226

227 228 229 233 236 270 273 274 276 277 281 282 284 285 290

291 292 293 298 299 300 301 302 305 329 330 333 334 337 338

340 341 348 354 355 356 357 361 362 364 365 393 394 397 398

401 402 404 405 418 420 428 429 457 458 482 484

Table 8. x5 corresponding to block R texture template (decimal).

7 14 21 22 25 29 35 38 39 42 46 49 53 57 71

73 74 77 78 81 82 83 85 86 99 102 105 106 107 109

113 114 117 135 137 138 141 142 145 146 149 150 162 163 166

167 169 173 177 199 201 202 205 206 209 210 226 227 231 231

233 237 241 263 270 273 274 277 278 281 282 285 290 291 294

295 298 302 305 327 329 330 333 334 337 338 341 354 355 361

362 365 369 391 393 394 397 398 401 402 405 418 419 455 457

458 482

Table 9. x5 corresponding to block S texture template (decimal).

7 14 15 21 22 28 29 38 39 46 52 53 60 71 78

79 84 85 86 92 116 117 135 142 143 148 149 150 156 157

164 165 166 167 172 173 181 199 212 213 228 229 231 236 263

270 271 276 277 278 284 285 292 293 294 295 300 301 302 327

334 340 341 342 348 356 357 364 365 391 398 399 404 405 420

428 429 455 482 484

Table 10. x1 and x2 corresponding to block P texture template (decimal).

7 19 71 81 82 83 84 85 86 99 112 113 114 115 116

117 167 199 208 209 210 212 213 224 225 226 227 228 229 231

241 327 336 337 338 339 340 341 355 368 369 448 449 450 451

452 453 454 455 480 481 482 484

Appl. Sci. 2019, 9, 897 13 of 25

Table 11. x1 and x3 corresponding to block P texture template (decimal).

7 14 19 21 25 28 29 35 39 42 46 49 53 56 57

60 71 73 74 77 78 81 82 83 84 85 86 88 92 99

105 106 109 110 112 113 114 116 117 120 135 137 138 141 142

145 147 149 156 163 167 168 169 170 172 173 177 199 208 209

210 212 213 224 225 226 227 228 229 233 263 270 273 275 277

280 281 282 284 291 295 298 302 305 312 327 329 330 333 334

336 337 338 339 340 341 342 344 346 348 355 361 362 365 368

369 370 391 392 393 394 396 397 398 401 419 424 425 428 448

449 450 451 452 453 454 455 457 480 481 482 483 484

Table 12. x2 and x3 corresponding to block P texture template (decimal).

7 19 21 35 39 49 53 71 81 83 85 86 99 113 115

117 135 145 147 149 163 167 177 199 209 213 225 227 229 231

241 263 273 275 277 291 295 305 327 337 339 341 355 369 391

401 405 419 449 451 453 455 481 482

Table 13. x3 and x4 corresponding to block P texture template (decimal).

21 25 29 49 52 53 57 73 77 81 85 105 109 113 117

137 141 145 149 157 165 169 173 177 181 201 205 209 213 229

233 273 277 281 285 292 293 301 305 329 333 337 341 357 361

365 393 397 401 405 428 429 457

Table 14. x3 and x5 corresponding to block P texture template (decimal).

7 14 19 21 22 25 28 29 35 42 49 52 53 57 60

71 73 74 77 78 79 81 82 83 84 85 86 92 99 105

106 109 113 114 115 116 117 135 137 138 141 142 143 145 146

147 148 149 150 156 162 163 164 165 169 170 172 173 177 199

201 202 205 206 209 210 212 213 226 227 228 229 233 236 237

241 263 270 273 274 275 276 277 278 281 282 284 285 290 291

292 293 298 300 301 305 327 329 330 333 334 337 338 339 340

341 354 355 356 357 361 362 364 365 369 391 393 394 397 398

401 402 404 405 418 419 420 428 455 457 458 482 484

Table 15. x4 and x5 corresponding to block P texture template (decimal).

21 28 29 52 53 60 77 84 85 92 109 116 117 141 148

149 156 157 164 165 172 173 181 205 212 213 228 229 233 236

276 277 284 285 292 293 300 301 305 333 340 341 348 356 357

364 365 397 404 405 420 428 429 484

The following is a detailed description of the third case for the abovementioned block texture
extension analysis. When the X block has adjacent points and is not marked as a valid point, one checks
the table to extend the texture change between the adjacent blocks. Additionally, the corresponding
method is proposed for the number of x1–x5 edge points in the X block for one point, two points, and
three points, respectively. Because there is no edge point above four points (inclusive) after a point in

Appl. Sci. 2019, 9, 897 14 of 25

the center and the optimal edge thinning process, the edge point above four points (inclusive) will not
appear. The related method description will now be presented.

When there is a one-point edge point, there are five types of distributions, such as x1–x5, where
x1 and x2 are adjacent to the P block; x3 is adjacent to the P, Q, and R blocks; x4 is adjacent to the
R block; and x5 is adjacent to the R and S blocks. Among these, x1 is the P block texture template
corresponding to Table 2; x2 is the P block texture template corresponding to Table 3; and x3 is adjacent
to three blocks, which are P, Q, and R. Therefore, when the adjacent P block has adjacent point p6 or p7,
it corresponds to the P block texture template of Table 4; when the adjacent Q block q7 has edge points,
it corresponds to the Q block texture template of Table 5; and when the adjacent R block r1 or r8 has
edge points, it corresponds to the R block texture template of Table 6. x4 is the R block texture template
corresponding to Table 7 and x5 is adjacent to R and S 2 blocks. When the adjacent R block r7 or r8 has
edge points, it corresponds to the R block texture template of Table 8; when the adjacent S block s1
has edge points, it corresponds to the S block texture template of Table 9. During the lookup process,
when the texture distribution of all adjacent blocks matches the corresponding texture template, the
block texture extension analysis is completed and all required positions in the X block and adjacent
areas are recorded, and the next step in the flowchart is followed. If this is not the case, it goes to the
cross-block texture extension judgement.

When there are two edge points, they are divided into the left side of x1, x2, and x3 and upper
side of x3, x4, and x5, according to the distribution position of x1–x5 in the X block, and whether the
two points are on the same side is judged by the position of the edge point. When the two edge points
do not fall on the same side, the method is the same as the one edge point, and the adjacent block
texture templates are sequentially checked and compared; when the two edge points are located on
the same side, there are three cases on the left side, comprising x1 and x2, x1 and x3, and x2 and x3,
and the corresponding P block texture templates are shown in Tables 10–12. When there is an edge
point in x3 and because it is adjacent to the Q and R blocks, when the Q block q7 has an edge point or
the r1 or r8 in R block has an edge point, one will sequentially lookup and compare the corresponding
Tables 5 and 6. There are three cases of x3 and x4, x3 and x5, and x4 and x5 on the upper side, and the
corresponding R block texture templates are shown in Tables 13–15. When there is an edge point in x3
and because it is adjacent to the P and Q blocks, when the P block p5 or p6 has an edge point or the
Q block q7 has an edge point, one will sequentially look up and compare the corresponding Tables 4
and 5. When x5 has edge points and because it is adjacent to the S block, it must be compared with the
corresponding Table 9 when the S block s1 has edge points. In the process of checking the table, when
the texture distribution of the adjacent block matches the corresponding texture template, the block
texture extension analysis is completed and all required positions in the X block and adjacent areas are
recorded, and the next step in the flowchart is followed. If this is not the case, the cross-block texture
extension judgement is performed.

When there are three edge points, there are two cases according to the distribution position of
x1–x5 in the X block. In the first case, when x3 has edge points, there will be two edge points on both
the left and upper sides. In the second case, when x3 has no edge point, there are two points on one
side and one point on the other side. For the case where there are two points on one side, the block
texture extension analysis is performed in the manner of the above two edge points, and in the case
where there is only one point on one side, the block texture extension analysis is performed in the
manner of the above one edge point. Next, when the adjacent block texture extension is judged in the
table comparison process, the method of judging the cross-block texture extension is further required
when the non-conforming block texture template is checked. The cross-block texture extension judges
that the position of the edge point of x1–x5 in the X block is used as a judgment starting point, and
searches for and extends the adjacent edge point by a range of eight adjacent points. When the adjacent
edge points are less than three, and none of them are marked as a valid point, the X block and the
adjacent edge points are not marked, and then, the block texture extension analysis is completed and
the next step of the flowchart is performed. When the number of adjacent edge points is within three

Appl. Sci. 2019, 9, 897 15 of 25

(inclusive) and there are edge points marked as valid, the block texture extension analysis is completed
and all required positions in the X block and the adjacent areas are recorded, and the next step in
the flowchart is followed. When the number of adjacent edge points reaches three, the block texture
extension analysis is completed and all required positions in the X block and the adjacent areas are
recorded, and the next step in the flowchart is followed.

Two examples are used to illustrate the analysis process of adjacent block texture extension
judgment and cross-block texture extension judgment. First, in the adjacent block texture extension
analysis, a more complex three-point edge in X block x1–x5 is used.

Figure 10 shows a schematic of the texture extension of adjacent blocks. First, one determines
the number of edge points of x1–x5 in the X block, and knows that in the X block, there are three edge
points, consisting of x1, x3, and x5. Then, one can determine that x1–x5 is in the X block according to the
distribution position of the above three points in the block. Because there is an x3 edge point, there are
two edge points on both the left and upper sides, so one sequentially checks whether the adjacent blocks
have adjacent points. When there are adjacent points, the adjacent block is further checked and compared.

Appl. Sci. 2019, 9, x 15 of 25

where there is only one point on one side, the block texture extension analysis is performed in the
manner of the above one edge point. Next, when the adjacent block texture extension is judged in the
table comparison process, the method of judging the cross-block texture extension is further required
when the non-conforming block texture template is checked. The cross-block texture extension judges
that the position of the edge point of x1–x5 in the X block is used as a judgment starting point, and
searches for and extends the adjacent edge point by a range of eight adjacent points. When the
adjacent edge points are less than three, and none of them are marked as a valid point, the X block
and the adjacent edge points are not marked, and then, the block texture extension analysis is
completed and the next step of the flowchart is performed. When the number of adjacent edge points
is within three (inclusive) and there are edge points marked as valid, the block texture extension
analysis is completed and all required positions in the X block and the adjacent areas are recorded,
and the next step in the flowchart is followed. When the number of adjacent edge points reaches
three, the block texture extension analysis is completed and all required positions in the X block and
the adjacent areas are recorded, and the next step in the flowchart is followed.

Two examples are used to illustrate the analysis process of adjacent block texture extension
judgment and cross-block texture extension judgment. First, in the adjacent block texture extension
analysis, a more complex three-point edge in X block x1–x5 is used.

Figure 10 shows a schematic of the texture extension of adjacent blocks. First, one determines
the number of edge points of x1–x5 in the X block, and knows that in the X block, there are three edge
points, consisting of x1, x3, and x5. Then, one can determine that x1–x5 is in the X block according to
the distribution position of the above three points in the block. Because there is an x3 edge point,
there are two edge points on both the left and upper sides, so one sequentially checks whether the
adjacent blocks have adjacent points. When there are adjacent points, the adjacent block is further
checked and compared.

Figure 10. Schematic of texture extension of adjacent blocks.

To start the next step, one checks the edge point of the adjacent P block p7, and then compares
the P block texture template of Table 11 with two points on the left side. Table 11 shows that the P
block texture code is 000000111 and the decimal is 7, so one knows that the data in the first column is
consistent. When the adjacent Q block q7 has edge points, based on the Q block texture template
corresponding to Table 5 to check the table comparison, it can be known that the Q block texture code
is 010010001, the decimal is 145, and it is consistent with the third data in the fourth column in Table
5. When the block texture of the adjacent block R has no adjacent points, no table lookup is performed.
When the adjacent S block s1 has edge points, it corresponds to the S block texture template in Table
9. From the table lookup and comparison, it can be known that the S block texture code is 000001110,
the decimal is 14, and it is consistent with the second data of the first column in Table 9. The block
texture extension analysis is then completed and the next step of the flowchart is performed after
recording all required positions of edge points in the X and the adjacent P, Q, and S blocks.
Figure 11 shows the cross-block texture extension diagram.

Figure 10. Schematic of texture extension of adjacent blocks.

To start the next step, one checks the edge point of the adjacent P block p7, and then compares
the P block texture template of Table 11 with two points on the left side. Table 11 shows that the P
block texture code is 000000111 and the decimal is 7, so one knows that the data in the first column
is consistent. When the adjacent Q block q7 has edge points, based on the Q block texture template
corresponding to Table 5 to check the table comparison, it can be known that the Q block texture code
is 010010001, the decimal is 145, and it is consistent with the third data in the fourth column in Table 5.
When the block texture of the adjacent block R has no adjacent points, no table lookup is performed.
When the adjacent S block s1 has edge points, it corresponds to the S block texture template in Table 9.
From the table lookup and comparison, it can be known that the S block texture code is 000001110, the
decimal is 14, and it is consistent with the second data of the first column in Table 9. The block texture
extension analysis is then completed and the next step of the flowchart is performed after recording all
required positions of edge points in the X and the adjacent P, Q, and S blocks.

Figure 11 shows the cross-block texture extension diagram.
First, one determines the number of edge points of x1-x5 in the X block and finds that x2 has one

edge point. One then checks the edge points in the adjacent block and finds that there is an edge in
the P block p6; the table comparison is performed with the P block texture template corresponding
to Table 3. After checking the table, there is no matching data, and the cross-block texture extension
judgment is performed. First, one searches for eight adjacent points with x2 as the center to find p6.
Then, one searches for eight adjacent points centered on p6, and finds p4. Finally, one searches for
eight adjacent points with p4 as the center and finds q8. When the search process encounters the edge
point that has been marked as a valid point or when the extension of three pixels has not been marked

Appl. Sci. 2019, 9, 897 16 of 25

as a valid point, the search is stopped; that is, the block texture extension analysis is completed. The
positions of edge points in the X block and the adjacent edge points p6, p4, and q8 are recorded, and
the next step of the flowchart is then performed.Appl. Sci. 2019, 9, x 16 of 25

Figure 11. Cross-block texture extension diagram.

First, one determines the number of edge points of x1-x5 in the X block and finds that x2 has one
edge point. One then checks the edge points in the adjacent block and finds that there is an edge in
the P block p6; the table comparison is performed with the P block texture template corresponding to
Table 3. After checking the table, there is no matching data, and the cross-block texture extension
judgment is performed. First, one searches for eight adjacent points with x2 as the center to find p6.
Then, one searches for eight adjacent points centered on p6, and finds p4. Finally, one searches for
eight adjacent points with p4 as the center and finds q8. When the search process encounters the edge
point that has been marked as a valid point or when the extension of three pixels has not been marked
as a valid point, the search is stopped; that is, the block texture extension analysis is completed. The
positions of edge points in the X block and the adjacent edge points p6, p4, and q8 are recorded, and
the next step of the flowchart is then performed.

After the block texture extension analysis is completed, the judgment is made as to whether to
perform the marking process. The marking process is performed according to the position of the edge
point recorded in the analysis process to be marked as a valid point. The adjacent block texture
extension aims to mark the edge point positions in block X and all adjacent blocks P, Q, R, and S. The
cross-block texture extension aims to mark the edge point position in block X and extended edge
points. During the marking process, the edge points that have been marked as valid are not
duplicated. After all the edge points have been processed, the data marked as valid points are output;
that is, the edge image after the edge texture construction process is completed. Figure 12 shows a
comparison of the edge images obtained by the optimal edge thinning process and the edge texture
construction processing. Figure 12a is the edge image after the optimal edge thinning process,
including 38,835 points as the candidate edges. Figure 12b is the edge image obtained from Figure
12a after the edge texture construction processing is completed. After filtering through the effective
edge texture condition, the total number of edges included is 32,582 points. Through the analysis of
the total number of edge points, the edge texture construction processing is reduced by 6,253 points
compared to the optimal edge thinning process, reducing the edge points by about 16%. The edge
image obtained by the above can reveal the retention of the texture through a long line segment,
which can retain more meaningful edge texture information.

Figure 11. Cross-block texture extension diagram.

After the block texture extension analysis is completed, the judgment is made as to whether
to perform the marking process. The marking process is performed according to the position of
the edge point recorded in the analysis process to be marked as a valid point. The adjacent block
texture extension aims to mark the edge point positions in block X and all adjacent blocks P, Q,
R, and S. The cross-block texture extension aims to mark the edge point position in block X and
extended edge points. During the marking process, the edge points that have been marked as valid
are not duplicated. After all the edge points have been processed, the data marked as valid points
are output; that is, the edge image after the edge texture construction process is completed. Figure 12
shows a comparison of the edge images obtained by the optimal edge thinning process and the edge
texture construction processing. Figure 12a is the edge image after the optimal edge thinning process,
including 38,835 points as the candidate edges. Figure 12b is the edge image obtained from Figure 12a
after the edge texture construction processing is completed. After filtering through the effective edge
texture condition, the total number of edges included is 32,582 points. Through the analysis of the total
number of edge points, the edge texture construction processing is reduced by 6253 points compared
to the optimal edge thinning process, reducing the edge points by about 16%. The edge image obtained
by the above can reveal the retention of the texture through a long line segment, which can retain more
meaningful edge texture information.Appl. Sci. 2019, 9, x 17 of 25

(a) (b)

Figure 12. Comparison of edge images obtained by optimal edge thinning and edge texture
construction. (a) Edge image with optimal edge thinning; (b) edge image after edge texture
construction.

The proposed TCEDA achieves richer edge detection by retaining effective block edge texture
changes. Figure 13 shows the effect of this algorithm on edge detection. The local magnification area
shown in Figure 13a indicates that there are many obvious cracks on the wall. Although it is similar
to the color of the wall, the construction of the effective edge texture can effectively detect the edge
of the crack, as shown in Figure 13b.

(a)

(b)

Figure 13. The effect of the proposed algorithm on edge detection. (a) Original image; (b) image after
edge texture construction.

3. Experimental Results and Discussion

The TCEDA proposed in this paper was compared with the other four improved adaptive Canny
edge detection algorithms. Gao and Liu [10] used the Otsu method to calculate the gradient

Figure 12. Comparison of edge images obtained by optimal edge thinning and edge texture construction.
(a) Edge image with optimal edge thinning; (b) edge image after edge texture construction.

Appl. Sci. 2019, 9, 897 17 of 25

The proposed TCEDA achieves richer edge detection by retaining effective block edge texture
changes. Figure 13 shows the effect of this algorithm on edge detection. The local magnification area
shown in Figure 13a indicates that there are many obvious cracks on the wall. Although it is similar to
the color of the wall, the construction of the effective edge texture can effectively detect the edge of the
crack, as shown in Figure 13b.

Appl. Sci. 2019, 9, x 17 of 25

(a) (b)

Figure 12. Comparison of edge images obtained by optimal edge thinning and edge texture
construction. (a) Edge image with optimal edge thinning; (b) edge image after edge texture
construction.

The proposed TCEDA achieves richer edge detection by retaining effective block edge texture
changes. Figure 13 shows the effect of this algorithm on edge detection. The local magnification area
shown in Figure 13a indicates that there are many obvious cracks on the wall. Although it is similar
to the color of the wall, the construction of the effective edge texture can effectively detect the edge
of the crack, as shown in Figure 13b.

(a)

(b)

Figure 13. The effect of the proposed algorithm on edge detection. (a) Original image; (b) image after
edge texture construction.

3. Experimental Results and Discussion

The TCEDA proposed in this paper was compared with the other four improved adaptive Canny
edge detection algorithms. Gao and Liu [10] used the Otsu method to calculate the gradient

Figure 13. The effect of the proposed algorithm on edge detection. (a) Original image; (b) image after
edge texture construction.

3. Experimental Results and Discussion

The TCEDA proposed in this paper was compared with the other four improved adaptive Canny
edge detection algorithms. Gao and Liu [10] used the Otsu method to calculate the gradient magnitude
histogram to obtain the adaptive high and low thresholds, where the low threshold was set to one-half
of the high threshold; Song et al. [11] used the Otsu method to perform two operations on the gradient
magnitude histogram to obtain the adaptive high and low thresholds; Saheba et al. [12] used the MSE
method to perform two operations on the gradient magnitude histogram to obtain the adaptive high
and low thresholds; and Li and Zhang [14] used the differential operation to calculate the gradient
magnitude histogram to obtain the adaptive high and low thresholds, wherein the low threshold was
set to be 0.4 times the high threshold. The TCEDA proposed in this paper and the above four adaptive
Canny algorithms were implemented using Visual C++ 2015.

The source of the images tested in this study was the well-known web album Flickr [19], which is
a virtual web album that provides photo-sharing and has a rich and diverse range of images. There are
tens of billions of digital images stored on the website, and the number is still increasing. Through the
defined keywords, the search engine can quickly find the photo you want. After multiple image tests,
five images of different attributes were selected from the Flickr website (Figures 14–18) as test images
and the proposed TCEDA was compared with the above four adaptive Canny algorithms analysis.

Appl. Sci. 2019, 9, 897 18 of 25

Appl. Sci. 2019, 9, x 18 of 25

magnitude histogram to obtain the adaptive high and low thresholds, where the low threshold was
set to one-half of the high threshold; Song et al. [11] used the Otsu method to perform two operations
on the gradient magnitude histogram to obtain the adaptive high and low thresholds; Saheba et al.
[12] used the MSE method to perform two operations on the gradient magnitude histogram to obtain
the adaptive high and low thresholds; and Li and Zhang [14] used the differential operation to
calculate the gradient magnitude histogram to obtain the adaptive high and low thresholds, wherein
the low threshold was set to be 0.4 times the high threshold. The TCEDA proposed in this paper and
the above four adaptive Canny algorithms were implemented using Visual C++ 2015.

The source of the images tested in this study was the well-known web album Flickr [19], which
is a virtual web album that provides photo-sharing and has a rich and diverse range of images. There
are tens of billions of digital images stored on the website, and the number is still increasing. Through
the defined keywords, the search engine can quickly find the photo you want. After multiple image
tests, five images of different attributes were selected from the Flickr website (Figures 14–18) as test
images and the proposed TCEDA was compared with the above four adaptive Canny algorithms
analysis.

(a) (b)

(c) (d)

(e) (f)

Figure 14. Hotel image comparison results of different methods. (a) Original image (640 × 427) [17];
(b) Gao and Liu’s method (THH = 233, THL = 117); (c) Song et al. proposed method (THH = 233, THL =
Figure 14. Hotel image comparison results of different methods. (a) Original image (640 × 427) [17];
(b) Gao and Liu’s method (THH = 233, THL = 117); (c) Song et al. proposed method (THH = 233,
THL = 38); (d) Saheba et al.’s method (THH = 141, THL = 41); (e) Li and Zhang’s method (THH = 62,
THL = 24); (f) TCEDA.

Appl. Sci. 2019, 9, 897 19 of 25

Appl. Sci. 2019, 9, x 19 of 25

38); (d) Saheba et al.’s method (THH = 141, THL = 41); (e) Li and Zhang’s method (THH = 62, THL = 24);
(f) TCEDA.

(a) (b)

(c) (d)

(e) (f)

Figure 15. Glass vase image comparison results of different methods. (a) Original image (640 × 426)
[20]; (b) Gao and Liu’s method (THH = 148, THL = 74); (c) Song et al. proposed method (THH = 148,
THL = 17); (d) Saheba et al.’s method (THH = 106, THL = 27); (e) Li and Zhang’s method (THH = 65, THL
= 26); (f) TCEDA.

Figure 15. Glass vase image comparison results of different methods. (a) Original image
(640 × 426) [20]; (b) Gao and Liu’s method (THH = 148, THL = 74); (c) Song et al. proposed method
(THH = 148, THL = 17); (d) Saheba et al.’s method (THH = 106, THL = 27); (e) Li and Zhang’s method
(THH = 65, THL = 26); (f) TCEDA.

Appl. Sci. 2019, 9, 897 20 of 25

Appl. Sci. 2019, 9, x 20 of 25

(a) (b)

(c) (d)

(e) (f)

Figure 16. Embossed tile image comparison results of different methods. (a) Original image (640 ×
480) [21]; (b) Gao and Liu’s method (THH = 238, THL = 119); (c) Song et al. proposed method (THH =
238, THL = 20); (d) Saheba et al.’s method (THH = 102, THL = 31); (e) Li and Zhang’s method (THH =
74, THL = 29); (f) TCEDA.

(a) (b)

Figure 16. Embossed tile image comparison results of different methods. (a) Original image
(640 × 480) [21]; (b) Gao and Liu’s method (THH = 238, THL = 119); (c) Song et al. proposed method
(THH = 238, THL = 20); (d) Saheba et al.’s method (THH = 102, THL = 31); (e) Li and Zhang’s method
(THH = 74, THL = 29); (f) TCEDA.

Appl. Sci. 2019, 9, 897 21 of 25

Appl. Sci. 2019, 9, x 20 of 25

(a) (b)

(c) (d)

(e) (f)

Figure 16. Embossed tile image comparison results of different methods. (a) Original image (640 ×
480) [21]; (b) Gao and Liu’s method (THH = 238, THL = 119); (c) Song et al. proposed method (THH =
238, THL = 20); (d) Saheba et al.’s method (THH = 102, THL = 31); (e) Li and Zhang’s method (THH =
74, THL = 29); (f) TCEDA.

(a) (b) Appl. Sci. 2019, 9, x 21 of 25

(c) (d)

(e) (f)

Figure 17. Hakka Compound image comparison results of different methods. (a) Original image (640
× 426) [22]; (b) Gao and Liu’s method (THH = 149, THL = 75); (c) Song et al. proposed method (THH =
149, THL = 21); (d) Saheba et al.’s method (THH = 124, THL = 38); (e) Li and Zhang’s method (THH =
112, THL = 44); (f) TCEDA.

(a) (b)

(c) (d)

Figure 17. Hakka Compound image comparison results of different methods. (a) Original image
(640 × 426) [22]; (b) Gao and Liu’s method (THH = 149, THL = 75); (c) Song et al. proposed method
(THH = 149, THL = 21); (d) Saheba et al.’s method (THH = 124, THL = 38); (e) Li and Zhang’s method
(THH = 112, THL = 44); (f) TCEDA.

Appl. Sci. 2019, 9, 897 22 of 25

Appl. Sci. 2019, 9, x 21 of 25

(c) (d)

(e) (f)

Figure 17. Hakka Compound image comparison results of different methods. (a) Original image (640
× 426) [22]; (b) Gao and Liu’s method (THH = 149, THL = 75); (c) Song et al. proposed method (THH =
149, THL = 21); (d) Saheba et al.’s method (THH = 124, THL = 38); (e) Li and Zhang’s method (THH =
112, THL = 44); (f) TCEDA.

(a) (b)

(c) (d) Appl. Sci. 2019, 9, x 22 of 25

(e) (f)

Figure 18. Bridge image comparison results of different methods. (a) Original image (640 × 428) [23];
(b) Gao and Liu’s method (THH = 129, THL = 65); (c) Song et al. proposed method (THH = 129, THL =
11); (d) Saheba et al.’s method (THH = 154, THL = 55); (e) Li and Zhang’s method (THH = 64, THL = 25);
(f) TCEDA.

Figure 14 shows the results of a comparison of hotel images using different methods. The high-
threshold THH and the low-threshold THL obtained by all methods are described below. Figure 14a
shows the original test image, where there are obvious textures between the tiles laid on the roof,
windows, and door panels; obvious line changes at the intersection of the door and roof; and many
obvious cracks on the wall. The edge textures in the edge images from Figures 14b to Figure 14d are
obtained by the methods proposed by Gao and Liu, Song et al., and Saheba et al., respectively. The
results of edge detection show that only some of the edge textures, such as those of the window frame,
door frame, and door panel, are preserved, and many of the effective edge textures are still
undetected. Figure 14e is the edge image obtained by the method proposed by Li and Zhang. The
experimental results show that it retains more edge texture on the roof, door panel, and wall surface
than the above three methods, but the line changes at the intersection of the door and the roof and
some of the door panels, roofs, and walls are still undetected. Figure 14f shows the TCEDA proposed
in this paper. Compared to the other four methods, a significant edge texture can be effectively
preserved on the roof, door panel, and wall. Besides achieving the optimal edge thinning treatment,
a richer edge texture is preserved on edge detection.

Figure 15 shows the results of a comparison of glass vase images using different methods. Figure
15a is the original test image, where the background on the right side of the vase has significant
shadows and there are significant texture changes on various glassware, candlesticks, napkin
tablecloths, and leaves. In Figure 15c, edge images are obtained by the methods proposed by Gao and
Liu and Song et al., respectively. The experimental results show that the edge detection results only
preserve the peripheral contour of the leaves. The edge textures of the candlestick and some
glassware still have many of the effective edge textures missing. Figure 15d shows the edge image
obtained by the method proposed by Saheba et al. The experimental results show that the above two
methods are preserved on the edge texture of the glassware, part of the vase, and the napkin
tablecloth, but vases, leaves, and napkins still have many of the edge textures missing. Figure 15e
shows an edge image obtained by the method proposed by Li and Zhang. Compared to the above
three methods, it retains more edge texture on the vases, leaves, and napkins, but still cannot be more
effective in terms of the edge texture detection. Figure 15f shows the TCEDA proposed in this paper.
Compared to the other four methods, significant edge texture can be effectively preserved in all types
of glassware, vases, candlesticks, and napkin tablecloths.

Figure 16 shows the results of a comparison of embossed tile images using different methods.
Figure 16a shows the original test image with a distinct pentagonal texture above each tile, obvious
seam segments between the tiles, and noticeable wrinkles and texture changes on the jeans. Figure
16b,c show the edge images obtained by the methods proposed by Gao and Liu and Song et al., and
the experimental results show that the edge detection results only retain the edge contour of the foot.
There are still many valid edge textures undetected. Figure 16d shows an edge image obtained by the

Figure 18. Bridge image comparison results of different methods. (a) Original image (640 × 428) [23];
(b) Gao and Liu’s method (THH = 129, THL = 65); (c) Song et al. proposed method (THH = 129,
THL = 11); (d) Saheba et al.’s method (THH = 154, THL = 55); (e) Li and Zhang’s method (THH = 64,
THL = 25); (f) TCEDA.

Figure 14 shows the results of a comparison of hotel images using different methods. The
high-threshold THH and the low-threshold THL obtained by all methods are described below.
Figure 14a shows the original test image, where there are obvious textures between the tiles laid
on the roof, windows, and door panels; obvious line changes at the intersection of the door and roof;
and many obvious cracks on the wall. The edge textures in the edge images from Figure 14b–d are
obtained by the methods proposed by Gao and Liu, Song et al., and Saheba et al., respectively. The
results of edge detection show that only some of the edge textures, such as those of the window frame,
door frame, and door panel, are preserved, and many of the effective edge textures are still undetected.
Figure 14e is the edge image obtained by the method proposed by Li and Zhang. The experimental
results show that it retains more edge texture on the roof, door panel, and wall surface than the above

Appl. Sci. 2019, 9, 897 23 of 25

three methods, but the line changes at the intersection of the door and the roof and some of the door
panels, roofs, and walls are still undetected. Figure 14f shows the TCEDA proposed in this paper.
Compared to the other four methods, a significant edge texture can be effectively preserved on the roof,
door panel, and wall. Besides achieving the optimal edge thinning treatment, a richer edge texture is
preserved on edge detection.

Figure 15 shows the results of a comparison of glass vase images using different methods.
Figure 15a is the original test image, where the background on the right side of the vase has
significant shadows and there are significant texture changes on various glassware, candlesticks,
napkin tablecloths, and leaves. In Figure 15c, edge images are obtained by the methods proposed
by Gao and Liu and Song et al., respectively. The experimental results show that the edge detection
results only preserve the peripheral contour of the leaves. The edge textures of the candlestick and
some glassware still have many of the effective edge textures missing. Figure 15d shows the edge
image obtained by the method proposed by Saheba et al. The experimental results show that the above
two methods are preserved on the edge texture of the glassware, part of the vase, and the napkin
tablecloth, but vases, leaves, and napkins still have many of the edge textures missing. Figure 15e
shows an edge image obtained by the method proposed by Li and Zhang. Compared to the above
three methods, it retains more edge texture on the vases, leaves, and napkins, but still cannot be more
effective in terms of the edge texture detection. Figure 15f shows the TCEDA proposed in this paper.
Compared to the other four methods, significant edge texture can be effectively preserved in all types
of glassware, vases, candlesticks, and napkin tablecloths.

Figure 16 shows the results of a comparison of embossed tile images using different methods.
Figure 16a shows the original test image with a distinct pentagonal texture above each tile, obvious
seam segments between the tiles, and noticeable wrinkles and texture changes on the jeans. Figure 16b,c
show the edge images obtained by the methods proposed by Gao and Liu and Song et al., and the
experimental results show that the edge detection results only retain the edge contour of the foot.
There are still many valid edge textures undetected. Figure 16d shows an edge image obtained by the
method proposed by Saheba et al. The experimental results show that besides effectively retaining the
edge contour of the foot, the pentagon texture of the partial tile is detected, but many effective edge
textures are still missing. Figure 16e shows the edge image obtained by Li and Zhang’s method. The
experimental results show that the detection effect on the texture of the tile is better than that in the
above method, but only part of the texture on the tile and the edge of the line at the seam of the tile are
detected, and most of the effective edge textures are still lost. Figure 16f shows the TCEDA proposed
in this paper. Compared to the other four methods, the texture on the tile, the seam line between the
tiles, and the wrinkles of the jeans can be effectively preserved.

Figure 17 shows the results of comparing different methods in the Hakka Compound image.
Figure 17a shows the original test image, where the tiles on the roof, the pattern on the wall with
obvious light and shadow changes, and the distant skyline and antenna have obvious texture changes.
Figure 17b shows the edge image obtained by the method proposed by Gao and Liu. The experimental
results show that the edge detection results only preserve the edge contours of the roof and the wall
periphery, and still have many effective edge textures missing. In Figure 17c–e, edge images are
obtained from the experimental results by the methods proposed by Song et al., Saheba et al., and
Li and Zhang, respectively. It can be seen on the roof tiles that the edges of the lines and the pattern
of the wall are better than the above methods, but the edge textures, such as significant light and
shadow changes on the skyline, antennas, and walls, are still not effectively preserved. Figure 17f
shows the TCEDA proposed in this paper. Compared to the other four methods, the tiles on the roof,
the pattern on the wall with obvious light and shadow changes, and the distant skyline and antenna
are remarkable, which shows that edge textures are effectively preserved.

Figure 18 shows the results of a bridge image comparison using different methods. Figure 18a
shows the original test image in which there are significant texture changes in the cable of the bridge,
the railings on the bridge, and the cable supports next to the bridge. In Figure 18b–e, edge images

Appl. Sci. 2019, 9, 897 24 of 25

are obtained by the methods proposed by Gao and Liu, Song et al., Saheba et al., and Li and Zhang,
respectively. The results of the test only preserve the texture changes at the cable and railings, while the
edge texture of the cable bracket cannot be effectively detected. Figure 18f shows the TCEDA proposed
in this paper. Compared to the other four methods, significant edge textures, such as the bridge cable,
railing on the bridge, and the cable bracket besides the bridge, can be effectively preserved and further
verified. The TCEDA mentioned in this paper can detect richer edge textures.

The edge detection results shown in Figures 14–18 effectively verify that the proposed TCEDA can
detect the edge texture changes easily observed by the naked eye in the image and achieve richer edge
detection results. The above four improved adaptive Canny edge detection algorithms use the statistics
and distribution of pixel gradient values in the image to obtain the optimal threshold setting, but still
lose many obvious edges in the experimental results. Therefore, the result of threshold setting directly
affects the effect of edge detection. When the threshold is set too high, some edges will be lost. When
the threshold is set too low, too much noise will be retained. Incorrect edge detection effects, such as
incomplete object edges caused by missing edge textures or excessive false edges or noise interference,
can cause erroneous results in subsequent object detection, identification, and segmentation processes.

Therefore, it can be observed from the experimental results that the proposed TCEDA can
construct the edge information of the object by retaining the effective edge texture change, which
effectively improves the edge loss caused by unsuitable threshold setting. There are also few parameter
values to be adjusted. Compared with the traditional edge detection method, TCEDA can be widely
used in various types of images.

4. Conclusions

In most edge detection methods, the problem of poor edge detection is often overcome by
finding the optimal threshold value, but the meaning of the edge texture distribution in the image
is neglected. Because the threshold value is based on statistics, as a result of the analysis, it is
impossible to know whether important edge information in the image is effectively retained. Therefore,
this paper proposes extending and constructing the edge information of the object through block
analysis to analyze the change and extension characteristics of the texture in the image. The proposed
algorithm effectively overcomes the phenomenon of edge loss caused by unsuitable threshold setting
to get richer edge information for better results in subsequent object detection, identification, and
segmentation applications.

Author Contributions: Conceptualization, S.-C.C. and C.-C.C.; Data curation, S.-C.C.; Formal analysis, S.-C.C.;
Investigation, S.-C.C.; Methodology, S.-C.C. and C.-C.C.; Project administration, C.-C.C.; Software, S.-C.C.;
Supervision, C.-C.C.; Validation, S.-C.C.; Visualization, S.-C.C.; Writing—original draft, S.-C.C.; Writing—review
& editing, C.-C.C.

Funding: This research was funded by the Ministry of Science and Technology of Taiwan through a grant from
MOST 107-2221-E-606-014-.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Roberts, L.G. Machine perception of three-dimensional solids. In Optical and Electro-Optical Information
Processing; Tippett, J.T., Clapp, L.C., Eds.; MIT Press: Cambridge, MA, USA, 1965; pp. 159–197.

2. Prewitt, J.M.S. Object enhancement and extraction. In Picture Processing and Psychopictorics; Lipkin, B.,
Rosenfeld, A., Eds.; Academic Press: New York, NY, USA, 1970.

3. Duda, R.O.; Hart, P.E. Pattern Classification and Scene Analysis; Wiley: New York, NY, USA, 1973.
4. Bora, D.J.; Gupta, A.K. A new efficient color image segmentation approach based on combination of

histogram equalization with watershed algorithm. IJCSE 2016, 4, 156–167.
5. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9,

62–66. [CrossRef]

http://dx.doi.org/10.1109/TSMC.1979.4310076

Appl. Sci. 2019, 9, 897 25 of 25

6. Davis, A.M.; Arunvinodh, C.; Arathy Menon, N.P. Automatic license plate detection using vertical edge
detection method. In Proceedings of the International Conference on Innovations in Information, Embedded
and Communication Systems (ICIIECS), Coimbatore, India, 19–20 March 2015.

7. Bradley, D.; Roth, G. Adaptive thresholding using the integral image. J. Graph. Tools 2007, 12, 13–21. [CrossRef]
8. Luo, H.B.; Jiao, A.B.; Xu, L.Y.; Shao, C.Y. Edge detection using matched filter. In Proceedings of the 27th

Chinese Control and Decision Conference (CCDC), Qingdao, China, 23–25 May 2015.
9. Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Machine Intell. 1986, 8,

679–698. [CrossRef]
10. Gao, J.; Liu, N. An improved adaptive threshold canny edge detection algorithm. Proceedings of International

Conference on Computer Science and Electronics Engineering, Hangzhou, China, 23–25 March 2012;
pp. 164–168.

11. Song, Q.; Lin, G.; Ma, J.; Zhang, H. An edge-detection method based on adaptive canny algorithm and
iterative segmentation threshold. In Proceedings of the 2nd International Conference on Control Science and
Systems Engineering (ICCSSE), Singapore, Singapore, 27–29 July 2016; pp. 64–67.

12. Saheba, S.M.; Upadhyaya, T.K.; Sharma, R.K. Lunar surface crater topology generation using adaptive edge
detection algorithm. IET Image Process. 2016, 10, 657–661. [CrossRef]

13. Hyndman Rob, J.; Koehler Anne, B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22,
679–688. [CrossRef]

14. Li, X.; Zhang, H. An improved canny edge detection algorithm. In Proceedings of the 8th IEEE International
Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 24–26 November 2017;
pp. 275–278.

15. Hossain, F.; Asaduzzaman, M.; Yousuf, M.A.; Rahman, M.A. Dynamic thresholding based adaptive canny
edge detection. Int. J. Comput. Appl. 2016, 135, 37–41. [CrossRef]

16. Rupalatha, T.; Rajesh, G.; Nandakumar, K. Implementation of distributed canny edge detector on FPGA.
IJCES 2013, 3, 22–28.

17. Phyllis Freels’s Album. Available online: https://www.flickr.com/photos/phyllisfreels/9452430929/
(accessed on 3 January 2019).

18. Bottenbruch, H. Structure and use of ALGOL 60. J. ACM 1962, 9, 161–211. [CrossRef]
19. Flickr. Available online: https://www.flickr.com/ (accessed on 5 January 2019).
20. Phyllis Freels’s Album. Available online: https://www.flickr.com/photos/phyllisfreels/31524363831/

(accessed on 15 January 2019).
21. Oung Dustin’s Album. Available online: https://www.flickr.com/photos/idostone/15986200330/ (accessed on

15 January 2019).
22. Chen Liangdao’s Album. Available online: https://www.flickr.com/photos/idisdao/7005684840/ (accessed on

15 January 2019).
23. Trannan’s Album. Available online: https://www.flickr.com/photos/trannan/2969812013/in/album-

72157607992888205/ (accessed on 15 January 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/2151237X.2007.10129236
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1049/iet-ipr.2015.0232
http://dx.doi.org/10.1016/j.ijforecast.2006.03.001
http://dx.doi.org/10.5120/ijca2016908337
https://www.flickr.com/photos/phyllisfreels/9452430929/
http://dx.doi.org/10.1145/321119.321120
https://www.flickr.com/
https://www.flickr.com/photos/phyllisfreels/31524363831/
https://www.flickr.com/photos/idostone/15986200330/
https://www.flickr.com/photos/idisdao/7005684840/
https://www.flickr.com/photos/trannan/2969812013/in/album-72157607992888205/
https://www.flickr.com/photos/trannan/2969812013/in/album-72157607992888205/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Texture Construction Edge Detection Algorithm
	Image Preprocessing
	Optimal Edge Thinning Process
	Edge Texture Construction Processing

	Experimental Results and Discussion
	Conclusions
	References

