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Featured Application: With the increasing demand for customization, the engineer-to-order
(ETO) production strategy plays an increasingly important role in today’s manufacturing industry.
The most important phase of ETO production is assembly. Project scheduling and workforce
allocation have an impact on the efficiency and cost of the assembly of ETO products and the
two problems are interrelated. To the best of our knowledge, this is the only work about project
scheduling and workforce allocation in the ETO assembly process. The method proposed in this
work can improve the efficiency of the ETO assembly system and has been successfully applied
at the Shanghai Electric Power Plant Equipment Company, which is a joint venture between
Shanghai Electric Company and Siemens.

Abstract: The engineer-to-order (ETO) production strategy plays an important role in today’s
manufacturing industry. This paper studies integrated multi-project scheduling and hierarchical
workforce allocation in the assembly process of ETO products. The multi-project scheduling problem
involves the scheduling of tasks of different projects under many constraints, and the workforce
allocation problem involves assigning hierarchical workers to each task. These two problems are
interrelated. The task duration depends on the number of hierarchical workers assigned to the task.
We developed a mathematical model to represent the problem. In order to solve this issue with the
minimization of the makespan as the objective, we propose a hybrid algorithm combining particle
swarm optimization (PSO) and Tabu search (TS). The improved PSO is designed as the global search
process and the Tabu search is introduced to improve the local searching ability. The proposed
algorithm is tested on different scales of benchmark instances and a case that uses industrial data
from a collaborating steam turbine company. The results show that the solution quality of the hybrid
algorithm outperforms the other three algorithms proposed in the literature and the experienced
project manager.

Keywords: engineer-to-order; multi-project scheduling; hierarchical workforce; worker allocation;
particle swarm optimization; Tabu search

1. Introduction

In today’s competitive manufacturing industry, there is a constantly increasing demand for
customized products, especially within advanced, capital intensive, large-equipment industries [1].
In order to respond to this demand, companies must manufacture and assemble based on specific
customer requirements. This type of manufacturing strategy is called engineer-to-order (ETO).
ETO products are manufactured and assembled in low volumes to satisfy individual customer’s
specifications [2]. Typical products include steam turbines and boilers for the power generation
industry [3]. A typical ETO product can take months to years to complete and it has strict, complex
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ordered assembly relationships between components [4]. The customers of ETO products are very
strict with delivery time, and late delivery can result in huge penalties. ETO companies need to ensure
that products are delivered in a timely manner [5].

In ETO companies, the most important phase is assembly [6]. Assembly accounts for almost 50%
of the total production time, for 20% of the total production cost, and for 30% to 50% of the labor
cost [7]. Due to the complexity of assembly, the assembly process of each product is treated as a unique
engineering project with necessary lead-time [8]. That is the reason why we use the project scheduling
methodology in this study [9]. One company performs not just one project, but two or more projects
in parallel. Some projects may have to be simultaneously executed in a certain time period. The
projects are independent of each other, but they are located at different work centers, competing for
workers with different qualifications, working space, equipment, and tools. The layout of a typical
ETO product assembly shop is shown in Figure 1. For a large company, multiple projects planned on
the same timeline may have thousands of tasks, and frequent conflicts are inevitable. The high level
of customization and long task duration of ETO products requires the production plan to be defined
and the details disclosed. It is necessary to schedule and balance the utilization of resources under the
guarantee of meeting the delivery deadline of all products [4].
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Figure 1. The layout of a typical engineer-to-order (ETO) product assembly shop.

In order to react to the high complexity and the large amount of customization in ETO products,
the assembly of ETO products is mainly performed by a group of workers. The working situation of
the typical ETO product assembly shop is shown in Figure 2. The workers have a lot of experience and
are familiar with the assembly process. The task duration is not defined in advance, but depends on
the number and the skill level of the workers assigned to the task. There is a downward substitutability
in the hierarchical nature of the workforce such that a higher qualified worker type can substitute
for a lower qualified one with a higher cost, but not vice-versa [10]. As tasks in the ETO assembly
process are manual ones assisted by hand tools or light-weight equipment, the workforce resource
has replaced capital, facilities, raw material, and other kinds of manufacturing resources to become
the most important resource in the ETO assembly process. If workforce resources can be utilized
efficiently, the idle time and production cost can be reduced. The importance of the workforce has been
widely recognized, especially in labor-intensive industries. Usually, companies that manufacture ETO
products have some kind of estimates of the work content of the assembly tasks based on historical
data or the analysis of the work content, and the work content estimate is chosen as the basis in our
study [11].
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Project scheduling is well-known as the project sequencing problem and one of the most important
areas in the manufacturing process [12]. The scheduling of ETO products is much more difficult than
that of mass production, because different ETO products have different processing routes, different
structures, and different due dates, and multiple products need to be produced in parallel. The
literature for project scheduling in ETO companies is scarce [13]. To the best of our knowledge, there
is only one earlier work; Alfieri et al., studied single-project scheduling in an ETO environment [8].
The project scheduling problem and the hierarchical workforce allocation problem are interrelated
as the task durations depend on the hierarchical workers assigned to each task. In order to solve
these problems, decisions about both multi-project scheduling and hierarchical workforce allocation
need to be dealt with together. In real production, the integrated problem is considered by the
experienced project manager. The project manager makes the project plan and allocates the workers
based on experience. The plan is suboptimal because the project manager can’t take global information
into account.

There is some previous work focusing on the integrated project scheduling and worker allocation
issues. Hytonen et al. used discrete event simulation to optimize workforce allocation in assembly
lines for highly customized and low-volume products [11]. Heimerl and Kolisch presented the
mixed-integer linear program with a tight Linear Programming bound (LP-bound) to solve the problem
of simultaneously scheduling IT projects and assigning multi-skilled human resources [14]. Mencía et al.
used the genetic algorithms for single-project scheduling with multi-skilled operators [15]. Karam et al.
presented the mixed integer linear program to solve the integrated single-project scheduling and
multi-skilled workforce allocation issue [16]. Oztemel and Selam used the bees algorithm for
multi-mode, resource constrained project scheduling in the molding industry [9]. Lian et al. presented
the non-dominated sorting genetic algorithm II (NSGA-II) to solve hierarchical worker allocation
and task assignment in a seru production system [17]. Most of the literature treats the problem as a
special class of the project scheduling problem, called the multi-mode resource-constrained project
scheduling problem (MRCPSP), which is a complex non-deterministic polynomial-time hard (NP-hard)
problem [18]. The previous works concentrate on single-project scheduling and hierarchical workforce
allocation which is not suitable for ETO assembly. As the ETO projects are assembled in parallel,
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we extend the problem as the multi-mode resource-constrained multi-project scheduling problem
(MRCMPSP). The MRCMPSP has considerable practical relevance, especially in the manufacturing
industry. It is a large combinational optimization problem, but it had not received much attention until
Wauters et al., [19] choose the subject of the Multidisciplinary International Scheduling Conference:
Theory and Applications (MISTA) Challenge 2013. A large international audience was reached: 21
teams from 14 countries and three continents participated in the competition [20–22].

The characteristics of the specified problem are defined as follows: the predecessor and successor
relationships of each task in the projects are known, the due date and release time of each project are
known, the total number of workers is constrained, and the task duration of each execution mode
(worker team) is known. We also consider some features in the ETO assembly process to which the
necessary attention has not been devoted in the research up until now, such as that floor space limits the
number of concurrently-executed tasks, since the maximum number of workers that can be assigned
to each task is limited by work-space. The decision problem is to determine the sequence of tasks and
allocate the workers to each task in a multi-project environment in order to minimize the maximum
completion time, i.e., the makespan. The scheduling problems are computationally complex and it is
difficult to find an optimal solution in a reasonable amount of time. The exact methods can only be
used to solve small projects which usually have less than 60 tasks [23].

Metaheuristics are efficient computational methods designed to solve hard combinatorial
optimization problems. The previous results show that metaheuristics are able to outperform
all good heuristics and usually give high-quality solutions in a reasonable computational time,
even for large-size problems. These metaheuristic algorithms can be divided into two categories,
population-based algorithms and local search algorithms. The mostly widely used population-based
algorithms include particle swarm optimization (PSO), the genetic algorithm (GA), and so on. The
most popular local search algorithms include Tabu search (TS), simulated annealing (SA), and so on.
Generally speaking, a population-based algorithm shows more global search ability, whereas a local
search algorithm has more local search ability. The methods mentioned above have their different
metrics and shortcomings. If we combine several methods properly, a better balance between quality
and efficiency of solutions may be achieved [24–26]. Considering the convergence ability of PSO and
the exploitation ability of TS, we propose a hybrid discrete algorithm with combined PSO and TS to
solve this problem.

To the best of our knowledge, the integrated multi-project scheduling and hierarchical workforce
allocation in the ETO assembly process has not been tackled before in the existing literature. This has
been a motivation of the current work. The rest of this paper will be organized as follows: Section 2
provides the mathematical model for the problem, and Section 3 describes the hybrid algorithm. In
Section 4, the hybrid algorithms and three other metaheuristic algorithms proposed in the literature
are applied to solve benchmark instances selected from the literature and test results are analyzed.
Section 5 represents the industrial application. Concluding remarks and future study directions are
given in Section 6.

2. Mathematical Formulation

The decision problem concerns the scheduling of tasks and the allocation of workers to the
proper task in a multi-project environment in order to minimize the maximum completion time, i.e.,
the makespan.

In this study, we consider the problem subject to the following assumptions:
(1) Manual assembly processes are assumed to be carried out by a worker team. A mode represents

a task-worker team with a constant duration.
(2) During the execution of each task, the assigned mode cannot be changed, i.e., preemption is

not allowed during the execution of each task.
(3) The precedence relationships of each project forces each task to be scheduled after all

precedence tasks.
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(4) The projects are independent of each other.
(5) Each worker cannot be allocated to more than one task at the same time.
(6) In the worker team of each task, workers start meanwhile and finish meanwhile until the task

is completed.
(7) The maximum number of workers in each task is constrained by the work-space.
(8) The set-up time for each task is included in the task duration, and the transportation times of

workers between the tasks are negligible.
(9) Breakdowns are not considered.
The notation used in this section can be summarized as follows:

Indices

I Set of projects
Ji Set of tasks for project i ∈ I
Q Set of maximum number of tasks for each project that can be executed concurrently due to floor

space constraints
Mij Set of task execution modes in task j ∈ Ji, which correspond to the worker team
K Set of hierarchical levels
T Set of time periods
W Set of workers

Parameters

ri release date of project i ∈ I, i.e., the earliest time that tasks of project i ∈ I can start
di due date of project i ∈ I
fi end time of project i ∈ I
pred(j) the predecessor set of tasks j, i.e., pred(j) = {j′|j′ ≺ j }
wijmax maximum number of workers in task j ∈ Ji
wijmin minimum number of workers in task j ∈ Ji
wk number of type-k workers
zmk number of type-k workers in mode m ∈ Mij
dijm processing time of task j ∈ Ji in mode m ∈ Mij
durij processing time of task j ∈ Ji
fij end time of task j ∈ Ji

Decision Variables

Sij start time of task j ∈ Ji

xijt =

{
1, if task j is performed at time t ∈ (0, T]
0, otherwise

yijm =

{
1, if task j is executed in mode m ∈ Mij
0, otherwise

In the multi-project environment, the delay of any project will lead to iterations and alterations
of related follow-up work, so we assume that the objective is to minimize the completion time of all
projects but not a certain project. We should consider the precedence constraints, release date constraint,
due date constraint, work-space constraint, and floor space constraint. Under the assumptions and
notations, the mathematical model for the problem is defined as follows:

Objective Function:

min
[

max
i∈I

( fi)−min
i∈I

(ri)

]
(1)

Constraint Conditions:
Sij ≥ ri ∀i ∈ I, j ∈ Ji (2)

Sij < di ∀i ∈ I, j ∈ Ji (3)
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Sij +

Mij

∑
m=1

yijm·dijm ≤ Di ∀i ∈ I, j ∈ Ji (4)

wijmin ≤
K

∑
k=1

yijm·zmk ≤ wijmax ∀i ∈ I, j ∈ Ji, m ∈ Mij (5)

I

∑
i=1

J

∑
j=1

Mij

∑
m=1

xijt·yijm·zmk ≤ wk ∀t ∈ 0, T, ∀k ∈ K (6)

Sij′ +

Mij

∑
m=1

yij′m·dij′m ≤ Sij ∀i ∈ I, j ∈ Ji, j′ ∈ pred(j) (7)

J

∑
j=1

xijt ≤ qi ∀i ∈ I, ∀t ∈ 0, T (8)

Mij

∑
m=1

yijm = 1 ∀i ∈ I, j ∈ Ji (9)

durij =

Mij

∑
m=1

yijm·dijm ∀i ∈ I, j ∈ Ji, m ∈ Mij (10)

fij = sij + durij ∀i ∈ I, j ∈ Ji (11)

where the objective function is the minimization of the total makespan, the duration of the whole
multi-project schedule. Constraint (2) ensures that the start time of the task for each project should be
greater than or equal to the release date of project. Constraint (3) ensures that the start time of the task
for each project should be less than the due date of project. Constraint (4) ensures that each project
needs to be completed before the due date. Constraint (5) implies that the number of workers assigned
to each task must be within certain limits due to the work-space constraint. Constraint (6) implies
that at any time, the number of type-k workers assigned to the tasks should be lower than or equal to
the total number of type-k workers. Constraint (7) ensures that the precedence relationships between
tasks of the same project cannot be violated, and the starting time of the task should be greater than or
equal to the finishing time of its preceding set of tasks. Constraint (8) implies that the number of tasks
that can be executed concurrently for each project should be limited due to floor space constraints.
Constraint (9) ensures that each task is being performed only in one mode. Constraint (10) denotes that
the processing time of a task is equal to the processing time of the assigned execution mode for that
task. Constraint (11) implies that the end time of the task is equal to the start time plus the processing
time, which means the task is non-preemptive.

3. Solution Procedure

Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm
introduced by Eberhart and Kennedy [27,28]. Because of its easy implementation, robustness, and fast
convergence ability, PSO has been applied in solving many combinatorial problems. In the PSO system,
each individual, called a particle, represents a point and the population, called a swarm, represents a
set of points in the search space. A swarm of initial particles are generated and the particles fly through
the search space using a velocity function. The i-th particle in d-dimension solution space is denoted by
Xi = (xi1, xi2, . . . , xid). The i-th particle is assigned a randomized velocity Vi = (vi1, vi2, . . . , vid) and is
iteratively moved through the problem space. During the evolution phase, each particle follows the
two best values: the local best solution, which is the best solution that the i-th particle has achieved so
far, and the global best solution, which is the best solution obtained by the population so far. Therefore,
the velocity function is continually updated in accordance with the particle’s previous experience
and the group’s experience. In spite of the simple concept, reasonable computational time, and few
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parameters to adjust, the shortcoming of PSO is that it is easily trapped into local optima and premature
convergence. Since the positions and velocities of standard PSO are real-valued, it is designed for
solving continuous functions. However, our problem is set in a discrete space and the standard PSO is
not suitable, and we should modify the position representation of PSO from continuous to discrete.
Thus, we introduce the crossover operator in the classical GA into the PSO to help the individuals to
share information among particles. Tabu search (TS), proposed by Glover in 1986, is a famous local
search algorithm used to deal with combinational optimization problems [29]. TS uses the Tabu list to
prevent being trapped into local optima and the aspiration rule to exploit a prohibited resolution.

In this study, we propose a hybrid discrete algorithm combining the merits of PSO and the TS
algorithm to solve this problem. In the proposed algorithm, PSO is used for the global searching
process and TS is employed for the local searching process. The proposed algorithm consists of two
phases; the first phase of the hybrid algorithm is the PSO algorithm, whose solution is treated as the
initial solution for the Tabu search algorithm in the second phase. The framework of the proposed
algorithm is shown in Figure 3. The pseudo-code of the hybrid algorithm is shown in Figure 4.

 
 

 231 
Figure 3. Framework of the hybrid algorithm. 232 Figure 3. Framework of the hybrid algorithm.

3.1. Initialization

3.1.1. Combining All the Projects and Relabeling the Tasks

We combined all the projects into a combined precedence graph and relabeled the tasks. If the
first project had n tasks, then the first task of the second project was relabeled as n + 1, and so on.
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Figure 4. The pseudo-code of the hybrid algorithm.

3.1.2. Encoding and Decoding

We adopted the chromosome encoding method. The length of chromosome was twice the number
of total tasks. The chromosomal representation was comprised of two vectors; the first vector was the
precedence feasible task list (TL) for the scheduling process, while the second vector was the mode
assignment for task execution. The TL was a precedence feasible permutation of tasks, in which each
task must occur after all its predecessors and before all its successors. This structure was called the
task list. The second vector was a list of execution modes for all tasks, and the k -th element of this
list defined the execution mode of task k. Each chromosomal representation determined the sequence
of tasks for each project and the mode for each task. We show an example in Figure 5; task 5 is to be
executed firstly and its corresponding mode is 3, the mode of task 7 is 1 and so on. The advantage of
this encoding scheme is that it can decode easily and improve the execution speed. We applied the
serial schedule generation scheme (serial SGS) to generate the schedule related to individuals, which
consisted of precedence feasible TL with the mode assignment.
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3.2. PSO Phase

3.2.1. Initial Population

In this approach, each particle in the population was generated randomly without any experience.
This approach had merits and shortcoming. The merits were that it was simple to implement and to
keep the diversity of population, the shortcoming was that it had less experience.

3.2.2. Calculate the Fitness Function

The fitness function was used as the performance evaluation of particles. Each particle’s fitness
function was expressed by the total makespan, the duration of the whole multi-project schedule. Each
particle in the population was evaluated and the local best of each was recorded. The best particle in
the population was selected as the global best.

3.2.3. Evolve Approach

The crossover operator means that the following generations inherit the good genes from the
previous generation. The crossover operator generates new solutions (offspring) by coalescing the
structures of a couple of existing ones (parents) [30]. For our specific representation, the crossover
technique defined in the literature was not suitable. We considered the task list concept, precedence
feasibility, and the mode assignment. We used the well-known one-point crossover within the TL
sector and the two-point crossover within the mode assignment sector. The crossover was applied to
each particle with the selected local best and global best. Each new generated particle was evaluated
and the best particle was selected as the new global best particle. The local best for each particle was
recorded. The one-point crossover and two-point crossover are described as follows:

Given two individuals selected for crossover,M = (jM
1 , jM

2 , . . . , jM
j ) and F = (jF

1 , jF
2 , . . . , jF

j ), two
offspring, D and S are produced.

1. One-point crossover operator
First, one integer and non-negative point p(1 < p < J) are randomly generated. The tasks in the

first p positions are inherited from the M, exactly in the same sequence.

jD
i := jM

i i = 1, . . . , p (12)

The positions i = p + 1, . . . , J are inherited from the F and preserved their relative sequence.

jD
i := jF

k i = p + 1, . . . , J (13)

k = min
{

k
∣∣∣jF

k /∈
{

jD
1 , . . . , jD

i−1

}
, k = 1, 2, . . . , J

}
(14)

The S is generated analogously and the sequence of succession is opposite.

jSi := jF
i i = 1, . . . , p (15)

jS
i := jM

k i = p + 1, . . . , J (16)

k = min
{

k
∣∣∣jM

k /∈
{

jS1 , . . . , jSi−1

}
, k = 1, 2, . . . , J

}
(17)



Appl. Sci. 2019, 9, 885 10 of 19

2. Two-point crossover operator
First, two integers and non-negative points p1, p2(1 < p1 < p2 < J) are randomly generated. The

tasks in the first p1 positions are inherited from the M, exactly in the same sequence.

jD
i := jM

i i = 1, . . . , p1 (18)

The positions i = p1 + 1, . . . , p2 are inherited from the F and preserved their relative sequence.

jD
i := jF

k i = p1 + 1, . . . , p2 (19)

k = min
{

k
∣∣∣jF

k /∈
{

jD
1 , . . . , jD

i−1

}
, k = 1, 2, . . . , J

}
(20)

The positions i = p2 + 1, . . . , J are inherited from the M again and preserved their
relative sequence.

jD
i := jM

k i = p2 + 1, . . . , J (21)

k = min
{

k
∣∣∣jM

k /∈
{

jD
1 , . . . , jD

i−1

}
, k = 1, 2, . . . , J

}
(22)

The S is generated analogously and the sequence of succession is opposite.

jSi := jF
i i = 1, . . . , p1 (23)

jS
i := jM

k i = p1 + 1, . . . , p2 (24)

k = min
{

k
∣∣∣jM

k /∈
{

jS1 , . . . , jSi−1

}
, k = 1, 2, . . . , J

}
(25)

jSi := jF
k i = p2 + 1, . . . , J (26)

k = min
{

k
∣∣∣jF

k /∈
{

jS
1 , . . . , jS

i−1

}
, k = 1, 2, . . . , J

}
(27)

If the termination criterion were satisfied, usually a sufficiently good fitness or a special number
of generations, then the PSO phase was stopped; otherwise it continued. The PSO phase could provide
diverse initial solutions for the TS phase.

3.3. TS Phase

3.3.1. Initial Population

In our algorithm, the initialization solution of TS was provided by the improved PSO. Individuals
of the best population were randomly selected, making sure that the global best solution was included.
The solutions were labeled and the following steps were performed in sequence.

3.3.2. Generate the Neighborhood Solution

The neighborhood structure plays a very important role in a local search. The neighborhood
structure is a mechanism which can apply a small perturbation to the given solution in order to obtain
a new set of neighboring solutions. The neighborhood structure is directly effective on the efficiency
of the local search, and unnecessary and infeasible moves must be eliminated if it is possible. In this
study, the best neighborhood which was non-Tabu or satisfied the aspiration criterion was selected.

Three different neighborhood operators were implemented:
(1) A neighborhood shift in which operators only performed the list of tasks in the following way:
One task j was randomly chosen from the list of tasks; the nearest predecessor p. of task j and

the nearest successor s. of task j were found in the task list; a position x between tasks p and s
was randomly chosen; task j was moved to position x and all jobs between job j and job in position
x + 1(x− 1) were shifted to the left (or to the right). We show an example in Figure 6. Task 5 was
randomly chosen, its nearest predecessor is task 1, its nearest successor is task 6. Position 5 of the
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TL sector was the position of task 4, then task 5 was moved to position 5, and task 2 and task 4 were
shifted to the left.
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Each neighborhood was repeatedly searched until no improvement was identified. Then, the
next neighborhood operator was taken. The Tabu list was updated and the termination criterion
were checked.

3.3.3. Aspiration Criterion

The aspiration rule was introduced to release the Tabu list. It avoided the deadlock when all
solutions were prohibited in the Tabu list, or when a neighborhood optimal solution was within the
Tabu list but was better than the current optimal solution. The aspiration rule utilized this solution
and was not subject to Tabu constraints.

3.3.4. The Tabu List

In order to avoid getting stuck in the cycle state of the local optima during searching, some steps
were prohibited from repeating. The idea of the Tabu list was introduced, where the position of a move
and the solution were stored in the Tabu list. When a new neighboring solution was found or an old
solution expired, the Tabu list was updated.

3.3.5. Termination Criterion

The termination criterion was used to determine whether the proposed method should stop. If
one of the following conditions is satisfied; whether the proposed method stopswhen the algorithm
has performed a given total number of iterations, or the elite solution stack had been exhausted, or the
solution was proven to be optimal.

4. Case Study

In this section, we present the results of computational studies to evaluate the performance of the
proposed algorithm. Our algorithm was coded in MATLAB, and the software version was MATLAB
R2016a, running on a personal computer configured with 16 GB of memory and an Intel Core i7-6700
3.4GHz processor.

4.1. Implementation Details

Instances in this paper came from the MISTA 2013 Challenge, which combined multiple MRCPSP
instances from Project Scheduling Problem Library (PSPLIB). Release dates had to be added and the
release dates were generated using a Possion process, i.e., the project arrival times were exponentially
distributed with λ = 0.2. The release date of the first project was always r0 = 0. The global resource
was ignored and the two renewable resources were regarded as two hierarchical levels of workers.
The instances consisted of three datasets from three different competition phases, and each dataset
consisted of ten instances. The maximum number of tasks for each project that could be executed
concurrently was set at 2. Problem size in the first dataset, which was called A instances, ranged
from 2 projects and 10 tasks per project to 10 projects and 30 tasks per project. The second dataset
called B instances varied from 10 projects and 10 tasks per project to 20 projects and 30 tasks per
project in problem size. The last dataset was called X instances, with instances of similar size as the B
instances [19].

4.2. Performance Evaluation of the Proposed Algorithm

To evaluate the proposed algorithm, comparisons were made with improved particle swarm
optimization (PSO) proposed by Jia and Seo [31], the Tabu search (TS) proposed by Pan et al., [32], and
the genetic algorithm (GA) proposed by Goncharov and Leonov [33]. The parameters of GA, PSO, and
TS were set by trial and error. The scheduling results of PSO–TS, GA, PSO, and TS are shown in Table 1,
including the best makespan (BST) and the average makespan (AVG) of ten independent runs. The
best BST results of each instance are set in bold. From Table 1, it is shown that the BST and AVG values
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obtained by PSO–TS were better than those obtained by the other three algorithms on all instances,
which demonstrated that PSO–TS had the superior searching quality and robustness. In most of the
instances, GA performed better than PSO and TS, but it was not consistent. In instance A7, the BST
and AVG of TS performed better than GA. In instance X7, the BST and AVG of PSO performed better
than GA.

Table 1. Comparisons of Particle swarm optimization-Tabu search (PSO–TS), Genetic algorithm (GA),
Particle swarm optimizaition (PSO), and Tabu search (TS) over ten runs.

Instances
GA PSO TS PSO–TS

AVG BST AVG BST AVG BST AVG BST

A1 50.1 49 57.3 50 54.6 51 49.9 48
A2 89 85 101.9 94 104.2 97 88 84
A3 119.2 116 131.8 123 144.4 137 115.4 112
A4 115.2 108 134.3 128 125.6 111 112.2 107
A5 293.4 275 339.5 313 307.8 289 281.1 258
A6 378.4 360 451.8 445 377.7 353 372.5 345
A7 352.4 341 400.6 367 352.2 338 343.3 332
A8 310.4 305 341.5 323 358.3 346 298.4 292
A9 457.1 436 495.1 476 496 475 451.9 422
A10 515.7 501 549.3 529 556.9 539 483.1 449
B1 186.9 176 221.1 202 222.5 213 177.5 169
B2 358.3 343 398.8 379 402 383 348 330
B3 801.8 779 889.7 864 824.8 800 786.1 740
B4 370.3 357 416.1 396 403 380 356.7 340
B5 566.4 551 625.9 607 630.7 606 545.2 522
B6 701.2 675 744.9 720 763 743 666 630
B7 400 384 448 436 439.8 412 376.9 362
B8 743.5 706 823.3 795 834.3 796 705.8 679
B9 1397 1352 1441.8 1367 1430.9 1355 1384.7 1325

B10 944.9 912 996.9 932 1016.1 922 944.3 886
X1 183.6 172 215.1 206 215.1 202 178 170
X2 299.9 293 336.5 318 347.3 331 291.9 279
X3 496.1 473 529.4 502 540.8 523 469.8 450
X4 215.2 209 240 228 252.9 237 205 196
X5 594.1 568 659.5 616 647.2 625 574.1 543
X6 842.5 811 917.2 893 905.7 883 798.1 765
X7 378.2 361 375.8 352 413.3 377 367.9 350
X8 1058.2 1021 1095.2 1032 1071.2 1021 1056.4 996
X9 2025.3 1950 2028.8 1891 1982.2 1942 1952 1878

X10 1342 1289 1390.7 1295 1357.5 1284 1326.7 1275

To compare results obtained in different instances, relative percentage deviation (RPD) was
introduced as the only dependent variable of the variance analysis, as shown in equation (28), where
Algsol represents the objective value obtained by a single algorithm running, and BSTsol represents the
best solution over the whole set of results concerning the same instance. Obviously, the smaller the
RPD value, the better the result.

RPD =
Algsol − BSTsol

BSTsol
× 100 (28)

The ANOVA and least-significant difference (LSD) tests were conducted in SPSS to check the
results transformed into the RPD value. Test results revealed that under a confidence interval of 95%,
the p value was 0, which means there were significant differences in the performance of the four
algorithms. Figure 9 depicts the mean plot with the LSD intervals for the RPD value obtained by the
four algorithms. In this measure, the proposed algorithm outperformed the other three algorithms.
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5. Industrial Application

To demonstrate the applicability of the proposed method from a practical point of view, a case
that uses industrial data from a collaborating steam turbine company was considered. The steam
turbine is typically an engineer-to-order product [34]. We collaborated with the Shanghai Turbine
Plant (STP), which is the leading turbine company in China. STP can provide an accurate estimation of
task duration based on the number of allocated workers during the engineering process. They have
established the relationship between task duration and number of allocated workers based on their
experience. The steam turbine assembly shop had eight work centers, and eight steam turbines could
be assembled in parallel. There were eight kinds of steam turbine products to be produced, and the
total number of tasks was 270. The assembly of each product was rather different in terms of tasks, due
date, precedence constraints, and number of workers involved. Different projects were simultaneously
executed, competing for and sharing the worker resources. Therefore, it is necessary to schedule and
balance the utilization of worker resources to guarantee the due date of all products. Figure 10 depicts
the sequence diagram of eight projects. The assembly shop had two skill levels of workers—nine lower
level workers (junior) and six higher level workers (senior). Workers formed the assembly team to
complete the task. The release dates and due dates of all products were determined by a higher level
production plan. We set up the real-time visual monitoring system for steam turbine assembly and the
system collected real-time assembly information. The project manager operating the real-time visual
monitoring system is shown in Figure 11 and the user interface is shown in Figure 12.

We ran our algorithm for the above case on ten independent runs and selected the best result. The
Gantt chart of the GA algorithm can be seen in Figure 13a, in which the makespan was 1630 h. The
Gantt chart of the PSO algorithm can be seen in Figure 13), in which the makespan was 1678 h. The
Gantt chart of the TS algorithm can be seen in Figure 13c, in which the makespan was 1642 h. The
Gantt chart of the plan made by the project manager can be seen in Figure 13d, in which the makespan
was 1808. The Gantt chart of the PSO–TS algorithm can be seen in Figure 14, in which the makespan
was 1524 h. In Figure 14, the horizontal axis represents the time horizon, the vertical axis represents
the project number, the box represents the task, the number in the box represents the task number, and
the length represents the duration of the task. We saw the sequence and the duration of tasks in each
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project, and found that some tasks could be executed concurrently under the space constraints. The
comparison of these five project plans can be seen in Figure 15. The cylinder in the figure represents
the makespan, a larger cylinder means that the corresponding makespan was longer. It is clear that
the PSO–TS algorithm outperformed the solutions provided by the other three algorithms and the
experienced manager. The PSO–TS algorithm we proposed can assist in scheduling the assembly
process of steam turbines.
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6. Conclusions

In this paper, we present a mathematical model for integrated multi-project scheduling and
hierarchical workforce allocation in the ETO assembly process. A hybrid approach combining
improved particle swarm optimization and Tabu search was proposed to solve the problem. The
proposed algorithm was tested on different scale benchmark instances and a case that used industrial
data from a collaborating ETO company. The computational results show the superiority of the hybrid
algorithm. The hybrid algorithm was applied to assist the scheduling system, and it not only reduced
the workload of the project manager, but also provided a better scheduling plan. The main contribution
of this research was the focus on project scheduling and workforce allocation in the ETO assembly
process and it can expand the research content in this field.

Directions for future research can be outlined as follows: Firstly, some heavy and large components
needed to be transported by crane, thus the project scheduling and crane scheduling should be dealt
with together. Secondly, the problem we studied did not take unexpected events into account, for
instance the deviation of the actual duration from the planned duration, the late delivery of necessary
components, or rework due to quality problems. These disruptions will delay the finish time of tasks
and affect other projects. Future work is needed to apply the hybrid algorithm to dynamic scheduling
in the ETO assembly process.
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