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Featured Application: The current graphic analysis can be applied during the mathematical
analysis of high order systems, for instance, power electronic, mechanical, aeronautic,
and nuclear plant systems among others.

Abstract: The phase portrait for dynamic systems is a tool used to graphically determine the
instantaneous behavior of its trajectories for a set of initial conditions. Classic phase portraits
are limited to two dimensions and occasionally snapshots of 3D phase portraits are presented;
unfortunately, a single point of view of a third or higher order system usually implies information
losses. To solve that limitation, some authors used an additional degree of freedom to represent phase
portraits in three dimensions, for example color graphics. Other authors perform states combinations,
empirically, to represent higher dimensions, but the question remains whether it is possible to extend
the two-dimensional phase portraits to higher order and their mathematical basis. In this paper, it is
reported that the combinations of states to generate a set of phase portraits is enough to determine
without loss of information the complete behavior of the immediate system dynamics for a set of
initial conditions in an n-dimensional state space. Further, new graphical tools are provided capable
to represent methodically the phase portrait for higher order systems.

Keywords: high order system; n-dimensional; phase portrait

1. Introduction

Historically, humanity has tried to understand, explain and represent its surrounding environment
by using several tools familiar with its perception of reality. Numerous examples of exceptional
theories and enlightenment of natural incidents have been explained by instruments provided by
different civilizations as the ancient Egyptian, Mesopotamian, Greek, Chinese, Maya, etc. [1]. Up to
date, those tools in combination with theories and information accumulated through the years has
allowed us to represent and analyze complex physical events in a manageable manner by using,
among others, mathematical models. A model, in general terms, is a mathematics representation to
study a phenomenon in the best conditions of space, time and cost [2]. Indeed, modeling complexity
increases in terms of analysis information needs. For instance, there are several levels of modeling as
macroscopic, microscopic (non-spatial, spatial), and submicroscopic. The interested reader is referred
for more details about modeling to reference [3].
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Particularly, in control theory, two basic and widely used visual analysis tools are based on Poincaré
maps and phase portraits. A discrete time system, derived from the original continuous system with the
main aim to reduce its complexity is referred as Poincaré map [4]. On the other hand, a pictographic tool
used to represent the instantaneous state of two interest variables in any autonomous system is referred
to as phase portrait; this paper deals with the second kind of representation.

A regular phase portrait is a two-dimensional, qualitative representation of the system dynamics
with an implicit order reduction, information related to time is lost and only the instantaneous behavior
is presented for a set of initial conditions [5]. Such initial conditions are represented unambiguously as
points in an R2 plane. From each point, an arrow directed towards the corresponding derivative with
size proportional to its magnitude is drawn (e.g., Figure 1).

This representation can be extended to R3 phase portraits; however, some information about the
state variables is lost. The three-dimensional phase portrait is turned two-dimensional by a snapshot
in order to be printed out and one must select the best view of the 3D-to-2D converted phase portrait
or look for an additional degree-of-freedom for the plot, as color or time (by generating a video).
Some authors have preferred to graph the solution of the system for a representative initial condition
instead of making a phase portrait e.g., Figure 3. For nonlinear systems, an unexpected dynamic
behavior can be lost sight since the point of view of the snapshot or the selection of the initial condition
rely on the appreciations capacity.

Some authors have also intuitively presented multiple phase-portraits for 3 and 4 state variables,
by pair-combining [6–9]; however, there is still the question of whether it is possible to extend this idea
to higher order systems and its mathematical basis. A brief historical background of phase portrait for
dimensions greater than two is given as follows.

A first effort to represent phase plane of higher order was analyzed in [10]. In that study,
was proposed the use of a xn vs. x plane analysis, where the Poincaré’s fundamental phase plane
is contemplated as the simplest case of the general proposed method. A R3 dimensional case was
analyzed in [11]. The authors in that study used as an example, a harmonic oscillator, and also used
a Wigner Transformation as an order reduction tool to simplify the system complexity. Another
interesting approach was proposed in [12]. In that study, an oriented linear graph for piecewise-linear
system called “generalized phase portrait” was proposed. A three-phase system was analyzed,
but examples for a larger dimension were not reported. A computational program to represent
an n-dimensional system in phase-space was analyzed in [13]. The reported system consisted on
a phase space navigator and a user interface, and it allowed to accomplish the following tasks:
simulate the proposed system with different initial conditions, plot trajectories in a paper sheet, and to
design controller laws. Unfortunately, that paper reported a maximum of a three-dimension system.
Another interesting computational tool based on SIMULINK was analyzed in [14]. The study regarded
piecewise-linear systems and represented them as a set of convex polytopes. A tetrahedron was used
to represent a four-dimension system, and the “hyperplane” term was defined. Limiting the capacity
of the proposed system up to five states, as stated by authors, was the main limitation. On the other
hand, a three-dimensional case for phase portrait and some explicit formulas by using Lyapunov
exponents was given in [15]. Indeed, the main contribution of that study was to calculate analytically
a Lyapunov exponent from three dimensional quadratic mappings. Nevertheless, extension of this
methodology for more than this case was not stated. An hyperchaotic four-wing dimensional system
was analyzed in [16]. Phase portrait for a combination of the four states, numerical and practical results
were reported. However, applications of the proposed system were not documented.

As can be noticed from the previous discussion, there is still the question of whether it is possible
to extend phase portraits to a higher order and the mathematical basis from the reader’s perspective.
In summary, these studies highlight the need for developing a standardized graphical tool capable to
represent, methodically in a single stage, the overall dynamics of complex systems. Indeed, a systematic
approach for representing more than R2, to the author’s knowledge, has not yet been reported.
Therefore, in this paper is proposed a method to address this question. Initially, it is shown that using
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combinations of states to generate a set of phase portraits is enough to determine without loss of
information the complete behavior of the immediate system dynamics for a set of initial conditions.
Further, are provided three graphical tools capable to represent methodically the phase portrait for
higher order systems including alternatives that aim to maintain only relevant information on the
dynamics and simplifying the phase portrait construction.

This paper is organized as follows. In Section 2 are reported foundation, procedure, and some
examples to plot the phase portraits by state combinations. In Section 3, the same topics to plot
the phase portraits by a coordinates transformation (order reduction) are reported. In Section 4,
an n-dimensional phase portrait by a state-by-state plot is reported. In Section 5, final conclusions
are given.

2. The n-Dimensional Phase Portraits by State Combinations

In this paper is assumed that the reader has the basic notions of non-linear second order systems
and the initial condition problem. For a very comprehensible explanation of two-dimensional phase
portraits and its construction the reader is referred to [5].

A regular phase portrait is a two-dimensional representation of the system dynamics with an
implicit order reduction: information with respect to the time is lost and only the instantaneous
behavior is presented for a set of initial conditions. Such initial conditions are represented
unambiguously as points in an R2 plane, and a set of arrows directed toward derivative and with size
proportional to its magnitude are originated in such points.

As mentioned before, some authors have informally presented multiple phase-portraits by
pair-combining for 3 and 4 variables. However, one can question if it is enough to study a system
completely and without loss of information with such approach, for higher dimensions; that is,
one must ensure that looking an n-dimensional phase portrait from every 2D possible perspective
is enough.

2.1. Foundation

This section aims to obtain and model the overall possible perspectives that an observer/onlooker
can have of a multidimensional object.

In particular, a point x 6= 0 in a 2-dimensional Euclidean plane (with axis X1 and X2), is viewed
by an onlooker located at a distance r, with a perpendicular sight to the plane in that point, univocally;
that is, every two-dimensional characteristic is visible and measurable regardless of the sharpness.
This approach is extended for a sufficiently small line and its centroid for n-dimensional and the pair
plane-onlooker is named view.

Definition 1. An n-point or a small enough n-line (n-sline) in a n > 2 dimension can be determined univocally,
if every n-dimensional characteristic is uniquely measurable by an onlooker.

Definition 2. A non-empty set of n-points and n-slines in conjunction with some Euclidean plane is a view.

Definition 3. The sharpness of a view is the capacity of the onlooker to differentiate two or more n-points and/or
n-slines in a view.

Clearly, most of humans can imagine and determine an object univocally for dimensions less or
equal to 3. For higher order dimensions this is not a trivial task; for instance, to determine univocally
an object in a dimension 6: although mathematics can easily handle such higher dimensions, it is
unnatural for a human being to analyze such object.

In the following, it is demonstrated that an onlooker for each plane (e.g., X1 − X2, X1 − X3,
and X2 − X3 for R3) is enough to determine univocally the 3-dimensional characteristics of a set of
n-points and n-slines, specifically:
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Theorem 1. An n-point needs ν = n!
2(n−2)! views to be determined univocally.

Proof. The number of different 2D planes of an n-dimensional phase space is equal to the number
of combinations to select different subsets (xi, xk) out of the set {x1, x2, ....xn}, which is the binomial
coefficient C(·, ·) of pairs of coordinate-axis. That is:

ν = C (n, 2) =
n!

2(n− 2)!
(1)

For a nonempty set of n-points or n-slines, one can easily extend the previous result.

Lemma 1. A nonempty set of n-points or n-slines needs ν = n!
2(n−2)! views with enough sharpness to be

determined univocally.

Proof. From the fact the onlooker can distinguish different n-points and n-slines (enough sharpness)
in a view and Theorem 1, then the conclusion is obtained.

2.2. Procedure

From the above, a first approach to construct phase portraits for higher order systems and
be determined univocally, is by analyzing separately each combination of states as described in
the following.

Procedure 1. Follow the next steps:

1. Construct the state space representation of the system.
2. Define regular initial conditions’ values for each state ().

3. Construct a phase portrait for each combination of states, a total of
(

n!
2(n−2)!

)
.

4. If necessary, redefine the initial conditions’ values and repeat step 3; that is, get enough sharpness.
5. Analyze each phase portrait separately.

The above procedure is a generalization of the 2D phase portrait as presented in [5]. For n = 2,
the Step 2 reduces to construct a grid of initial conditions; this is, a vector of 2 columns and y rows of
initial conditions where y depends on the grid size and spacing. For higher n dimensions, a vector
with n columns must be proposed and the quantity of rows depends again on the n-grid size and
spacing. For the Step 3, unlike a 2D portrait, one will get a set of arrows that arise from each initial
condition instead of just one. It may be convenient to use a different color for each initial condition in
order to differentiate the arrows that arise from each initial condition. In the following, some examples
are provided.

2.3. Examples

Consider the stable system

ẋ1 = −x1

ẋ2 = −x2

ẋ3 = −x3 (2)

Accordingly to the Theorem 1, three views are enough to determine univocally the 3-dimensional
characteristics. Following the Procedure 1, this is already a state space representation such that the first
step is done. Next, for the Step 2 a n-grid is proposed with a stepping of 10 and from −30 to 30 units:



Appl. Sci. 2019, 9, 872 5 of 19

x1(0) x2(0) x3(0)
−30 −30 −30
−30 −30 −20
−30 −20 −30
−30 −20 −20

...
...

...
30 30 20
30 30 30

For the Step 3, ẋ1, ẋ2, and ẋ3, as well as the length of the arrows (len(a, b) =
√

a2 + b2 function)
are calculated for every row:

x1(0) x2(0) x3(0) ẋ1 ẋ2 ẋ3 len(ẋ1, ẋ2) len(ẋ1, ẋ3) len(ẋ2, ẋ3)

−30 −30 −30 30 30 30 42.4 42.4 42.4
−30 −30 −20 30 30 20 42.4 36 36
−30 −20 −30 30 20 30 36 42.4 42.4
−30 −20 −20 30 20 20 36 36 28.3

...
...

...
...

...
...

...
...

...
30 30 20 −30 −30 −20 42.4 36 36
30 30 30 −30 −30 −30 42.4 42.4 42.4

The first view (x1 − x2) is obtained by plotting a classic phase portrait with the columns x1(0),
x2(0) as the points of the grid, ẋ1, ẋ2 as the destination point (direction) of the arrows, and len(ẋ1,
ẋ2) as the length of the arrow. The second and third views are obtained similarly, and the full phase
portrait consists of the 3 views shown in Figure 1. Note that this phase portrait allows to see with no
doubt that the system can be asymptotically stable for the set of initial conditions by inspecting each
view separately; that is, all of the views should look like a phase portrait with an apparently stable
equilibrium point. Recall that many math software include automated 2D phase portrait functions (for
instance "‘quiver"’ in Matlab, see Appendix A for a basic code).
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x
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-30 -20 -10 0 10 20 30

x 3

-40

-20

0

20
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Figure 1. Phase portrait views for the system (2).
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Now consider the chaotic system [17]

ẋ1 = 35(x2 − x1) + x2x3

ẋ2 = 25x1 − x2 − x1x3

ẋ3 = x1x2 − 7x3 (3)

For such system, the phase portrait views are shown in Figure 2 and in this case the trajectories of
the system are plotted for some initial conditions with colors. The author in [17] plotted the systems’
trajectories in a 3D phase plane (reproduced as Figure 3 in this paper) for only a single initial condition.
Note that the n-dimensional phase portrait presented in this study allows a clearer phase portrait
representation of a set of initial conditions and trajectories for a subset of initial conditions.
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Figure 2. Phase portrait views for system (3).
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2

0510152025

30

20

10

0

40
x 3

Figure 3. 3D Phase solution for x1(0) = x2(0) = x3(0) = 20 for system (3) [17].

Now consider the arbitrary system

ẋ1 = Sin(x1)

ẋ2 = Cos(x2)

ẋ3 = 0.1 ∗ Tan(x3)

ẋ4 = Abs(x4) (4)

In Figures 4–9 are shown the views for such system. Clearly one can perceive several stable and
unstable points. In Appendix A is shown a Matlab code example to generate the six views automatically.

Figure 4. Phase portrait view x1 − x2 for the system (4).

Figure 5. Phase portrait view x1 − x3 for the system (4).
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Figure 6. Phase portrait view x1 − x4 for the system (4).

Figure 7. Phase portrait view x2 − x3 for the system (4).

Figure 8. Phase portrait view x2 − x4 for the system (4).
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Figure 9. Phase portrait view x3 − x4 for the system (4).

3. The n-Dimensional Phase Portraits by Coordinates’ Transformations

A coordinate transformation can be performed in order to reduce ν; however, such strategy can
imply a major loss of information if performed arbitrarily. A class of transformations aimed to capture
the essentials of a dynamical system by truncating the original system in an appropriate basis are the
model order reduction transformations [18]. Although this order reduction is appropriate only in very
specific situations, it is worth to mention that with this approach one can show that certain dynamics
can be safely neglected.

3.1. Foundation

To illustrate this idea, consider the system:

dx
dt

= f (x) (5)

and a transformation T such that x = Tx, x = [x̂ x̃]T , x̂ ∈ Rk, T = [W T2]
T , T−1 = [V T1] , such that

VWT is a projection along the kernel of W spanned by V:

x =

[
x̂
x̃

]
=

[
W
T2

] [
V T1

] [ x̂
x̃

]
=

[
W (Vx̂ + T1 x̃)
T2 (Vx̂ + T1 x̃)

]
(6)

If the new state vector is replaced in (5) one has:

dx̂
dt

= W f̂ (Vx̂ + T1 x̃) (7)

If the term T1 x̃ is small enough, it can be neglected and a reduction of order that preserves the most
important dynamics is obtained:

dx̂
dt

= W f̂ (Vx̂) (8)

The construction of such projection is not a trivial task for a nonlinear system, and it depends
on its particular characteristics. Mostly, linearization methods are used to ensure a local proper
reduction [19–21]. For linear systems, criteria about the eigenvalues [22], passivity [23,24],
Padé approximations, Arnoldi/Krylov methods [25–27], among others are regularly used.

In this paper, linearization/multi-linearization and largest-eigenvalues view reduction is proposed
because of its simplicity, enough to plot phase portraits with univocally determined representative
views instead of using the original ν-views phase portraits as in the previous section. That is, the other
reduction methods are not a trivial task and they are not always possible.
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Consider the linearization of (5) in some initial condition:

dx
dt

= Ax (9)

The state space transformation (x = Tx) may be selected as AT = TΛ where T is an invertible matrix
and T−1 AT is a diagonal matrix consisting of the eigenvalues of A from which dominant eigenvalues
can be selected to truncate the rest. This process is called modal truncation [28]. If such a transformation
can not be achieved, it is possible to use another truncation method as singular decomposition [29],
controllability and observability Gramians [18], among others [28]. Alternatively, one can try to select
the dominant eigenvalues of A as those of maximum absolute value.

3.2. Procedure

From the above, an order reduction is possible from the dominant eigenvalues.

Procedure 2. Follow the next steps:

1. Construct the state space representation of the system.
2. Define regular initial conditions values for each state.
3. Linearize if necessary, in every combination of regular initial conditions; alternatively linearize only in an

equilibrium point of interest.
4. Try to found matrices such that AT = TΛ; if not possible use another method for order reduction.
5. Determine the dominant states and construct a phase portrait for each combination of them.
6. If necessary, redefine the initial conditions values and repeat from step 3; that is, get enough sharpness.
7. Analyze each phase portrait separately.

3.3. Examples

In power electronics, the power converters are widely used, and new configurations are frequently
reported. In [30] is shown that a cascaded connection of basic power converters (buck and boost),
increases by two the order of the dynamical model for each power converter added. For example, for a
three cascaded buck converter the dimension grows to n = 6; considering all of the control inputs as
the 50% of the duty cycle and for common parameters in resistors and inductors with a 100 V power
source one can obtain the linearized system (by feedback linearization) on x = 0:

dx
dt

= Ax (10)

where:

A =



0 0 0 −10 0 0
0 0 0 5 −5 0
0 0 0 0 5 −50

100 −100 0 0 0 0
0 100 −100 0 0 0
0 0 100 0 0 −100


(11)
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In such case, it is of interest to show the largest derivatives of currents and voltages (x1–x3 and x4 to x6

respectively) by phase portraits. A Jordan decomposition V−1 AV = J is possible with:

V =



−0.0 2.9 + 4.4i −0.01 −0.4− 1.9i 2.9− 4.4i −0.4 + 1.9i
−0.04 + 0.06i −2.4− 3.0i −0.04− 0.06i −1.5i −2.4 + 3.0i 1.5i

0.5 + 0.4i 0.9− 0.4i 0.5− 0.4i 0.9− 0.1i 0.9 + 0.4i 0.9 + 0.1i
−0.1 + 0.04i −18.1 + 12.7i −0.1− 0.04i 3.2− 1.7i −18.1− 12.7i 3.2 + 1.7i

0.1 + 1.1i 6.3− 8.1i 0.1− 1.1i 8.4− 3.1i 6.3 + 8.1i 8.4 + 3.1i
1.0 1.0 1.0 1.0 1.0 1.0



J =



−44.4 + 49.6i 0.0 0.0 0.0 0.0 0.0
0.00 −0.8228− 41.52i 0.0 0.0 0.0 0.0
0.0 0.0 −44.4− 49.69i 0.0 0.0 0.0
0.0 0.0 0.0 −4.7− 17.4i 0.0 0.0
0.0 0.0 0.0 0.0 −0.82 + 41.5i 0.0
0.0 0.0 0.0 0.0 0.0 −4.7 + 17.4i


and from the absolute value, the dominant eigenvalues indicate that the dominant states are x1, x3,
the less dominants are x2, x5, and the lesser are x4, x6. In Figures 10–15 are shown the views for all the
combinations of the dominant states for completeness.
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1.5

2

2.5

Figure 10. Phase portrait, view x1–x2 for the system (10).
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Figure 11. Phase portrait, view x1–x3 for the system (10).



Appl. Sci. 2019, 9, 872 12 of 19

x
1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x 5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 12. Phase portrait, view x1–x5 for the system (10).
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Figure 13. Phase portrait, view x2–x3 for the system (10).
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Figure 14. Phase portrait, view x2–x5 for the system (10).
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Figure 15. Phase portrait, view x3–x5 for the system (10).

4. The State-by-State n-Dimensional Phase Portraits

Another approach to represent the behavior of the system dynamics for a set of initial conditions,
is looking for the highest magnitudes and signs of the derivatives at each initial condition.

4.1. Foundation

In this approach, it is relevant only to look for the magnitude and sign for each state separately,
with respect to a set of initial conditions. That is, the i- state and its derivatives can be of the same sign,
which indicates that the derivative is crescent with respect to the absolute value of the state (indicating
possibly instability), or of opposite sign, which indicates that the derivative is decrescent with respect
to the absolute value of the state (indicating possibly stability). A manner to accomplish the above is
plotting the pairs [xi(0), xi(0) fi (x(0))] where fi (x(0)) is the i-th function of the system; this process is
repeated for each state variable.

4.2. Procedure

From the above, analyzing separately each state, one can plot a phase portrait as described in
the following.

Procedure 3. Follow the next steps:

1. Construct the state space representation of the system.
2. Define regular initial conditions values for each state.
3. Calculate fi (x(0)) for each i-th state, and for the set of initial conditions.
4. Plot [xi(0), xi(0) fi (x(0))]
5. Repeat Step 3 for each state, a total of n.
6. If necessary, redefine the initial conditions’ values and repeat from step 5; that is, get enough sharpness.
7. Analyze each phase portrait separately.

4.3. Examples

Consider again the system (2). Following the previous procedure, a set of 40 values from −20
to 20 in increments of one is proposed for each state variable. Fixing x1(0) = −20, one gets a set of
values which can be plotted with a vertical line from the point [x1(0), 0] to the point [v, 0] where v is
the velocity (quiver function in Matlab) such that the bigger vertical line overlaps all others (vectors).
Repeating the above for the rest of the initial conditions values one gets a plot as the show in Figure 16a
in black color (upper plot), and repeating the entire process for the second and third state variables
one can obtain the blue (middle) and red (bottom) plots respectively. In this figure, the height of the
lines is proportional to the increasing/decreasing rate while the up vertical orientations means an
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increasing rate and down vertical orientation means a decreasing rate; that is, a line from zero to a
positive vertical value indicates an increasing-value dynamics. It is for the above that for the set of
initial conditions one can conclude that all trajectories converge to the equilibrium.

Another approach, shown in Figure 16b is to plot [xi(0), xi(0) fi (x(0))] and similarly to the
previous plot Figure 16a, any point under the horizontal axis means a decreasing rate with proportional
value to the distance from the axis; the points are joined with a spline.

The state by state phase portrait for (3) is presented in Figure 17. In this case, positive and negative
increasing rates reveal the unpredictable behavior typically found in chaotic systems.

Figure 18 shows the state by state phase portrait for the system (4). Although positive and
negative increasing rates are present, the behavior is oscillatory instead of chaotic/stable. Note that
one can define classes of phase portraits as in the case of 2 dimensional (saddle, bifurcation, etc.).

The instructions used for generating a state by state phase portrait in Matlab are presented in
Appendix B.

Figure 16. State by state phase portrait by (a) vectors (left plots) and (b) spline (right plots), for
system (2).

Figure 17. State by state phase portrait by (a) vectors (left plots) and (b) spline (right plots),
for system (3).
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Figure 18. State by state phase portrait by (a) vectors (left plots) and (b) spline (right plots),
for system (4).

5. Conclusions

In this paper, a study for the construction of n-dimensional phase portraits is performed. Several
approaches are presented to formalize and construct phase portraits for systems of higher order.
It is demonstrated that the main approach of this paper, the n-dimensional phase portraits by state
combinations, is enough to fully illustrate the dynamics in the sense of phase portraits without loss of
information, and alternatives to simplify such phase portraits are presented.
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Appendix A. Matlab Code to Generate a n-Dimensional Phase Portrait by State Combinations

%%%%%%%%%%%%%%%%% Quiver s c a l e %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
s c a l e =15;

%%%%%%%%%%%%%%%%% Generate grid %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x=permn ( −3 : 3 / 1 5 : 3 , 4 ) ; %(c ) Jos van der Geest l i b r a r y from Matlab

%%%%%%%%%%%%%%%%% THIS IS THE DYNAMICS %%%%%%%%%%%%%%%%%%%%%%%%%
f =[ s i n ( x ( : , 1 ) ) , cos ( x ( : , 2 ) ) , tan ( x ( : , 3 ) / 1 0 ) , abs ( x ( : , 4 ) ) ] ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
c l o s e a l l

f i g u r e ( ’Name’ , ’ Phase P o r t r a i t x_1 x_2 ’ , ’ NumberTitle ’ , ’ o f f ’ )
hold on
quiver ( x ( : , 1 ) , x ( : , 2 ) , f ( : , 1 ) , f ( : , 2 ) , s ca le , ’ k ’ )
x l a b e l ( ’ x_1 ’ , ’ FontSize ’ , 1 8 )
y l a b e l ( ’ x_2 ’ , ’ FontSize ’ , 1 8 )
gr id on
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f i g u r e ( ’Name’ , ’ Phase P o r t r a i t x_1 x_3 ’ , ’ NumberTitle ’ , ’ o f f ’ )
hold on
s c a l e =30;
quiver ( x ( : , 1 ) , x ( : , 3 ) , f ( : , 1 ) , f ( : , 3 ) , s ca le , ’ k ’ )
x l a b e l ( ’ x_1 ’ , ’ FontSize ’ , 1 8 )
y l a b e l ( ’ x_3 ’ , ’ FontSize ’ , 1 8 )
gr id on

f i g u r e ( ’Name’ , ’ Phase P o r t r a i t x_1 x_4 ’ , ’ NumberTitle ’ , ’ o f f ’ )
hold on
s c a l e =30;
quiver ( x ( : , 1 ) , x ( : , 4 ) , f ( : , 1 ) , f ( : , 4 ) , s ca le , ’ k ’ )
x l a b e l ( ’ x_1 ’ , ’ FontSize ’ , 1 8 )
y l a b e l ( ’ x_4 ’ , ’ FontSize ’ , 1 8 )
gr id on

f i g u r e ( ’Name’ , ’ Phase P o r t r a i t x_2 x_3 ’ , ’ NumberTitle ’ , ’ o f f ’ )
hold on
s c a l e =30;
quiver ( x ( : , 2 ) , x ( : , 3 ) , f ( : , 2 ) , f ( : , 3 ) , s ca le , ’ k ’ )
x l a b e l ( ’ x_2 ’ , ’ FontSize ’ , 1 8 )
y l a b e l ( ’ x_3 ’ , ’ FontSize ’ , 1 8 )
gr id on

f i g u r e ( ’Name’ , ’ Phase P o r t r a i t x_2 x_4 ’ , ’ NumberTitle ’ , ’ o f f ’ )
hold on
s c a l e =30;
quiver ( x ( : , 2 ) , x ( : , 4 ) , f ( : , 2 ) , f ( : , 4 ) , s ca le , ’ k ’ )
x l a b e l ( ’ x_2 ’ , ’ FontSize ’ , 1 8 )
y l a b e l ( ’ x_4 ’ , ’ FontSize ’ , 1 8 )
gr id on

f i g u r e ( ’Name’ , ’ Phase P o r t r a i t x_3 x_4 ’ , ’ NumberTitle ’ , ’ o f f ’ )
hold on
s c a l e =30;
quiver ( x ( : , 3 ) , x ( : , 4 ) , f ( : , 3 ) , f ( : , 4 ) , s ca le , ’ k ’ )
x l a b e l ( ’ x_3 ’ , ’ FontSize ’ , 1 8 )
y l a b e l ( ’ x_4 ’ , ’ FontSize ’ , 1 8 )
gr id on

shg

Appendix B. Matlab Code to Generate a State by State n-Dimensional Phase Portrait

%%%%%%%%%%%%%%%%% Quiver s c a l e %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
s c a l e =1;

%%%%%%%%%%%%%%%%% Generate grid %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x=permn ( −3 : 3 / 1 0 : 3 , 4 ) ; %(c ) Jos van der Geest l i b r a r y from Matlab

%%%%%%%%%%%%%%%%% THIS IS THE DYNAMICS %%%%%%%%%%%%%%%%%%%%%%%%%
f =[ s i n ( x ( : , 1 ) ) , cos ( x ( : , 2 ) ) , tan ( x ( : , 3 ) / 1 0 ) , abs ( x ( : , 4 ) ) ] ;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
s= s i z e ( x ( : , 1 ) ) ;
y=zeros ( s ( : , 1 ) , 1 ) ;
z = 1 : 1 : s ( : , 1 ) ;
z=z ’ ;
c l o s e a l l

subplot ( 4 , 1 , 1 )
quiver ( x ( : , 1 ) , y , x ( : , 1 ) , x ( : , 1 ) . ∗ f ( : , 1 ) , s ca le , ’ k ’ , ’ ShowArrowHead ’ ,
’ o f f ’ , ’ MaxHeadSize ’ , 0 . 0 5 , ’ AlignVertexCenters ’ , ’ on ’ , ’ LineWidth ’ , 1 )
hold on ;
l i n e ([−5 5 ] , [ 0 0 ] , ’ Color ’ , ’ k ’ )

subplot ( 4 , 1 , 2 )
quiver ( x ( : , 2 ) , y , x ( : , 2 ) , x ( : , 2 ) . ∗ f ( : , 2 ) , s ca le , ’ b ’ , ’ ShowArrowHead ’ ,
’ o f f ’ , ’ MaxHeadSize ’ , 0 . 0 5 , ’ AlignVertexCenters ’ , ’ on ’ , ’ LineWidth ’ , 1 )
hold on ;
l i n e ([−5 5 ] , [ 0 0 ] , ’ Color ’ , ’ b ’ )

subplot ( 4 , 1 , 3 )
quiver ( x ( : , 3 ) , y , x ( : , 3 ) , x ( : , 3 ) . ∗ f ( : , 3 ) , s ca le , ’ r ’ , ’ ShowArrowHead ’ ,
’ o f f ’ , ’ MaxHeadSize ’ , 0 . 0 5 , ’ AlignVertexCenters ’ , ’ on ’ , ’ LineWidth ’ , 1 )
hold on ;
l i n e ([−5 5 ] , [ 0 0 ] , ’ Color ’ , ’ r ’ )

subplot ( 4 , 1 , 4 )
quiver ( x ( : , 4 ) , y , x ( : , 4 ) , x ( : , 4 ) . ∗ f ( : , 4 ) , s ca le , ’m’ , ’ ShowArrowHead ’ ,
’ o f f ’ , ’ MaxHeadSize ’ , 0 . 0 5 , ’ AlignVertexCenters ’ , ’ on ’ , ’ LineWidth ’ , 1 )
hold on ;
l i n e ([−5 5 ] , [ 0 0 ] , ’ Color ’ , ’m’ )

f i g u r e
subplot ( 4 , 1 , 1 )
p l o t ( x ( : , 1 ) , x ( : , 1 ) . ∗ f ( : , 1 ) , ’ k ’ )
subplot ( 4 , 1 , 2 )
p l o t ( x ( : , 2 ) , x ( : , 2 ) . ∗ f ( : , 2 ) , ’ b ’ )
subplot ( 4 , 1 , 3 )
p l o t ( x ( : , 3 ) , x ( : , 3 ) . ∗ f ( : , 3 ) , ’ r ’ )
subplot ( 4 , 1 , 4 )
p l o t ( x ( : , 4 ) , x ( : , 4 ) . ∗ f ( : , 4 ) , ’m’ )
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