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Abstract: The problem of large deformation is very prominent in deep-buried tunnel excavation in
soft rock, which brings serious potential safety hazards and economic losses to projects. Knowledge
of the stress field distribution and deformation law is the key to ensuring rational design and safe
construction in large deformation tunnels of soft rock. As described in this paper, theoretical analysis,
numerical simulation and field monitoring were employed to investigate the surrounding rock
stress and displacement state in the Dongsong hydropower station in Sichuan Province, China.
The results show that the short-bench construction method can effectively control the deformation
of surrounding rock and range of the plastic zone. In order to reserve enough working space,
the optimum bench length in the actual construction was 10 to 14 m. The peripheral displacement and
plastic radius decreased with the increase of tunnel support strength and the advance of supporting
time. The displacement can be effectively controlled by applying the second lining in time at a
position about twice the diameter of the hole (16 m) from the working face. A reasonable reserved
deformation should be adopted to avoid secondary expanding excavation. The values of different
positions in the tunnel laterally and longitudinally may be different, and adjustments are needed
according to the actual situation.

Keywords: tunnel construction; large deformation of soft rock; stress field; deformation law;
theoretical analysis; numerical simulation; field monitoring

1. Introduction

Recently, with the continuous railway and highway construction in China, tunnel engineering has
been developing in situations of long, large and deep burial [1–7]. It is inevitable more long tunnels
will be built in soft and weak surrounding rock areas [8–14]. Large deformation of soft rock mass is
one of the common geological hazards when a tunnel passes through soft rock mass [15–17], and is
also a long-term problem plaguing tunnel construction [18–21]. If the deformation of surrounding rock
cannot be effectively controlled, the deformation will continue to grow and exceed the allowable value,
which will often lead to the destruction of the rock mass structure and support structure of tunnel and
bring great potential safety hazards and economic losses to the project [22–26]. With the continuous
emergence of large deformation tunnels in soft rock mass, serious geological hazards are caused. Much
attention has been paid to this and relevant research has been carried out. A lot of valuable data
and experience have been accumulated in large deformation of soft rock mass at home and abroad,
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and there have been some achievements [27–33]. However, there is no unanimous and clear definition
of large deformation of soft rock mass. Not only is there a lack of systematic research in theory, but in
engineering practice also, the large deformation of soft rock mass has so far not been conclusively
addressed in the design code. Therefore, the problem of large deformation of soft rock mass has
always been one of the hotspots in tunnel research. Rocks containing a considerable amount of clay
minerals intrude on the tunnel clearance slowly with an undetectable volume increase, as noted in the
earliest description of large deformation of surrounding rock by Terzaghi [34]. The concept of large
deformation of soft rock was proposed by the International Society of Rock Mechanics in 1995 [35].
It is a time-dependent deformation behavior, usually occurring around the excavation surface of an
underground space and is generally caused by creep due to the instability of ultimate shear stress.
The deformation may stop during excavation or last for a very long time.

When defining large deformation of soft rock mass, most previous researchers have provided
qualitative descriptions in terms of high in situ stress and weak surrounding rock. Tan et al. [36]
proposed that the mechanism of convergence deformation of surrounding rock should include five
aspects: plastic wedge, flow deformation, swelling, dilatation and deflection of surrounding rock.
Anagnostou [37] proposed that large deformation mainly depends on rock strength and overburden
thickness. In principle, it can occur in any type of rock mass. Singh et al. [38] pointed out that large
deformation occurs on the premise of weak surrounding rock combined with high in-situ stress.
Jiang et al. [39] proposed a theoretical method for predicting the development of a plastic zone and
loosening pressure in soft rock tunnels and discussed the influence of the mechanical properties of soft
rock on loosening pressure. Numerous studies have been conducted to study the failure mechanism
and law. In addition to the definition, numerous studies have been conducted to study on the failure
mechanism and law. The characteristics of deformation and failure of a typical roadway were analyzed,
and it was proposed that the fundamental reason for the failure was that traditional support methods
and materials could not control the large deformation of deep soft rock. These studies are mainly
based on the qualitative analysis of engineering cases. Guo et al. [13] studied the mechanism of
large deformation instability of deep soft rock. Yang et al. [40] studied the large deformation and
failure mechanism of deep soft rock tunnel in Xin’an Coal Mine. Zhang et al. [41] pointed out the
orthogonal relationship between the maximum displacement direction and the maximum in-situ
stress direction of tunnels in weak surrounding rock. Jiang et al. [42] proposed defining the large
deformation of soft rock as a progressive plastic deformation failure of tunnel and underground
engineering surrounding rock with an obvious time effect. The targeted support scheme is one
of the most effective methods of controlling soft rock deformation, and previous researchers have
also made good progress on the theory of large deformation support in soft rock. While support
ideas are revolutionized, support measures have been put forward including retractable support and
bolt-net-cable coupling support. Yassaghi et al. [43] suggested that a second lining should be applied in
time to resist the deformation of surrounding rock in large a deformation tunnel, and considered that
increasing the strength and stiffness of the second lining is an effective method for preventing large
deformation. Kanrmen et al. [44] pointed out that the settlement of the vault is the most prominent
phenomenon after excavation of a soft rock tunnel and the timely construction of a reverse arch and
closed lining can significantly reduce the displacement of the tunnel. He et al. [45] eliminated large
deformation through the secondary bolt-net-cable coupling support and used a grouting bolt to control
a large deformation of floor heave.

However, due to the particularity of underground engineering, no theory or treatment measures
can deal with the complicated and changeable geological conditions. This has resulted in the theoretical
research of large deformation of soft rock continuing to lag behind engineering application and still
not being thoroughly solved. Therefore, it is necessary to comprehensively and carefully consider the
distribution of large deformation stress fields in soft rock, the prediction of large deformation and the
selection of excavation and support methods and put forward corresponding views and solutions.
This paper is based on the construction project of the diversion tunnel at the Dongsong Hydropower
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Station. Through theoretical study of the surrounding rock stress field, analysis of the space-time effect
of numerical simulation and real-time feedback of field monitoring, the whole process of excavation
and support of a large deformation tunnel in soft rock is studied. The deformation mechanism and
law of soft rock mass tunnel is analyzed. The excavation scheme according to the time-space effect of
soft rock mass tunnel is optimized. A method to determine the reserved deformation of soft rock mass
tunnel is proposed. The use of real-time feedback monitoring technology for a large deformation tunnel
is discussed. The results can provide a useful reference for the theoretical basis and technical support
for the construction of large deformation tunnels in soft rock mass. At the same time, the results can
further deepen and enrich the study of this kind of tunnel.

2. Stress Distribution and Deformation Law

The whole process of tunnel excavation and support is a dynamic process of continuous change
of rock mass stress, support stress and displacement. Mastering the stress distribution, displacement
distribution, and plastic zone distribution and supporting the structural effect of rock mass in each
important stage of tunnel excavation is the basis of establishing a tunnel excavation scheme and a
supporting scheme.

The stress state of rock mass during tunnel construction can be divided into three important
stages: the initial stress state before excavation (primary stress state), the secondary stress state before
support after excavation, and the tertiary stress state after completion of support.

2.1. Initial Stress Field

The initial stress field refers to the original stress field existing in rock mass before tunnel
excavation; it is formed by long-term geological tectonic movement and is closely related to the
physical mechanics and structure of the rock. Generally, the initial stress field is very complex, and is
divided into two parts in geomechanics: the gravity stress field and the tectonic stress field.

The formation of the initial stress field is closely related to the rock mass structure, properties,
burial conditions and history of tectonic movement. The problem is complex as it is also very difficult
to distinguish the gravity stress field from the tectonic stress field and quantitatively determine the
tectonic stress field. At present, it is common to divide the initial stress field into vertical stress
and horizontal stress for simplification. The vertical stress is derived from the gravity stress, while
the horizontal stress is proportional to the gravity stress, and the magnitude is the lateral pressure
coefficient multiplied by the horizontal stress [46,47].

σh = γ · h (1)

σv = K0 · σh (2)

where γ is the bulk density of rock mass (N/m3) and K0 is the coefficient of lateral pressure.

2.2. Secondary Stress Field

After the excavation of the tunnel, because the rock mass is released from the constraints
at the excavation surface, the stress field balance of the original rock is destroyed, resulting in
the displacement of the points around the tunnel, and stress redistribution. However, the stress
redistribution is limited to the rock mass within a certain range around the tunnel, which is usually
called the rock mass, and the stress state after redistribution is called the secondary stress state.
Assuming that the rock is under elastic stress, the formula of stress distribution and displacement of
rock mass of circular tunnel are deduced as follows [46,47]:

σr =
σy

2

[
(1 − a2)(1 + K0) + (1 − 4a2 + 3a4)(1 − K0) cos 2θ

]
(3)
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σt =
σy

2
[(1 + a2)(1 + K0)− (1 + 3a4)(1 − K0) cos 2θ (4)

τrt = −
σy

2
(1 − K0)(1 + 2a2 − 3a4) sin 2θ (5)

ua =
1 + µ

2E
σya[1 + K0 − (3 − 4µ)(1 − K0) cos 2θ] (6)

where σr is radial stress (N/m2); σt is circumferential stress (N/m2); τrt is shear stress (N/m2); ua is
displacement around the tunnel (m); a is the radius of tunnel (m); K0 is the lateral pressure coefficient
(ratio of horizontal initial stress to vertical initial stress); E is the elastic modulus of rock mass (N/m2);
µ is Poisson’s ratio of rock mass; σy is vertical initial stress (N/m2); and θ is the angle between the
position of the rock mass points in polar coordinates and the vertical direction (◦).

When the stress of the rock mass reaches a certain value, the yield of rock mass reaches a plastic
state. Based on the Coulomb-Mohr criterion, the formulas for calculating the yield of rock mass under
hydrostatic stress state are deduced as follows [46,47]:

ro = a[
2

ξ + 1
·

σy(ξ − 1) + Rb

Rb
]

1
ξ−1

(7)

σrp =
Rb

ξ − 1
[(

r
a
)

ξ−1
− 1] (8)

σtp =
Rb

ξ − 1
[(

r
a
)

ξ−1
ξ − 1] (9)

ua =
1

2G
(σy − σr0)

r2
0
a

(10)

where r0 is the radius of plastic zone; ξ = 1+sin ϕ
1−cos ϕ ; Rb = 2c cos ϕ

1−sin ϕ ; σrp is the radial stress in the plastic

zone; σtp is the tangential stress in the plastic zone; c is the cohesion of the rock mass (N/m2); ϕ is the
internal friction angle of the rock mass (◦); r is the radius of the location of the rock mass points (m);
σr0 is the radial stress on the plastic boundary (N/m2); and G is shear modulus.

2.3. Tertiary Stress Field

In the state of secondary stress, if the rock mass has high strength, good integrity and a favorable
cross-section shape, the deformation of rock mass will terminate spontaneously to a certain extent, and
the cave (rock mass) will be stable.

On the contrary, when the rock mass after tunnel excavation is not self-stable, support is needed
to provide support resistance to the rock mass. Support resistance redistributes rock mass stress,
which is called the cubic stress field. The formulas for calculating the plastic zone and surrounding
displacement in the rock mass in the cubic stress field are as follows [46,47]:

ro = a[
2

ξ + 1
·

σy(ξ − 1) + Rb

pa(ξ − 1) + Rb
]

1
ξ−1

(11)

σr0 =
Rb

ξ − 1
[(

r0

a
)

ξ−1
− 1] + (

r0

a
)

ξ−1
· pa (12)

ua =
1

2K
(σy sin ϕ + c cos ϕ)

r2
0
a

(13)

where pa is the support resistance (N/m2).
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From Equations (11)–(13), it can be seen that the main influencing factors of the plastic zone and
surrounding displacement after tunnel excavation and support are tunnel burial depth (initial stress
field), support resistance and rock mass strength (cohesion c, friction angle ϕ).

3. Radius of Plastic Zone and Peripheral Displacement

Based on the theoretical analysis in the above section, the analytical solutions of surrounding
displacement and plastic zone distribution under different burial depth, rock mass strength and
support resistance were calculated, respectively. According to the calculation formula in Section 2,
when calculating the radius of the plastic zone and displacement around the tunnel in soft rock,
the difference between soft rock and other rocks was reflected in a relatively low internal friction
angle and cohesion. Therefore, cohesion = 0.2 MPa and friction angle = 23.5◦ are taken as the basic
working conditions for analysis. Considering the generalisability of the analytical results, the selected
calculation model is for the excavation section of circular tunnel with a radius of 4 m.

3.1. Effect of Tunnel Burial Depth

The burial depth of the tunnel is reflected in the vertical initial stress, σy. The variation curve of
the radius of the plastic zone with burial depth (tunnel radius = 4 m, internal friction angle = 23.5◦,
cohesion = 0.2 MPa) is shown in Figure 1a. As can be seen from Figure 1a, the radius of the plastic
zone increases with the increase of tunnel burial depth. For example, when the support resistance is
assumed to be 0.4 MPa, the radius of the plastic zone of the tunnel is 6.2 m at a depth of 100 m, and
12.9 m at a depth of 300 m.

The variation curve of peripheral displacement with burial depth (tunnel radius = 4 m, internal
friction angle = 23.5◦, cohesion = 0.2 MPa) is shown in Figure 1b. It can be seen from Figure 1b that the
peripheral displacement increases sharply with the increase of tunnel depth. For example, when the
support resistance is assumed to be 0.4 MPa, the peripheral displacement of the tunnel is 9.1 cm at a
depth of 200 m, and 96.7 cm at a depth of 500 m. It is evident that the depth of the tunnel has a great
influence on radius of the plastic zone and the surrounding displacement. From the later research,
we can see that this property will be even more significant in soft rock tunnels.
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Figure 1. (a) Variation curve of radius of plastic zone with burial depth; (b) Variation curve of peripheral
displacement with burial depth.

3.2. Effect of Rock Mass Strength

In Coulomb-Mohr strength theory, the main influencing factors of rock mass strength are cohesion
and internal friction angle. Because the change of internal friction angle of different rock mass is
relatively small, the strength of rock mass is usually expressed by cohesion. The variation curve
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of the radius of the plastic zone with cohesion of rock mass (tunnel radius = 4 m, internal friction
angle = 23.5 ◦, burial depth = 300 m) is shown in Figure 2a. As can be seen from Figure 2a, the radius
of the plastic zone decreases with the increase of cohesion. For example, the radius of the plastic zone
of the tunnel is 20.7 m at a cohesion of 0.3 MPa without support, while at a cohesion of 1.0 MPa it
decreases sharply to 7.4 m. This rule is very useful for the design of the bolt length.

The variation curve of peripheral displacement with cohesion of rock mass (tunnel radius =
4 m, internal friction angle = 23.5◦, burial depth = 300 m) is shown in Figure 2b. It can be seen
from Figure 2b that the peripheral displacement decreases sharply with the increase of cohesion.
For example, the peripheral displacement of the tunnel is 26.9 cm at a cohesion of 0.2 MPa without
support, while at a cohesion of 1.0 MPa it decreases sharply to 4.3 cm.
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3.3. Effect of Support Resistance

The effect of supporting, is equivalent to exerting a resistance around the tunnel to prevent the
deformation of rock mass. The result is that the support resistance changes the stress state of the
rock mass which inevitably accompanies the development of deformation. The variation curve of the
radius of the plastic zone with support resistance (tunnel radius = 4 m, internal friction angle = 23.5◦,
cohesion = 0.2 MPa) is shown in Figure 3a. It can be seen that radius of the plastic zone decreases with
the increase of support resistance. For example, when the tunnel burial depth is 300 m, the radius of
the plastic zone of the tunnel is 20.7 m at support resistance of 0.3 MPa, while at support resistance of
0.8 MPa it decreases to 9.7 m.

The variation curve of peripheral displacement with cohesion of rock mass (tunnel radius = 4 m,
internal friction angle = 23.5◦, cohesion = 0.2 MPa) is shown in Figure 3b. It can be seen from Figure 3b
that the peripheral displacement decreases sharply with the increase of support resistance. For example,
when the tunnel burial depth is 300 m, the peripheral displacement of the tunnel is 268.9 mm without
support, while with support resistance of 0.8 MPa it decreases to 58.8 mm. It can be seen that the
influence of support resistance on the radius of the plastic zone and surrounding displacement is also
great, especially in soft rock tunnel. In soft rock tunnel construction, reasonable supporting means are
the main measure to control the deformation of soft rock.
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The above theoretical analysis of tunnel mechanics reveals the stress and deformation law of rock
mass in the process of excavation and support of soft rock tunnel in a two-dimensional state, and
shows the influence of tunnel burial depth (initial stress field), rock mass strength (c, ϕ) and support
resistance on the plastic zone and peripheral displacement after excavation and support of the soft
rock tunnel. However, the rock mass of soft rock tunnel has obvious expansibility and rheological
characteristics, and the deformation of rock mass will continue to change with time; thus, tunnel
construction is a process of intersecting space and time effects, which are manifested in the space-time
effect. Therefore, it is necessary to further analyze the excavation and support of soft rock tunnel
according to the space-time effect.

4. Numerical Simulation of Excavation and Support

The Dongsong Hydropower Station is located in Ganzi Prefecture, Sichuan Province, China, at an
altitude of over 2500 m. This paper is based on the No. 2 diversion tunnel with a vertical burial depth
of about 300 m. Surrounding rock is mainly phyllite with weak and fractured rock mass. Because of
high in situ stress, large deformation often occurs after tunnel excavation. The design section of the
tunnel is horseshoe-shaped with an equivalent radius of 4 m.

In the three-dimensional numerical simulation analysis, the space-time effect is reflected by the
stress release process in the excavation and support process, and the theory mentioned above is
further improved.

4.1. Numerical Model and Calculation Parameters

Taking the tunnel and rock mass as the research object, the model was established, and the
Mohr-Coulomb model was selected as the constitutive model. The horizontal and vertical directions of
the model are 80 m (about 10 times the diameter of the tunnel), and the mesh of the three-dimensional
model is divided into 44,580 elements and 48,007 nodes, as shown in Figure 4. The buried depth of the
tunnel is 300 m, which makes it a deep-buried tunnel. Unlike shallow burial, terrain changes have little
effect on the tunnel excavation. The initial in situ stress was applied according to the buried depth and
the fixed displacement method was used for simulation. The normal displacement constraints were
applied to the side and bottom of the numerical model, and the top was the free surface.
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The rock mass of the diversion tunnel is dominated by phyllite. Based on the detailed geological
exploration report, relevant codes and engineering analogy of the Dongsong Hydropower Station,
the calculation parameters of the rock mass were selected as shown in Table 1. The design and
excavation section of the main diversion tunnel is horseshoe-shaped. The arch frame support is made
of 18 I-steel with a longitudinal spacing of 100 cm. The bolt support adopts a mortar bolt with a length
of 4.5 m and spacing of 1.5 × 1 m. Feet-lock bolts are constructed at the arch foot. Initial support is
made of shotcrete with a strength of C20 (the standard strength of concrete is 20 MPa) and thickness of
20 cm. The spacing of the welded steel mesh is 15 cm (@ 15 × 15).

The second lining is made of mold casting concrete with a strength of C30 and thickness of 60 cm.

Table 1. Calculation parameters of rock mass.

Parameter Severity
(KN/m3) Passion’s Ratio Friction Angle

(◦)
Elastic Modulus

(GPa)
Cohesion

(MPa)

Phyllite 21.0 0.40 28 1.0 0.2

Rock mass was simulated by a solid element, arch support was simulated by a beam element, bolt
support was simulated by a cable element, and concrete was simulated by a shell element. Welded
steel mesh was not simulated separately, which was achieved by equivalent improvement of shotcrete
parameters. The physical parameters of each supporting structure in practical engineering are shown
in Table 2.

Table 2. Calculation parameters of the supporting structure.

Parameter Severity (KN/m3) Passion’s Ratio Elastic Modulus (GPa) Cohesion (MPa)

Steel arch frame 82 0.29 185 -
Bolt 80 0.3 170 0.02

Shotcrete 23 0.2 21 -
Mold casting concrete 25 0.2 30 -
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In the simulation, the two-bench method scheme was adopted according to the actual construction.
The upper and lower benches were excavated at the same time, and the excavation footages were
kept unchanged. The excavation footage was 1 m per cyclic step, and initial support was constructed
immediately after the excavation was completed. Assuming that initial support is in close contact with
the rock mass, the buried depth of the tunnel was 300 m, and the lateral pressure coefficient was 1.0.

4.2. Determination of The Optimal Longitudinal Bench Length

During the excavation process with the bench method, the most critical factor affecting
deformation of the tunnel is the length of the bench. In this section, the deformation of the tunnel
under different bench lengths was simulated to determine the optimal bench length. A representation
of the bench method is shown in Figure 5.
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Four models with 5, 10, 15 and 20 m bench lengths, respectively, were selected for simulations.
Calculation results of these models are shown in Table 3. The distributions of peripheral displacement
and the plastic zone with different bench lengths are shown in Figures 6 and 7.

Table 3. Simulation results with different longitudinal bench lengths.

Bench
Length

Rock Mass Steel Arch
Frame

Vault
Settlement

(cm)

Sidewall
Convergence

(cm)

Bottom
Uplift (cm)

Longitudinal
Displacement of
Tunnel Face (cm)

Maximum
Axial Force

(KN)

Maximum
Bending Moment

(N·m)

5 m 3.982 6.278 11.14 12.115 1.733 × 107 1.604 × 105

10 m 5.008 8.527 11.81 17.024 1.491 × 107 1.492 × 105

15 m 5.704 9.680 12.02 19.591 1.340 × 107 1.454 × 105

20 m 6.08 10.20 12.11 20.006 1.299 × 107 1.466 × 105
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With the increase of the bench length, the vault settlement, sidewall convergence, bottom uplift,
and longitudinal displacement of the tunnel face all clearly increase, while the axial force and bending
moment of the steel arch frame tend to decrease. The total range of the plastic zone increases with
the increase in bench length, and is mainly distributed at the bottom, the sidewalls and the tunnel
face. The plastic zone near the tunnel face tends to decrease with the increase of bench length. This is
because a bench with sufficient length can stabilize the tunnel face. Therefore, increasing the bench
length can effectively control the development of the plastic zone of the tunnel face.

From the above conclusions, it can be further concluded that the short bench method can
effectively control the deformation of the surrounding rock and the plastic zone. As shown in Figures 6
and 7, the tunnel plastic zone and displacement decrease with the reduction of bench length, but a
bench length that is too short makes it difficult for construction machinery to work (for example,
the length of a rock drilling trolley is about 9~13 m). Considering that enough working intervals
should be reserved on the bench in actual construction, the optimal bench length can be determined to
be 10~14 m (about 1.5~2 D, where D represents the diameter of the tunnel).
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4.3. Peripheral Displacement of Tunnel

The model with the optimal bench length of 12 m, was selected for the simulation calculations
here. When the upper bench face of the tunnel was excavated to different positions, the relationship
between displacement and the time-history of the characteristic points (vault) of the tunnel monitoring
section were sampled and recorded. When the tunnel was half excavated, the displacement data of the
characteristic points were selected when the distance between the monitoring section and the upper
bench face was −16 m (−2 D), −8 m (−1D), −4 m (−0.5 D), −0 m (D), 8 m (1 D), 16 m (2 D) and 32 m
(4 D), respectively. The curves of the relationship between displacement and time-history are shown in
Figure 8. Displacement at monitoring points of the tunnel in the trial propulsion stage is shown in
Table 4. The negative sign indicates that the monitoring section is in the range of unexcavated rock.
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Figure 8. Time-history curve of vault settlement at monitoring points at different distances from upper
tunnel face: (a) the distance is −2 D; (b) the distance is −1 D; (c) the distance is −0.5 D; (d) the distance
is 0 m; (e) the distance is 1 D; (f) the distance is 2 D; (g) the distance is 4 D; (h) curve in total time history.
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Table 4. Displacement at monitoring points of tunnel in trial propulsion stage.

Distance Between Monitoring Point and Tunnel Face/m −2 D −1 D −0.5 D 0 1 D 2 D 4 D

Vault settlement at monitoring point/cm 0.0267 0.1662 0.4334 2.950 4.711 4.987 4.998
Percentage of total displacement/% 0.534 3.324 8.668 59.04 94.22 99.74 99.96

As can be seen from Figure 8 and Table 4, the vertical displacement of the vault appears at the
monitoring point of −2 D. Displacement reaches almost the maximum at the monitoring point of 4 D.
The displacement release rate is the highest at the tunnel face (i.e., the maximum slope of the curve).
Most of displacement occurs after the tunnel face is propelled through the monitoring point.

The statistical data of displacement and the time-history of the characteristic points of the
monitoring sections were analyzed by the same method. When the tunnel face was propelled to
the monitoring point, the displacement at this point reached about 11.5% of the total displacement
(the displacement release rate was 11.5%). When the tunnel face was propelled at 2 D in front of the
monitoring point, the displacement release rate reached about 80%. Meanwhile, analyses found that
the change law of the curve was quite different below and above 0.5 D, so it is hard to fit with only one
curve. Therefore, the curve is divided into two parts for fitting, using the curve Equations (14) and
(15), respectively.

Part 1 : y = 0.0023x5 + 0.029x4 + 0.1195x3 + 0.22x2 + 02154x + 0.1197 (14)

Part 2 : y = 0.0033x5 − 0.0468x4 + 0.2602x3 − 0.7558x2 + 1.3053x − 0.1977 (15)

The fitting curve is shown in Figure 9. Using Equations (14) and (15), the displacement release rate
of any point at different distances from the tunnel face can be found. For example, the displacement
release rate is 57% at 1 D and 85% at 2 D. Therefore, the displacement can be effectively controlled if
the second lining is constructed in time at a position within 2 D (16 m) behind the tunnel face.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 18 

Table 4. Displacement at monitoring points of tunnel in trial propulsion stage. 

Distance Between Monitoring Point and Tunnel Face/m −2 D −1 D −0.5 D 0 1 D 2 D 4 D 
Vault settlement at monitoring point/cm   0.0267 0.1662 0.4334 2.950 4.711 4.987 4.998 

Percentage of total displacement/% 0.534 3.324 8.668 59.04 94.22 99.74 99.96 

As can be seen from Figure 8 and Table 4, the vertical displacement of the vault appears at the 
monitoring point of −2 D. Displacement reaches almost the maximum at the monitoring point of 4 D. 
The displacement release rate is the highest at the tunnel face (i.e., the maximum slope of the curve). 
Most of displacement occurs after the tunnel face is propelled through the monitoring point. 

The statistical data of displacement and the time-history of the characteristic points of the 
monitoring sections were analyzed by the same method. When the tunnel face was propelled to the 
monitoring point, the displacement at this point reached about 11.5% of the total displacement (the 
displacement release rate was 11.5%). When the tunnel face was propelled at 2 D in front of the 
monitoring point, the displacement release rate reached about 80%. Meanwhile, analyses found that 
the change law of the curve was quite different below and above 0.5 D, so it is hard to fit with only 
one curve. Therefore, the curve is divided into two parts for fitting, using the curve Equations (14) 
and (15), respectively. 

Part 1: y = 0.0023𝑥 + 0.029𝑥 + 0.1195𝑥 + 0.22𝑥 + 02154𝑥 + 0.1197 (14) 

Part 2: y = 0.0033𝑥 − 0.0468𝑥 + 0.2602𝑥 − 0.7558𝑥 + 1.3053𝑥 − 0.1977 (15) 

The fitting curve is shown in Figure 9. Using Equations (14) and (15), the displacement release 
rate of any point at different distances from the tunnel face can be found. For example, the 
displacement release rate is 57% at 1 D and 85% at 2 D. Therefore, the displacement can be effectively 
controlled if the second lining is constructed in time at a position within 2 D (16 m) behind the tunnel 
face. 

5 4 3 2 1 0 -1 -2 -3

1.0

0.8

0.6

0.4

0.2

0.0

 Distances from the tunnel face (D)

D
isp

la
ce

m
en

t r
el

ea
se

 r
at

e y=0.0023x5+0.029x4+0.1195x3

                               +0.22x2+0.2154x+0.1197

 y=0.0033x5+0.0046x4+0.2602x3

                      +0.7558x2+1.3053x+0.1977

Excavation direction

Tunnel face

Part 2 Part 1  
Figure 9. Curve of the displacement release rate around the tunnel face. 

However, the construction of second lining should not occur too early. If it is constructed too 
early, it will not make full use of the bearing capacity of the rock mass and this will make the lining 
bear too much of the rock mass load. This may lead to the lining cracking due to excessive stress, 
which will affect the durability and safety of the tunnel structure. The surrounding rock of a soft rock 
tunnel is prone to large deformation after excavation. In order to prevent the initial support from 
invading the clearance after deformation, the excavation contour must be enlarged along the radial 
direction. The size of the enlarged radial direction is called the reserved deformation. Theoretically, 
the reserved deformation should be slightly larger than the total deformation around the tunnel in 
the process of excavation and support. Equations (14) and (15) and their fitting curves (Figure 9) are 
very useful for estimating the reserved deformation and the effect of supporting structures.  
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However, the construction of second lining should not occur too early. If it is constructed too early,
it will not make full use of the bearing capacity of the rock mass and this will make the lining bear
too much of the rock mass load. This may lead to the lining cracking due to excessive stress, which
will affect the durability and safety of the tunnel structure. The surrounding rock of a soft rock tunnel
is prone to large deformation after excavation. In order to prevent the initial support from invading
the clearance after deformation, the excavation contour must be enlarged along the radial direction.
The size of the enlarged radial direction is called the reserved deformation. Theoretically, the reserved
deformation should be slightly larger than the total deformation around the tunnel in the process of
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excavation and support. Equations (14) and (15) and their fitting curves (Figure 9) are very useful for
estimating the reserved deformation and the effect of supporting structures.

The above theoretical analysis and numerical tunnel simulation reveal the changing law of the
surrounding rock state during the process of excavation and support of a soft rock tunnel; however,
it is based on an ideal state, which is different from an actual situation. When this is applied to
practical engineering, we should also consider aspects of the actual engineering construction, such as
the inhomogeneity of the rock mass, tectonic crustal stress, etc.

The inhomogeneity of surrounding rock can be obtained by in-situ geological observation and
advanced geological prediction. In this project, the occurrence and strike of phyllite should be
considered. Except for some sections, most sections are fractured, the attitude of the bed is complicated,
irregularity is obvious, and the inhomogeneity is clear. In terms of tectonic crustal stress, the project is
located in a complex fault zone. The tectonic crustal stress is very complex, which has the greatest
impact on the project. Its direct impact is the irregularity of deformation of the rock mass. Therefore,
it was necessary to improve the above research results combined with field monitoring data.

5. In-time Feedback of Monitoring Data

The above research results were applied to tunnel construction in a large deformation section of
soft rock. Through tracking the implementation of the scheme and field monitoring data, the research
results were checked and improved, and in-time feedback provided for the tunnel construction.

Section 4 of this paper showed that the settlement of the vault was 5 cm and the convergence of
the sidewall was 8.5 cm. On this basis, the support outline was designed, and the reserved deformation
was 10 cm, as shown in Figures 10–12. It can be seen that the construction of the initial part of tunnel
(Figure 10) is guided by the construction suggestions given above. The actual support outline of the
tunnel in this section is mostly consistent with the design, but the displacement of the right sidewall
is too large. In order to ensure adequate thickness of the second lining (60 cm), the inner outline of
second lining is not allowed to intrude into the tunnel clearance outline. Feedback on this situation
was provided in time for later construction; e.g., to expand and excavate the right wall appropriately
and increase the reserved deformation to 35 cm and construct the second lining a little earlier. It can be
seen that the final deformation of the tunnel has been effectively controlled to meet the design and
construction requirements from the construction of the middle and terminal parts of tunnel (Figures 11
and 12).
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part of tunnel.

6. Conclusions

This paper revealed stress field distribution and deformation law in a large deformation tunnel of
soft rock. Theoretical analysis, numerical simulation and field monitoring were employed to investigate
the surrounding rock stress and displacement state, evaluate the plastic zone radius, optimize the
initial support and propose a reasonable reserved deformation. The following conclusions are drawn:

(1) The bolt length can be determined by the radius of the plastic zone. During the construction of
a small section tunnel, bolts need to be lengthened several times to form long bolts, and long
boreholes are easy to collapse, which is very disadvantageous to the construction period. Short
bolts (4.5 m) are used to fix the steel arch on the surrounding rock horizontally and increasing the
number of bolts effectively controls the occurrence of large deformation in soft rock mass.

(2) The short bench method can effectively control the deformation of surrounding rock and the
plastic zone. In order to reserve enough working intervals on the bench in actual construction,
the optimal bench length is about 1.5~2 D of the tunnel.

(3) With the reinforcement of tunnel support and the advance of supporting construction time,
the peripheral displacement and radius of plastic zone of tunnel decrease, so the support
stiffness and supporting time can be optimized. On the premise of making as much use of
the bearing capacity of the rock mass as possible, the second lining should be constructed early.
The displacement can be effectively controlled by constructing the second lining in time at the
position about 2 D from the tunnel face.

(4) The reasonable reserved deformation should be considered in the excavation of a soft rock
tunnel to avoid secondary expanding excavation. The reserved deformation in different parts
and different sections of the tunnel may be different and it is necessary to make the pertinent
adjustments. Through numerical simulation and field monitoring, the reserved deformation was
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finally determined to be 10~35 cm. In addition, in consideration of the measurement uncertainties,
a Bayesian approach can be applied to predict deformations to adjust the value [48].

(5) The construction, monitoring and measurement of tunnel in soft rock must be strengthened. By
collecting rock mass deformation information, the stability state of the rock-supporting system,
the rationality of supporting structure parameters and construction methods can be determined.
Based on the feedback information, the size of the reserved deformation, support design and
operation time can then be optimized, respectively.
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