
applied
sciences

Article

A Low-Complexity Ordered Statistics Decoding
Algorithm for Short Polar Codes

Yusheng Xing * and Guofang Tu
School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences,
Beijing 101408, China; gft@ucas.ac.cn
* Correspondence: yushengjsman@gmail.com

Received: 9 December 2018; Accepted: 20 February 2019; Published: 26 February 2019

Abstract: In this paper, we propose a low-complexity ordered statistics decoding (OSD) algorithm
called threshold-based OSD (TH-OSD) that uses a threshold on the discrepancy of the candidate
codewords to speed up the decoding of short polar codes. To determine the threshold, we use
the probability distribution of the discrepancy value of the maximal likelihood codeword with
a predefined parameter controlling the trade-off between the error correction performance and
the decoding complexity. We also derive an upper-bound of the word error rate (WER) for the
proposed algorithm. The complexity analysis shows that our algorithm is faster than the conventional
successive cancellation (SC) decoding algorithm in mid-to-high signal-to-noise ratio (SNR) situations
and much faster than the SC list (SCL) decoding algorithm. Our addition of a list approach to our
proposed algorithm further narrows the error correction performance gap between our TH-OSD and
OSD. Our simulation results show that, with appropriate thresholds, our proposed algorithm achieves
performance close to OSD’s while testing significantly fewer codewords than OSD, especially with
low SNR values. Even a small list is sufficient for TH-OSD to match OSD’s error rate in short-code
scenarios. The algorithm can be easily extended to longer code lengths.

Keywords: channel coding; polar codes; ordered statistics decoding; short codes

1. Introduction

Since polar coding’s introduction by Arikan in 2009, the method has attracted a considerable
amount of research attention as the first theoretically proven method for achieving channel capacity.
In his pioneering paper, Arikan proposed a decoding algorithm called “successive cancellation” (SC)
to prove the capacity-achieving property of polar codes [1]. The SC decoding algorithm uses the
recursive structure of polar codes to achieve a complexity of O(N log N), where N is the codeword
length. However, the performance of polar codes with a finite code length is unsatisfactory with
the suboptimal SC decoding algorithm. Several alternative decoding methods have been proposed
to improve performance. Among these, the list SC decoding method (SCL) [2] and the stack SC
decoding method (SCS) [3] show the most significant improvement in the word error rate (WER)
with a complexity of O(LN log N), where L is the SCL list size or the SCS stack depth. Unlike SC,
which keeps only the most likely path causing error propagation once a bit is decoded incorrectly,
SCL and SCS each use a list to store the most likely paths for avoiding error propagation, which
improves performance. Balatsoukas-Stimming et al. [4] proposed a log-likelihood ratio (LLR)-based
SCL decoding algorithm to simplify the original SCL method. Unlike the original SCL method, which
tracks a pair of likelihoods for a decoding path, the LLR-based SCL uses only LLRs to compute
a path-metric for a decoding path. Niu et al. [5] proposed another performance enhancement for
SCL/SCS using cyclic redundancy check (CRC) bits to identify the correct path.

As noted previously, SC decoding is suboptimal and performs unsatisfactorily when used with
short polar codes. Maximum likelihood decoding (MLD) achieves optimal error correction performance

Appl. Sci. 2019, 9, 831; doi:10.3390/app9050831 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://dx.doi.org/10.3390/app9050831
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 831 2 of 16

but with exponential complexity that is unacceptable in most cases. Researchers have investigated
MLD further to avoid the exponential complexity. Kaneko et al. [6] proposed a soft decoding algorithm
for linear block codes by generating a set of candidate codewords containing the maximum likelihood
(ML) codeword and improved it in [7]. Wu et al. [8] proposed a two-stage decoding algorithm with
a similar idea. Kahraman et al. [9] proposed a sphere decoding algorithm that searches for the ML
codeword with complexity O(N3). Wu et al. [10] proposed an ordered statistics decoding (OSD)-based
algorithm, with a complexity of O(NK2), using a threshold for the reliability of every received symbol
to reduce the number of tested codewords.

The OSD method itself is a type of most reliable independent position (MRIP) soft-decision
decoding method [11]. The MRIP-based decoding methods are usually efficient for short codes. In this
paper, we propose a threshold-based OSD decoding algorithm by setting a threshold on the discrepancy
value of a codeword to reduce complexity while maintaining a WER close to MLD for short liner
block codes and apply this algorithm on short polar codes. Simulation results show performance is
consistent with our theoretical analysis. Especially in low signal-to-noise ratio (SNR) environments,
our proposed algorithm reduces a large proportion of tested codewords when compared with the
original OSD algorithm at the price of a slight WER performance loss. Applying list decoding further
narrows this performance gap.

We organize our paper as follows: Section 2 introduces some concepts relating to polar codes,
codeword likelihood, and the OSD decoding algorithm. In Section 3, we describe our proposed
algorithm. Section 4 presents a method to determine the threshold value. Section 5 presents analyses
of performance and complexity. Section 6 describes some methods to improve the WER performance
of our proposed algorithm. Section 7 presents an extension of the proposed algorithm in longer polar
codes. Section 8 shows our simulation results. Finally, Section 9 gives our conclusions.

2. Preliminary

In this section, we briefly describe polar coding, the concept of codeword likelihood over binary
input additive Gaussian white noise (BIAWGN) channels, and the concepts of the OSD algorithm.

2.1. Polar Code Construction

Polar code is a kind of linear block code with codeword length N = 2n. Its generator matrix can be
written as GN = BN F⊗n, where BN is the bit-reversal matrix used for permutation and F⊗n is the nth
kronecker power of F = (1 0

1 1). In his original paper, Arikan constructed N new binary input multiple
output channels called bit-channels with indices in 1, 2, · · · , N. As N goes to infinity, the capacities
of these bit-channels polarize to either 0 or 1. Arikan also proved that the ratio of bit-channels with
capacity larger than (1− δ) to all bit-channels goes to C, where C is the capacity of original channel
and δ is an arbitrary small positive number. The operating principle of polar coding is the placement
of information bits in bit indices relating to bit channels with large capacities with known bits placed
in the remaining positions. Arikan used Bhattacharyya parameter Z as the boundary for the capacity
of the bit-channels. However, calculating Z is hard for most channels. In practice, the Gaussian
approximation proposed in [12] is simple and performs well enough to evaluate the bit-channels.
To perform polar encoding, the first step in code construction is to choose K best positions as the
information set and assign the remaining positions as the frozen set. By placing information bits at the
information positions and 0 at the frozen positions, we obtain the message vector U and the resulting
codeword X = UGN .

2.2. Codeword Likelihood in BIAWGN Channels

Given a received codeword YN , the log-likelihood of a codeword XN is the logarithm of the
probability of sending XN and getting YN . In BIAWGN channels with noise variance σ2 and BPSK
modulation, we can express the log-likelihood of a codeword XN given that YN was received from the
channel as

Appl. Sci. 2019, 9, 831 3 of 16

log Pr(YN |XN) = log
N

∏
i=1

Pr(yi|xi)

= log
N

∏
i=1

1√
2πσ2

exp
(
− (yi − xi)

2

2σ2

)

= −N
2

log(2πσ2) +
N

∑
i=1
− (yi − xi)

2

2σ2

= −N
2

log(2πσ2)− 1
2σ2

N

∑
i=1

y2
i −

N
2σ2 +

1
σ2

N

∑
i=1

xiyi (1)

In the final equation in Equation (1), only the last part is variable. Therefore, to find the ML
codeword, we need to find XN that maximizes ∑N

i=1 xiyi. Further, if XN is the hard decision codeword
derived from YN , maximizing ∑N

i=1 xiyi is equivalent to minimizing ∑i∈Flipped|yi| where Flipped is the

set of bits of XN that are different from XN . We use f to denote this discrepancy according to

f = ∑
i:XN

i 6=XN
i

|yi| (2)

2.3. The OSD Decoding Algorithm

As mentioned in the Introduction, the OSD method is an MRIP reprocessing decoding algorithm
that performs bit-flips on the K MRIPs, where K is the information sequence length. These K MRIPs
are determined using the generator matrix G together with the absolute value of the received symbols
from the channel. The OSD decoding algorithm with parameter L (OSD-L) has three steps. First, sort
the columns of G according to the absolute value of the vector Y which is received from the channel.
Second, find the K most reliable independent columns of the column swapped version of G. Third,
test each codeword generated by flipping no more than L bits from first K bits of the hard decision
codeword XN and select the one with minimum f as the decoded codeword. We refer readers to
Section 10.8 of Lin and Costello’s book [13] for details of these OSD algorithms.

3. The Threshold-Based OSD Decoding Algorithm

In this section, we present our threshold-based OSD decoding algorithm, called TH-OSD, for
decoding short polar codes. In the OSD-L algorithm, the ML codeword search is performed by testing
all the candidate codewords which differ by no more than L bits from XN in the first K bits. The initial
codeword XN is constructed from the K bits in the K MRIPs of the hard decision of YN , that is, there
should be very few errors in these positions. Since the reliabilities of the positions are in descending
order, the bit positions with small indices are less likely to be flipped, and the bit positions with large
indices are more likely to be flipped during the decoding process. The monotonicity of reliabilities
helps to reduce the number of candidate codewords. Further, it is intuitive that the minimal f value
decreases as SNR increases. The codeword with minimal f value, which is the final decoded codeword,
likely emerges during the early stage of the decoding process. Thus, setting a threshold fth for f and
stopping the decoding process immediately once it encounters a codeword with an f value less than
fth, reduces the number of codewords tested. Larger fth values cause fewer codewords to be tested, but
at the cost of higher WER. There is a tradeoff between WER and complexity when using this algorithm.

For block codes up to length 128 with rates higher than 0.5, an order of bdmin/4c is sufficient to
achieve the same error performance as MLD in practice [11]. The minimum codeword distance is 8 for
polar codes with length 64 or 128 and rate 0.5 (cf. Lemma 3 [14]), thus flipping up to 2 bits is adequate
for short codes. Thus, we use OSD-2 in our algorithm.

Our algorithm performs the following steps.

Appl. Sci. 2019, 9, 831 4 of 16

1. Sort y1, y2, · · · , yN into the set y′1, y′2, · · · , y′N based on their absolute values in descending order.
The corresponding permutation is denoted by π1. We then reorder the columns of G using π1 to
obtain a new matrix G1.

2. Use Gaussian elimination to obtain the reduced row echelon form of G1, denoted as matrix T. Perform
a column swap to move the K columns with pivot elements to the front of the matrix, denoted as G2.
(π2 denotes the permutations of the column swapping process.) Next, reorder y′1, y′2, · · · , y′N using
π2 to obtain y′′1 , y′′2 , · · · , y′′N. There is a one-to-one mapping between the original XN and X′′N, which

can be written as XN = π−1
1

(
π−1

2
(
X′′N

))
. Thus, decoding X′′N is equivalent to decoding XN .

3. Use the first K bits of hard decision XN of Y′′N as the initial message sequence, and use f of
the codeword XK

1 G2 as the current minimal f value, denoted as fmin. Then, perform the OSD-2
flipping process by the pseudo code described in Algorithm 1.

Algorithm 1 Flipping process.

1: Cmin ← C0 . C0 is the initial codeword
2: fmin ← f0 . f0 is the discrepancy of C0
3: C f inal ← null
4: if Fmin ≤ fth then
5: C f inal ← Cmin
6: return C f inal
7: else
8: i← K
9: while i ≥ 0 and |Yi| ≤ fmin do

10: Flip bit i, form a new codeword Ccur
11: fcur ← disCal(Ccur) . disCal(C) calculate the discrepancy of C
12: if Fcur ≤ fth then
13: C f inal ← Ccur
14: return C f inal
15: end if
16: fmin ← min(fmin, fcur)
17: i← i− 1
18: end while
19: i← K
20: while i ≥ 1 do
21: j← i− 1
22: while j ≥ 0 and |Yi|+ |Yj| ≤ fmin do
23: Flip bit i and bit j, form a new codeword
24: if fcur ≤ fth then
25: C f inal ← Ccur
26: return C f inal
27: end if
28: fmin ← min(fmin, fcur)
29: j← j− 1
30: end while
31: i← i− 1
32: end while
33: end if
34: C f inal ← Cmin
35: return C f inal

We note that, when calculating f for a new codeword XN formed by flipping one or two bits of
XK

1 in the algorithm, there is no need to perform the matrix multiplication XK
1 G2 to obtain XN . Rather,

Appl. Sci. 2019, 9, 831 5 of 16

we use XN ⊕ G2(f lipPos, :) to obtain XN because this process involves binary vector addition with
f lipPos containing the indices of the flipped bits. Since this step contributes to the main computation
complexity of the whole algorithm, changing from matrix multiplication to vector addition speeds up
the decoding process.

4. A Threshold Determination Method

In this section, we propose a method to determine the threshold used in our TH-OSD algorithm.
We first analyze the probability distribution of f values obtained from the OSD decoding procedure.
Without loss of generality, we assume an all-zero codeword is transmitted. After BPSK modulation and
transmission over an AWGN channel, the received sequence YN follows a joint Gaussian distribution
with each element yi ∼ N(1, σ2), i = 1, 2, · · · , N. Since it is hard to derive the actual probability
distribution of f , we instead derive the probability distribution of f using the flipping method to
obtain the all-zero codeword. We denote this value as f0 and express it as

f0 =
N

∑
i=1

ri (3)

where ri is the value that the ith received bit contributes to the total discrepancy value f .
The relation between ri and yi is expressed as

ri =

{
−yi, yi < 0

0, yi ≥ 0
(4)

where ri, i = 1, 2, · · · , N are independent and identically distributed (IID) random variables. Thus,
their sum, f0, has an expectation ∑N

i=1 E(ri) = N · E(r) and a variance ∑N
i=1 Var(ri) = N ·Var(r) where

E(r) and Var(r) are the expectation and variance of ri, i = 1, 2, · · · , N, respectively. Using Equation (4)
and the fact that yi ∼ N(1, σ2), we can determine E(r) and Var(r) using a standard calculation.
Following the full derivation (cf. Appendix A), we obtain the final results:

E(f0) = N
(
−Q

(
1
σ

)
+

σ√
2π

e−
1

2σ2

)
(5)

Var(f0) = N

(
(1 + σ2)Q

(
1
σ

)
− σ√

2π
e−

1
2σ2 −

(
Q
(

1
σ

)
− σ√

2π
e−

1
2σ2

)2
)

(6)

where Q(x) is the tail probability of the standard normal distribution N(0, 1).
The relationship between f and f0 merits further analysis. If the OSD decoding produces the

correct codeword, then f = f0; otherwise f < f0. Thus, normally the cumulative distribution function
(CDF) curve of f will be located slightly to the left of the CDF curve of f0. When the SNR increases, the
two distribution curves will gradually move closer to each other. According to the central limit theorem
(CLT), the distribution F(f0) converges to a normal distribution with the same mean and variance.
In most scenarios, a codeword length of 30 (N = 30) is sufficient for using the CLT approximation [15].
Thus, it is reasonable to use a normal distribution to approximate F(f0) since the codewords in question
have a minimum length of 64. This phenomenon can also be verified by simulation. Figure 1 shows
the comparison between the empirical CDF curve of f using the OSD-2 method and the Gaussian
approximation of f0 for various SNR values. The figure shows that the Gaussian approximations are
close to and located slightly to the right of the empirical CDF curve. This observation is also consistent
with our analysis.

Appl. Sci. 2019, 9, 831 6 of 16

0 5 10 15 20

discrepancy

0

0.2

0.4

0.6

0.8

1
C

u
m

u
la

te
d
 p

ro
b
a
b
ili

ty
CDF of f and f

0
, SNR = 1 dB

f
0

f

0 5 10 15

discrepancy

0

0.2

0.4

0.6

0.8

1

C
u
m

u
la

te
d
 p

ro
b
a
b
ili

ty

CDF of f and f
0
, SNR = 2 dB

f
0

f

0 2 4 6 8 10

discrepancy

0

0.2

0.4

0.6

0.8

1

C
u
m

u
la

te
d
 p

ro
b
a
b
ili

ty

CDF of f and f
0
, SNR = 3 dB

f
0

f

0 2 4 6

discrepancy

0

0.2

0.4

0.6

0.8

1

C
u
m

u
la

te
d
 p

ro
b
a
b
ili

ty

CDF of f and f
0
, SNR = 4 dB

f
0

f

Figure 1. The empirical CDF of f and the Gaussian approximation for different SNR values with
codeword length N = 64.

Having the approximate distribution of f , our threshold determination method works as follows.
After choosing a percentage value pth, 0 ≤ pth ≤ 1, we set threshold according to Equation (7), meaning
that the actual f will be less than fth with a probability greater than pth.

fth(σ, pth) = Q−1(1− pth) ·
√

Var(f0) + E(f0) (7)

If the actual f is greater than fth, TH-OSD and OSD produce the same decoding result. As pth
increases, the threshold fth decreases, and, as pth decreases, fth increases. Table 1 shows example
values for the threshold calculated using Equation (7) with pth = 0.7 and codeword length N = 64.

Table 1. Threshold values when pth = 0.7 and codeword length N = 64.

SNR(dB) 1 1.5 2 2.5 3 3.5 4 4.5

fth 5.1573 4.1801 3.3512 2.6543 2.0743 1.5971 1.2096 0.8995

5. Performance and Complexity Analysis

5.1. WER Performance Analysis

It is clear that the threshold in TH-OSD controls the decoding error correcting performance and
the decoding time. When the threshold approaches 0 (i.e., pth tends to 0), TH-OSD’s error performance
and decoding complexity approaches OSD’s. When the threshold approaches infinity (i.e., pth tends
to 1), TH-OSD’s error performance and decoding complexity approaches the performance of OSD-0,

Appl. Sci. 2019, 9, 831 7 of 16

which takes the hard decision of the K MRIPs and treats the corresponding codeword as the decoding
result. Thus, the performance curve of TH-OSD lies between the curves of OSD-0 and OSD-i. However,
the error correcting performance curve of OSD-0 is quite a loose upper-bound of the performance of
TH-OSD. In the following, we derive a tighter upper-bound of the WER performance of TH-OSD.

However, assuming an all-zero codeword, we analyze the events where TH-OSD and OSD give
different codewords. These decoding events fall into three categories. The first category consists of the
events when the OSD decoding result is incorrect. The second category consists of the events when
the OSD decoding result is correct but with the discrepancy value exceeding the threshold. The last
category consists of the events when the OSD decoding result is correct but with the discrepancy value
of the decoded codeword less than the threshold. The probability of the events in the first category
(correct TH-OSD value) is negligible. In any event from the second category, TH-OSD gives the same
codeword as OSD does since every tested codeword will have a discrepancy value larger than the
given threshold. All the events contributing to the error performance gap between TH-OSD and OSD
lie in the third category. If an event in which TH-OSD gives an incorrect codeword but OSD gives
the correct codeword occurs, then there must exist a codeword in the candidate codeword list whose
discrepancy value is smaller than the given threshold. This codeword has to be encountered before the
all-zero codeword. In view of these contributing events, we can express the gap as

Gap =

{
−→
0 = arg min

C∈Lc

f (C), ∃C 6= −→0 , f (C) ≤ fth, C is met before
−→
0

}
, (8)

where Lc denotes the list of the candidate codewords, and
−→
0 denotes the all-zero codeword.

Finally, we establish the upper-bound of the probability of the events in Equation (8). After the
derivations (found in the Appendix B), we obtain

PGap(fth) ≤
N−K−dH+1

∑
d=0

PD(d)A(d, fth), (9)

where dH is the minimum codeword weight, d indicates the Kth MRIP found at index K + d, and PD(d)
is the probability of D = d (obtained via Monte Carlo simulations). The definition of A(d, fth) can be
found in Appendix B.

5.2. Complexity Analysis

In this subsection, we discuss the time and space complexity of the proposed algorithm. We begin
by showing the complexity of each of the steps in the process as follows.

1. Sorting the columns of G into descending order of absolute values of Y takes O(N log N) time
and O(N) space.

2. The Gaussian elimination process for G1 takes O(NK2) time and O(N) space. Since we are dealing
with short codes, the binary addition of two length-N sequences requires only one instruction
instead of N instructions. Thus, the complexity of this step simplifies to O(K2).

3. In the bit-flipping process, we restrict the maximum number of flipped bits to 2. Thus, the
time complexity is O(K2) as there are K 1-bit flipping operations and K(K− 1)/2 2-bit flipping
operations at most with each flipping operation needing O(1) time to compute the f value of the
new codeword. The space complexity is O(1) since we only need to store the flipped positions of
current most likely codeword and its f value.

Appl. Sci. 2019, 9, 831 8 of 16

To summarize, TH-OSD requires O(NK2) time and O(N) space in total. The time complexity
can be simplified to O(K2) for small N. As a comparison, the SC decoding algorithm has a time and
space complexities both equal to O(N log N). SCL has a time complexity O(LN log N) and a space
complexity O(LN)[2]. Step 3 is the largest contributor to the time complexity, especially when the SNR
is low. We can reduce the decoding complexity by reducing the number of tested codewords, which is
TH-OSD’s intent.

When the SNR increases, the number of tested codewords decreases. The main source of
complexity is the matrix diagonalization, which is O(K2), as discussed above. More specifically,
the diagonalization operation in Step 2 requires K2 additions. The SC decoding algorithm performs
N log N hyperbolic tangent (tanh) operations, 1

2 N log N inverse hyperbolic tangent (atanh) operations,
1
2 N log N multiplication operations, and 1

2 N log N addition operations. (We present the complexity
analysis of the SC algorithm in Appendix C). If a tanh or atanh operation requires CT time, where T
is the time needed for an addition operation and C is the ratio of the time needed for a tanh/atanh
operation to the time needed for an addition operation, then the total time consumed by SC would
be TSC(N) =

(3
2 C + 1

)
N log NT compared with TH-OSD’s TTH−OSD(N) = K2T. We know that

hyperbolic functions are expensive compared to binary additions. Thus, C > 1. If N and K are
small, TTH−OSD(N) is usually less than TSC(N). For example, using N = 64, K = 32, results in
TTH−OSD(N) ≤ TSC(N). Thus, TH-OSD is faster than SC in high SNR scenarios for short codes.
As block length becomes longer (e.g., N ≥ 1024), TH-OSD will gradually lose its speed advantage over
SC. Thus, TH-OSD is suitable for short codes.

6. Methods to Improve WER Performance

The WER gap between TH-OSD and the original OSD algorithm is caused by the cases where OSD
gives the correct decoding result while TH-OSD does not. This happens when a candidate codeword
has an f value smaller than fth and is encountered before the correct codeword during the flipping
process. To reduce the probability of these events, we have two possible solutions: list or CRC. The list
method (TH-OSD list) is to use a list to store codewords with f values smaller than fth. Once the
number of codewords in the list reaches the list capacity or the stopping criterion is met, we output
the codeword with the smallest f value as the decoding result. To reduce the total number of tested
codewords, the list size should be small. In short codeword length scenarios, a small list is usually
sufficient for TH-OSD to achieve the WER performance of MLD. We can confirm this by simulation.
The CRC method (CRC-aided-THOSD, CA-THOSD) is to put some CRC bits into the codewords and
using them to avoid incorrect codewords during decoding process. CA-THOSD performs the same
process of TH-OSD, but with different stopping criterion. We stop the decoding process when we find
a codeword that has a discrepancy less than fth and passes the CRC test. We find by simulation that
CA-THOSD outperforms MLD.

7. Extend to Long Polar Codes

In this section, we describe how to apply TH-OSD to longer polar codes. Direct use of TH-OSD
on long codes is not practical since the number of possible codewords grows too fast. Li et al. [16]
decomposed the overall polar code into an inner code and an outer code. We can apply TH-OSD as the
decoder of the outer code and SC as the decoder of the inner code. Figure 2 shows the structure of the
hybrid TH-OSD-SC decoding algorithm. We should restrict the length of the outer code (e.g., 64, 128,
and 256) in order to apply TH-OSD. Based on the analysis in Section 5, we conclude that this hybrid
decoding algorithm provides lower WER and faster decoding speed than SC dose.

Appl. Sci. 2019, 9, 831 9 of 16

Figure 2. The structure of hybrid TH-OSD-SC decoding algorithm.

8. Simulation Results

8.1. WER Performance

In this section, we show some simulation results of our proposed algorithm. We tested the WER
performance of the proposed decoding algorithm on (64,32) and (128,64) polar codes over a BIAWGN
channel and have made other comparisons with the SC, OSD, and SCL decoding algorithm with
various list sizes. Figures 3 and 4 plot the WER performance of the decoding algorithms along with
the upper-bound computed using Equation (9) with different threshold settings.

1 1.5 2 2.5 3 3.5 4 4.5 5

SNR (dB)

10-4

10-3

10-2

10-1

100

W
E

R

WER performance comparison

OSD-0

SC

OSD-2

TH-OSD, p
th

=0.8

TH-OSD, p
th

=0.6

OSD-4

TH-OSD,p
th

=0.6, Upper bound

TH-OSD,p
th

=0.8, Upper bound

Algorithm proposed in [10], 3

Algorithm proposed in [10], 4

Algorithm proposed in [10], 5

Figure 3. WER performance comparison between SC, OSD, the algorithm proposed in [10] and TH-OSD
with codeword length 64 and rate 0.5.

Appl. Sci. 2019, 9, 831 10 of 16

0 0.5 1 1.5 2 2.5 3 3.5 4

SNR(dB)

10-3

10-2

10-1

100

W
E

R

WER performance comparison

SC

TH-OSD, p
th

=0.8

TH-OSD, p
th

=0.6

TH-OSD, p
th

=0.5

Algorithm proposed in [10], 3

Algorithm proposed in [10], 5
OSD-2

Figure 4. WER performance comparison between SC, OSD, the algorithm proposed in [10] and TH-OSD
with codeword length 128 and rate 0.5

As the figures show, the OSD algorithm performed the best among all the algorithms with
TH-OSD’s WER performance below that of OSD. However, as the threshold decreased, TH-OSD’s
WER performance approached OSD’s. The performance of OSD-4 was the same as OSD-2’s. These
observations are in line with our expectations and confirm that OSD-2 performs similarly to MLD in
short-code length scenarios. TH-OSD tested fewer candidate codewords compared to OSD. With a
high threshold, TH-OSD performed similarly to SC with low SNR values and outperformed it with
mid-to-high SNR values. As the threshold is decreased, TH-OSD’s performance improved at the price
of testing more codewords. The performance of the proposed algorithm in [10] with threshold 3σ is
rather poor, and the performance with threshold 5σ is close to OSD-2’s performance at the price of
barely no complexity reduction compared to the original OSD which can be seen in the next subsection.
The SC is a suboptimal decoding method since it discards the information provided by further frozen
bits when decoding an information bit [4]. As a result, SC’s WER performance was not good. SCL with
a large list size also achieved performance similar to MLD’s, but we excluded its curve from Figure 3
to preserve clarity.

Figures 3 and 4 also show a noticeable gap between the trajectories of TH-OSD and OSD in low
SNR areas. The gap between TH-OSD and OSD was larger with higher threshold settings since a
codeword with a higher f value is less likely to be the transmitted codeword. One way to reduce
this gap is to use a list. By using a list, a candidate codeword with an f value less than the threshold
will not be declared immediately as the decoded codeword. Instead, we put the codeword in the
candidate list if the list is not full. We terminate the decoding process once the candidate list is full and
declare the candidate codeword with the smallest f value as the decoded codeword. By simulation,
we found that a list of size 2 is enough to pull TH-OSD’s trajectory towards OSD’s. Figure 5 shows the
effects of a size 2 list: TH-OSD’s WER performance was almost the same as OSD-2’s. Figure 5 also
shows the performance of CA-OSD and CA-TH-OSD. We simulated length 64 polar code with 4-bit
CRC whose generator polynomial is g(x) = x4 + x + 1. Figure 5 shows the two crc-aided algorithms
both outperformed OSD-2. Thus, they also outperformed MLD since OSD-2 performed maximum
likelihood decoding in this scenario. CA-TH-OSD performed almost the same as CA-OSD but tested
fewer codewords.

Appl. Sci. 2019, 9, 831 11 of 16

1 1.5 2 2.5 3 3.5 4 4.5 5

SNR(dB)

10-5

10-4

10-3

10-2

10-1

100

W
E

R

WER performance of TH-OSD list and CA-TH-OSD

OSD-2

TH-OSD, p
th

=0.8

TH-OSD, p
th

=0.8, list size 2

CA-OSD

CA-TH-OSD, p
th

=0.8

Figure 5. WER performance comparison between OSD-2, TH-OSD, TH-OSD list, CA-OSD, and
CA-TH-OSD

8.2. Complexity Performance

We have also compared the speed of OSD, the algorithm proposed in [10] and TH-OSD by
counting the number of codewords tested during the decoding process. Figure 6 shows the proportion
of the number of tested codewords compared to the number of all possible codewords during the
decoding process of a (64, 32) polar code over a BIAWGN channel using OSD and TH-OSD decoding
algorithms. We simulated each algorithm 1,000,000 times for a given SNR range. The figure shows that
setting a threshold resulted in TH-OSD testing fewer codewords than OSD did, leading to less decoding
time. This reduction was considerable in low SNR situations with acceptable WER performance loss.
For example, by setting pth to 0.8, TH-OSD tested 5% of the total possible codewords, on average,
while OSD tested 55% with an SNR of 1 dB. Even setting pth to 0.6, which resulted in a similar WER
compared to OSD, TH-OSD still tested about 50% fewer codewords than OSD for a low SNR. Figure 6
also includes the complexity performance of the proposed algorithm in [10]. Although by setting
threshold to 3σ resulted in significant reduction of tested codewords, the WER performance was
unsatisfactory, which can be seen in Figure 3. To achieve near MLD WER using the algorithm proposed
in [10], we needed to set threshold to 4σ or even higher, which led to fairly small reduction of the tested
codewords compared to original OSD. Table 2 shows the numerical results of the reduction in tested
codewords between the two methods. We also noticed that, in high SNR areas, OSD and TH-OSD
were faster than SC in the simulations. This is partly because OSD and TH-OSD both terminate after
testing only a few codewords. Additionally, the Gaussian elimination operations during RREF process
are simple binary additions, while SC uses expensive hyperbolic function calculations. Although this
comparison is not rigorous, it is consistent with our analysis.

Appl. Sci. 2019, 9, 831 12 of 16

1 1.5 2 2.5 3 3.5 4 4.5 5

SNR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

R
a

ti
o

Complexity comparison

OSD-2

TH-OSD, p
th

=0.6

TH-OSD, p
th

=0.7

TH-OSD, p
th

=0.8

Algorithm proposed in [10], 5

Algorithm proposed in [10], 4

Algorithm proposed in [10], 3

Figure 6. Comparison of total tested codewords of OSD-2, the algorithm proposed in [10] and
TH-OSD-2 with different threshold settings, code length 64, and rate 0.5.

Table 2. Reduction in the number of tested codewords compared to OSD (Codeword length 64 and
rate 1/2).

SNR(dB) pth = 0.6 pth = 0.7 pth = 0.8

1 53.6% 74.9% 90.1%
1.5 36.8% 58.3% 78.0%
2 20.1% 38.3% 59.5%

2.5 11.9% 20.9% 37.6%
3 7.5% 12.3% 19.0%

3.5 4.2% 6.9% 11.0%

In summary, with appropriate threshold settings, TH-OSD increases the decoding speed of OSD
while maintaining similar WER performance. TH-OSD is faster than SC when the SNR is high. We
also conclude that TH-OSD is faster than SCL with large list sizes because SCL with a list size of L
runs 1/L as fast as SC, which is already slower than TH-OSD.

9. Conclusions

In this paper, we propose a threshold-based flexible OSD decoding algorithm to reduce the
complexity of the OSD algorithm while maintaining an acceptable WER under various thresholds
of short polar codes. Compared with other decoding algorithms, our proposed TH-OSD algorithm
shows better WER performance than SC and runs faster than the OSD algorithm with negligible WER
performance loss with appropriate threshold settings. We also provide a method for determining an
appropriate threshold value and derive an upper-bound on the WER performance of the proposed
TH-OSD algorithm. We implement a list approach to improve the WER performance of TH-OSD to
a near MLD performance. A CRC-aided TH-OSD algorithm is also presented, which outperforms
MLD. The TH-OSD can be easily extended to longer codes using the structure provided by Li et al. [16].
In the future, we plan to simplify further the expression for the upper-bound of WER performance.

Appl. Sci. 2019, 9, 831 13 of 16

Author Contributions: Conceptualization, Y.X.; methodology, Y.X. and G.T.; formal analysis, Y.X.; Investigation,
Y.X.; writing—original draft preparation, Y.X.; writing—review and editing, Y.X. and G.T.; Supervision, G.T.; and
Funding acquisition, G.T.

Funding: This work was supported by the National Natural Science Foundation of China (Grant Nos. 61571416
and 61271282) and the Award Foundation of Chinese Academy of Sciences (Grant No. 2017-6-17).

Acknowledgments: We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of
this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. The Mean of the Random Variable r Defined in Equation (4)

Using the relationship defined in Equation (4), we obtain

E(r) =
∫ 0

−∞
−y fY(y)dy

=
∫ 0

−∞
−y

1√
2πσ

e−
(y−1)2

2σ2 dy

=
∫ − 1

σ

−∞
−(σt + 1)

1√
2π

e−
t2
2 dt

= −
∫ − 1

σ

−∞

1√
2π

e−
t2
2 dt− σ

∫ − 1
σ

−∞

1√
2π

e−
t2
2 tdt

= −Q
(

1
σ

)
+

σ√
2π

e−
1

2σ2

(A1)

where Q(x) is the tail probability of the standard normal distribution N(0, 1).

Appendix A.2. The Variance of the Random Variable r Defined in Equation (4)

To obtain the variance of r, we first derive E(r2):

E(r2) =
∫ 0

−∞
y2 1√

2πσ
e−

(y−1)2

2σ2 dy

=
∫ − 1

σ

−∞
(σt + 1)2 1√

2π
e−

t2
2 dt

=
∫ − 1

σ

−∞
(σ2t2 + 2σt + 1)

1√
2π

e−
t2
2 dt

=

(
σ√
2π

e−
t2
2 + σ2Q

(
1
σ

))
+

(
− 2σ√

2π
e−

t2
2

)
+ Q

(
1
σ

)
= (1 + σ2)Q

(
1
σ

)
− σ√

2π
e−

1
2σ2

(A2)

Since the variance of a random variable equals the expectation of the square of this random
variable minus the square of the expectation of this random variable, we obtain

Var(r) = E(r2)− E(r)2

= (1 + σ2)Q
(

1
σ

)
− σ√

2π
e−

1
2σ2 −

(
−Q

(
1
σ

)
+

σ√
2π

e−
1

2σ2

)2 (A3)

www.letpub.com

Appl. Sci. 2019, 9, 831 14 of 16

Appendix B. Upper-Bound on the Gap

In the following derivations, we assume that an all-zero codeword is sent and that (y1, y2, · · · , yN)

denotes the received vector. We begin with the gap and make progressive simplifications.

PGap(fth) ≤ Pr

{
−→
0 = arg min

C∈Lc

f (C), |N−MRIP| ≤ i, ∃C 6= −→0 , f (C) ≤ fth, C is met before
−→
0

}

≤ Pr

{
−→
0 = arg min

C∈Lc

f (C), |N−MRIP| ≤ i, ∃C 6= −→0 , f (C) ≤ fth

}

=
N−K−dH+1

∑
d=0

PD(d)Pr
{
|N−MRIP| ≤ i, ∃C 6= −→0 , f (C) ≤ fth|D = d

}
=

N−K−dH+1

∑
d=0

PD(d)A(d, fth)

(A4)

where |N−MRIP| denotes the number of negative values in the MRIPs, and dH is the minimum codeword
weight. K + d is the index of the last MRIP. Lc is the candidate codeword list.

A(d, fth) can be expressed and further bounded as follows:

A(d, fth) = Pr
{
|N−MRIP| ≤ i, ∃C 6= −→0 , f (C) ≤ fth|D = d

}
≤

i

∑
j=1

(
K
j

)
Pr
{
|N−MRIP| = j, ∃C 6= −→0 , f (C) ≤ fth|D = d

}
=

i

∑
j=1

(
K
j

) ∫ fth

0
Pr
{
|N−MRIP| = j, ∃C 6= −→0 , f (C) ≤ fth, yK+d = x|D = d

}
dx

=
i

∑
j=1

(
K
j

) ∫ fth

0
Bj,d(x)dx

(A5)

We used union bound in the second step in Equation (A5). Bj,d(x) is the probability density
function of the event that a codeword chosen from the candidate list has a discrepancy less than fth
while j out of the K MRIPs are negative and the (K + d)th received value is x.

Bj,d(x) can be further bounded by the following equations:

Bj,d(x) ≤ N!
(K + d− 1)!(N − K− d)!

T(x)K+d−1 (1− T(x))j
(

1− F|y|(x)
)K+d−1

· F|y|(x)N−K−d 1√
2πσ

e−
(x−1)2

2σ2 Gσ, fth
(x)

(A6)

where T(x) represents the probability that a Gaussian random variable y ∼ N(1, σ2) is positive under
the condition |y| ≥ x; F|y| is the CDF of random variable |y|; and Gσ, fth

(x) represents the probability
that a codeword has a discrepancy less than fth under the condition y + K + d = x and j out of the K
MRIPs are negative. Since the non-zero codeword we considered here flips at least one MRIP, and its
weight is at least dH , Gσ, fth

(x) can be approximately bounded by

Gσ, fth
(x) ≤ Q

(
µ′(x)− fth + x

σ′(x)

)
(A7)

Appl. Sci. 2019, 9, 831 15 of 16

where µ′(x) and σ′(x) are the mean and variance of the portion of the discrepancy of a codeword C
(C has one “1” in the first (K + d) positions and (dH − 1) “1”s in the remaining (N − K− d) positions)
contributed by the last (N − K− d) positions. Expressions of µ′(x) and σ′(x) are as follows:

µ′(x) = (N − K− d− dH + 1) µn(x) + (dH − 1) µp(x) (A8)

σ′(x)2 = (N − K− d− dH + 1) σ2
n(x) + (dH − 1) σ2

p(x) (A9)

wherein the preceding, µn(x), µp(x), σ2
n(x) and σ2

p(x) can be calculated using the following equations:

µn(x) =
∫ 0

−x
sx(t)(−t)dt (A10)

µp(x) =
∫ x

0
sx(t)tdt (A11)

σ2
n(x) =

∫ 0

−x
sx(t) (t + µn(x))2 dt + µ2

n(x)
∫ x

0
sx(t)dt (A12)

σ2
p(x) =

∫ x

0
sx(t)

(
t− µp(x)

)2 dt + µ2
p(x)

∫ 0

−x
sx(t)dt (A13)

where s(·) is the probability density function of a random variable y ∼ N(1, σ2) under the condition
|y| ≤ x.

Appendix C. Complexity Analysis of the SC Decoding Algorithm

In this section, we analyze the number of different operations (e.g., tanh and atanh) required by
the LLR-based SC decoding algorithm. The SC decoding algorithm is a recursive algorithm with the
following complexity:

T(N) = 2T
(

N
2

)
+ t(N) (A14)

where T(N) is the number of operations needed for decoding a length-N sequence, and t(N) is the
number of operations needed for preparing data for sub-problems (the merging step). The merging
step performs N tanh operations, N

2 atanh operations, N
2 float additions, and N

2 float multiplications [4].
Thus, t(N) = 5

2 N, and Equation (A14) turns into

T(N) = 2T
(

N
2

)
+

5N
2

(A15)

Solving Equation (A15), we obtain T(N) = 5
2 N log N. These operations are composed of N log N

tanh operations, 1
2 N log N atanh operations, 1

2 N log N multiplications, and 1
2 N log N additions.

References

1. Arikan, E. A method for constructing capacity-achieving codes for symmetric binary-input memoryless
channels. IEEE Trans. Inf. Theory 2009, 55, 3051–3073. [CrossRef]

2. Tal, I.; Vardy, A. List decoding of polar codes. ISIT 2011. [CrossRef]
3. Niu, K.; Chen, K. Stack decoding of polar codes. Electron. Lett. 2012, 48, 695–697. [CrossRef]
4. Balatsoukas-Stimming, A.; Parizi, M.B.; Burg, A. LLR-based successive cancellation list decoding of polar

codes. ICASSP 2014. [CrossRef]
5. Niu, K.; Chen, K. CRC-aided decoding of polar codes. IEEE Commun. Lett. 2012, 16, 1668–1671. [CrossRef]
6. Kaneko, T.; Nishijima, T.; Inazumi, H.; Hirasawa, S. An efficient maximum-likelihood-decoding algorithm

for linear block codes with algebraic decoder. IEEE Trans. Inf. Theory 1994, 40, 320–327. [CrossRef]

http://dx.doi.org/10.1109/TIT.2009.2021379
http://dx.doi.org/10.1109/TIT.2009.2021379
http://dx.doi.org/10.1049/el.2012.1459
http://dx.doi.org/10.1049/el.2012.1459
http://dx.doi.org/10.1109/LCOMM.2012.090312.121501
http://dx.doi.org/10.1109/18.312155

Appl. Sci. 2019, 9, 831 16 of 16

7. Kaneko, T.; Nishijima, T.; Hirasawa, S. An improvement of soft-decision maximum-likelihood decoding
algorithm using hard-decision bounded-distance decoding. IEEE Trans. Inf. Theory 1997, 43, 1314–1319.
[CrossRef]

8. Wu, X.; Sadjadpour, H.R.; Tian, Z. A new adaptive two-stage maximum-likelihood decoding algorithm for
linear block codes. IEEE Trans. Commun. 2005, 53, 909–913. [CrossRef]

9. Kahraman, S.; Çelebi, M.E. Code based efficient maximum-likelihood decoding of short polar codes. ISIT
2012, 1967–1971. [CrossRef]

10. Wu, D.; Li, Y.; Guo, X.; Sun, Y. Ordered statistic decoding for short polar codes. IEEE Commun. Lett. 2016, 20,
1064–1067. [CrossRef]

11. Fossorier, M.P.; Lin, S. Soft-decision decoding of linear block codes based on ordered statistics. IEEE Trans.
Inf. Theory 1995, 41, 1379–1396. [CrossRef]

12. Trifonov, P. Efficient design and decoding of polar codes. IEEE Trans. Commun. 2012, 60, 3221–3227.
[CrossRef]

13. Lin, S.; Costello, D.J. Error Control Coding, 2nd ed.; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 2004.
14. Hussami, N.; Korada, S.B.; Urbanke, R. Performance of polar codes for channel and source coding. ISIT 2009,

1488–1492. [CrossRef]
15. Papoulis, A.; Pillai, S.U. Probability, Random Variables, and Stochastic Processes; McGraw-Hill Higher Education:

New York, NY, USA, 2002.
16. Li, B.; Shen, H.; Tse, D.; Tong, W. Low-latency polar codes via hybrid decoding. ISTC 2014, 223–227.

[CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/18.605601
http://dx.doi.org/10.1109/TCOMM.2005.849790
http://dx.doi.org/10.1109/ISIT.2012.6283643
http://dx.doi.org/10.1109/LCOMM.2016.2539170
http://dx.doi.org/10.1109/18.412683
http://dx.doi.org/10.1109/TCOMM.2012.081512.110872
http://dx.doi.org/10.1109/ISIT.2009.5205860
http://dx.doi.org/10.1109/ISTC.2014.6955118
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminary
	Polar Code Construction
	Codeword Likelihood in BIAWGN Channels
	The OSD Decoding Algorithm

	The Threshold-Based OSD Decoding Algorithm
	A Threshold Determination Method
	Performance and Complexity Analysis
	WER Performance Analysis
	Complexity Analysis

	Methods to Improve WER Performance
	Extend to Long Polar Codes
	Simulation Results
	WER Performance
	Complexity Performance

	Conclusions
	
	The Mean of the Random Variable r Defined in Equation (4)
	The Variance of the Random Variable r Defined in Equation (4)

	Upper-Bound on the Gap
	Complexity Analysis of the SC Decoding Algorithm
	References

