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Abstract: The inspection of rice grain that may be infected by seedborne disease is important for
ensuring uniform plant stands in production fields as well as preventing proliferation of some
seedborne diseases. The goal of this study was to use a hyperspectral imaging (HSI) technique to find
optimal wavelengths and develop a model for detecting discolored, diseased rice seed infected by
bacterial panicle blight (Burkholderia glumae), a seedborne pathogen. For this purpose, the HSI data
spanning the visible/near-infrared wavelength region between 400 and 1000 nm were collected for
500 sound and discolored rice seeds. For selecting optimal wavelengths to use for detecting diseased
seed, a sequential forward selection (SFS) method combined with various spectral pretreatments was
employed. To evaluate performance based on optimal wavelengths, support vector machine (SVM)
and linear and quadratic discriminant analysis (LDA and QDA) models were developed for detection
of discolored seeds. As a result, the violet and red regions of the visible spectrum were selected as
key wavelengths reflecting the characteristics of the discolored rice seeds. When using only two
or only three selected wavelengths, all of the classification methods achieved high classification
accuracies over 90% for both the calibration and validation sample sets. The results of the study
showed that only two to three wavelengths are needed to differentiate between discolored, diseased
and sound rice, instead of using the entire HSI wavelength regions. This demonstrates the feasibility
of developing a low cost multispectral imaging technology based on these selected wavelengths for
non-destructive and high-throughput screening of diseased rice seed.

Keywords: diseased seed; hyperspectral imaging; SVM; LDA; QDA; image processing

1. Introduction

Rice seeds are known to harbor endophytes along with numerous seedborne bacterial and fungal
pathogens that can decrease plant stands in production fields and limit yield [1,2]. One example of this
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is bacterial panicle blight (BPB), which is caused by the bacterium Burkholderia glumae. BPB is a globally
important disease of rice, particularly in tropical and sub-tropical climates, and can lead to 75% yield
loss in severely infested fields [3,4]. BPB is largely seedborne, with the pathogen colonizing the growing
plant and causing disease symptoms to appear after the heading stage. Infected panicles have high
sterility and blighted kernels that have dark-brown margins on the glumes [5]. One way of reducing
the incidence of BPB is to use uninfected seed for field planting. However, efforts to control the disease
have been hindered by the lack of effective chemical control and few sources of genetic resistance
being identified [6]. Although there are a few reports of quantitative trait loci being associated with
improved resistance to the disease, breeding for resistance has been hindered by the lack of adapted
germplasm, the difficulty of obtaining effective inoculations for disease screening, and the difficulty
in quantifying disease symptoms [7,8]. Furthermore, investigations into identifying and quantifying
incidence of BPB disease symptoms have been made, but information is still largely lacking. Therefore,
subjective visible assessment of panicles in the field or using post-harvested seeds for development
of the discoloration and distinctive BPB symptoms is currently the only means to quantify incidence
of the disease. Hyperspectral imaging (HSI) has been used for assessment fungal infection levels
in rice panicles, which was previously performed by human visual surveys [9,10]. These subjective
observations are tedious, time-consuming, and less accurate than HSI. Moreover, visual surveys for
disease incidence severely limit the sample quantities that can be inspected. Development of a rapid
and nondestructive technique to accurately assess disease incidence in seed would enhance disease
control research efforts and offer a means of high-throughput sorting of seed to assure healthy seed
rice for planting, to prevent spread of the disease, and to assure plant stand establishment in fields.

A variety of machine vision technologies, such as magnetic resonance and Raman and thermal
imaging, are being used to aid in quality control of food products. Among them, visible (VIS) and
near-infrared (NIR) HSI provides spectra and digital image (morphology) information. Moreover,
HSI can provide more accurate color information than a common RGB camera that uses just red,
green and blue wavelengths with broad waveband resolution, since HSI has higher spectral resolution
(narrow wavebands) and can use hundreds of continuous wavelengths [11]. For example, a recent
study showed the limitations of RGB cameras to differentiate disease severity levels compared to a
multispectral imaging method that provided different levels of sheath blight symptoms in field plots
using specific spectral information [12]. Furthermore, Van Roy et al. (2017) [13], evaluated the accuracy
of color measurements for tomato ripeness stages via a VIS-NIR HSI system. In a similar study using
VIS-NIR HSI systems, Yoon et al. (2013) [14], developed a model based on color information for
classification of six representative serogroups on agar plates. The results of these studies suggest
that an efficient sorting machine for disease-infected seeds based on a VIS-NIR HSI system should be
feasible since it can detect the most obvious feature of BPB infected rice, color change of the kernel.

However, for practical use, the high spectral dimension of hyperspectral images must be reduced
and a few optimal wavelengths selected to reduce the data processing load [15]. Choosing an optimal
single band or band pair through methods such as principle component analysis (PCA) [16], analysis of
variance (ANOVA) [17], correlation analysis [18], and beta coefficient of partial least squares regression
analyses [19] is well established for a detecting differences within and among samples. In addition,
sequential forward selection (SFS) is the preferred method for finding an optimal combination of
wavelengths since it chooses a subset of wavelengths without losing or deforming the data [20].
For example, Haiyan Cen et al. (2016) [21], used SFS methods as one feature selection method for
reducing the dimension of hyperspectral imaging data. This study developed a model with machine
learning methods for detecting chilling injury in cucumber. In another study, Vélez Rivera et al.
(2014) [22], conducted feature-selecting methods including SFS to develop a model for detecting
mechanically damaged mango.

Choosing an efficient classifier is essential to effectively distinguish diseased rice from sound
rice. This research conducted two classifier models. The support vector machine (SVM), discriminant
analysis, and linear and quadratic discriminant analysis (LDA and QDA) methods have been widely
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used in agricultural applications and many other fields such as optical character recognition and
object recognition due to generalization capability and effective performance with linear and nonlinear
data [23]. SVM methods were successfully used for assessment of corn seed viability [24], strawberry
ripeness [23] and detection of chilling injury in cucumber [21]. In addition to the SVM methods,
because of the effectiveness of discriminant analysis, many studies have used these methods for
classification and pattern recognition. For example, the moisture and lipid contents of individual
green coffee beans were predicted by using LDA [25]. LDA was used as one of the machine learning
algorithms investigated to discriminate lamb muscle [26]. Classification for fungal infected date fruits
was conducted by using QDA and LDA [27].

In many studies, hyperspectral imaging has been used to detect early invisible disease symptoms
so that pesticide control can be applied to suppress/prevent infection. The objective of this study
was to develop a rapid and inexpensive means of discerning the difference between diseased versus
non-diseased seeds, not rates (or incidence) of disease. As this is an emerging rice disease, efficient and
objective methods for quantifying incidence of the disease have not yet been developed. In addition,
this research aimed to provide optimal wavelength information for development of an effective optical
system and a robust classification model for detecting diseased seed rice.

2. Materials and Methods

2.1. Sample Preparation

Sound and diseased rice seed samples were obtained from a breeding line (TIL 654.13) derived
from a cross of the parental cultivars, Lemont and Teqing. The breeding line was part of a flooded
field trial conducted during the 2016 growing season at the Dale Bumpers National Rice Research
Center in Stuttgart, Arkansas. Seed harvested from the breeding line were observed to have a high
incidence of BPB although other, secondary pathogens were also present. The seeds were visually
presorted by a rice pathologist and rice geneticist who are familiar with BPB symptoms and primarily
used color characteristics to identify individual sound and diseased seeds one by one. A total of
500 seeds (250 from each group) were selected for this investigation. Rice samples from each group
were arranged in a 10 × 10 grid on a black custom-sample holder/plate. Thus, a total of five plates
were used. For data collection, 400 seeds (200 sound and 200 diseased) were first measured and used
for the calibration set. The remaining 100 seeds (50 sound and 50 diseased) were used for validation
purposes, arranged in alternating rows of diseased and sound seeds on a sample holder.

2.2. Hyperspectral Image Acquisition

Hyperspectral images of the rice samples were acquired by using a line-scan (push broom)
HSI system as shown in Figure 1. The system consisted of an electron multiplying charge-coupled
device camera (EMCCD: Luca R DL-604M, 14-bit, Andor Technology, South Windsor, CT, USA),
visible/near-infrared imaging spectrograph (Headwall photonics, Fitchburg, MA, USA), programmable
linear stage (translation table) with stepping motor, and light sources. The camera was coupled with a
C-mount objective lens (F1.9 35-mm compact lens, Schneider Optics, Hauppauge, NY, USA). The HSI
system was constructed to cover visible (VIS) to near-infrared (NIR) wavelengths for reflectance
measurements. The lighting sources used were two 150 W halogen lamps with DC power supplies
which enabled control of light intensity. Light was transmitted via two optical fibers to the sample
surfaces to provide near-uniform illumination. The detailed information of system was described by
Kim et al. [28].

Hyperspectral images of rice samples were collected by placing the sample plate onto the
programable translation table unit and obtaining spectral/spatial data line-by-line as the translation table
moved the sample plate under the instantaneous field of view (IFOV) of the HSI system. The exposure
time was set at 16 ms and the samples on the translation table were advanced at 0.3 mm/scan. Thus, to
cover the spatial shape of samples (15 cm plate holding 100 samples), a total of 500 steps for advancement
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of the plate was required. The hyperspectral reflectance images of the rice were stored for further
processing and analyses. The white and dark reference images were also acquired after collecting
hyperspectral data for individual sample plates. A white reference was obtained using a Spectralon
(~99% reflectance), and the dark reference was obtained by capping the objective lens.
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Figure 1. Schematic of the hyperspectral imaging system.

2.3. Data Extraction and Pretreatment of Spectra

In order to extract the actual spectral response of the samples, the influence of both the white and
dark current image was removed and thus the calibrated image, IR, was achieved by the following
equation [28].

IR =
Ir − Id
Iw − Id

, (1)

where Ir is the sample image, Id is the dark current image and Iw is the reference image.
The corrected hypercube for each plate (100 samples) was 500 × 502 pixels in the spatial dimension

with 128 wavebands spanning 396 to 1004 nm. For the analysis, region of interest (ROI) selection was
conducted by a simple thresholding method to remove the background effect of the sample holder so
as to visualize only seed pixels. It was not possible to visually select and identify partial ROIs within
individual seeds as being a diseased or healthy ROIs, since the number of pixels within the seed area is
a small (average of 170 pixels/seed) and the boundary of the diseased region is ambiguous. Therefore,
the mean spectrum of each individual seed was calculated to represent the sample. As the next step,
an ROI for each seed sample was selected to obtain an averaged spectra for the seed, for further analysis.

In general, spectroscopic data can be affected by baseline shift, light scattering and low
signal-to-noise of the system [29]. To mitigate these artifacts, the averaged spectral data of each
rice sample was subjected to five different pretreatment methods: standard normal variate (SNV),
normalization (mean, maximum and range) and smoothing with three windows sizes. A summary of
the equations used in these pretreatment methods is presented in Table 1.

Table 1. Pretreatment methods and equations.

Normalization

Maximum S(j,k) =
Xraw(j,k)

Xmax

Mean S(j,k) =
Xraw(j,k)
Xmean

Range S(j,k) =
X(j,k)−Xmin
Xmax−Xmin

SNV S(j,k) =
X(j,k)−A0

A1

A0: average value of the sample spectrum
A1: standard deviation of the sample-spectrum

Smoothing S(j,k) =
x(j−1,k)+x(j,k)+x(j+1,k)

3
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2.4. Optimal Feature Selection and Discriminant Analysis

The collected hyperspectral imaging data (hypercube) consists of over 100 contiguous waveband
images [11]. In this study, SFS with classifiers was applied to the calibration set to select the optimal
wavelengths for building a discriminative model to classify sound and diseased rice seeds. The first
step begins with an empty set, and all the variables that have not yet been selected are considered for
selection, and their impact on the evaluation score are recorded. At the end of the step, the variables
resulting in the best score are included in the set. Then a new step begins, and the remaining variables
are considered. This is repeated until a prespecified number of variables has been included [21,22,30].
The optimal wavelengths were selected by performing SFS on the calibration set and repeating until
the prespecified number of 10 wavelengths was obtained. An independent validation set was used
separately to determine the final generalization performance. The accuracy of the four different
classification methods using the SFS selected optimal band pairs was evaluated. The aim of this study
was to develop a classification model based on the optimal wavelengths to discriminate sound rice
samples from diseased ones. Thus, an SVM-based multivariate classification model and discriminant
analysis were considered.

The SVM finds the best hyperplane, known as the decision boundary, in feature dimensional space.
The method determines the optimal hyperplane for group separation by the largest margin between
groups [26]. In this paper, SVM and SVM with Gaussian radial basis function (RBF) were performed.
The SVM finds the linear decision boundary in feature space. To find the non-linear decision boundary
in feature space, the SVM with RBF finds the decision boundary in a higher dimensional feature space
by using mapping methods. The values of cost function (c) and gamma (γ), which are parameters for
building the SVM model, were chosen by a grid search method that scans for optimal parameters for a
given model by building a model on all possible parameter combinations.

The LDA usually builds up the model which minimizes the within-group variance while
maximizing the between-group variance [24–26]. QDA is close to LDA except that a covariance
matrix must be estimated for each group. In this case, the decision boundary between groups is
non-linear (i.e., quadratic). However, if the training data set does not follow the Gaussian distribution,
the LDA and QDA would lead to erroneous results since these methods are based on the concept of
Bayes’ theorem [24]. In this investigation, the SVM and discriminant analysis were used for classifying
the diseased and sound rice groups. To enhance the generalization and prevent over-fitting, all of
the methods were coupled with a 10-fold cross-validation method. All image correction, spectral
extraction, preprocessing and modeling were performed using programs developed in MATLAB
(MathWorks, Natick, MA, USA). Figure 2 details the procedure used in the data processing.

2.5. Image-Based Classification for Diseased Seed Detection

One of the advantages of hyperspectral imaging is that it provides a visualization map for the
samples. With the characteristics of acquiring spatial and spectral information together, the developed
classification models (LDA, QDA, SVM, and RBF-SVM) can be applied to hyperspectral images
to form classification maps, thereby allowing the rice seeds to be simply classified based on the
intensity of the pixels. In this study, the visualization process was performed on the hyperspectral data
(background-removed image of rice seeds) by applying the different classification models. The resultant
images or visualization maps can then be used to determine the presence of any diseased rice seeds.
The diseased rice seeds attained the lower score values, hence, if the same model was applied to the
images, the pixel value of diseased samples will be lower than that of the sound samples. Therefore,
by thresholding the pixel values, resultant images can be used for discriminating between two groups
of samples.



Appl. Sci. 2019, 9, 1027 6 of 15

Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 16 

rice seeds. The diseased rice seeds attained the lower score values, hence, if the same model was 

applied to the images, the pixel value of diseased samples will be lower than that of the sound 

samples. Therefore, by thresholding the pixel values, resultant images can be used for discriminating 

between two groups of samples. 

 

Figure 2. Key procedure steps used for the discrimination of diseased rice seed. 

3. Results and Discussion 

3.1. Spectral Profiles and Selection of Optimal Wavelengths 

The average spectra of the sound and diseased rice samples, with SNV pretreatment, are shown 

in Figure 3. Mean spectra of healthy and diseased seeds in Figure 3 clearly show the spectra are 

distinguishable, indicating that the mean spectra do not cause error due to non-homogenous spectral 

grouping as explained by Yousefi et al. (2018) [31]. Distinguished wavelength regions were 

determined by removing a constant offset term. Aside from the intersections of spectral intensities at 

around 480 and 760 nm, the sound and diseased rice samples exhibited visually obvious differences 

throughout entire spectral region under investigation. The obvious differences were generally 

indicative of the more reddish and less blue color of the diseased rice.  

Intensity differences in the region between 800 and 1000 nm were also observed, possibly due 

to the changes in chemical composition of the seed due to infection [32,33]. In common with the 

observation of average spectra, one main interval of wavelengths (from 396 to 416 nm) and minor 

intervals of wavelengths (from 596 to 646 nm) were observed. This result indicates that the violet-

blue and orange-red regions are crucial wavelengths to classify the discolored, diseased rice from 

sound seed using discriminant analysis methods. It should be noted that the SFS selected wavebands 

match well with the spectral differences between two different groups of seeds as shown in Figure 3. 

It is interesting to note that despite a significant visual difference in spectral features of sound and 

diseased seeds in the NIR region (800–1000 nm), the frequency of these being included among the 

selected wavelengths is relatively lower than those selected in the visible region by SVM. However, 

SFS analysis with LDA and QDA classifiers along with different preprocessing methods selected the 

third highest frequency (optimal) wavelengths in the NIR region as shown in Table 2. The reason for 

Figure 2. Key procedure steps used for the discrimination of diseased rice seed.

3. Results and Discussion

3.1. Spectral Profiles and Selection of Optimal Wavelengths

The average spectra of the sound and diseased rice samples, with SNV pretreatment, are shown
in Figure 3. Mean spectra of healthy and diseased seeds in Figure 3 clearly show the spectra are
distinguishable, indicating that the mean spectra do not cause error due to non-homogenous spectral
grouping as explained by Yousefi et al. (2018) [31]. Distinguished wavelength regions were determined
by removing a constant offset term. Aside from the intersections of spectral intensities at around 480
and 760 nm, the sound and diseased rice samples exhibited visually obvious differences throughout
entire spectral region under investigation. The obvious differences were generally indicative of the
more reddish and less blue color of the diseased rice.

Intensity differences in the region between 800 and 1000 nm were also observed, possibly due
to the changes in chemical composition of the seed due to infection [32,33]. In common with the
observation of average spectra, one main interval of wavelengths (from 396 to 416 nm) and minor
intervals of wavelengths (from 596 to 646 nm) were observed. This result indicates that the violet-blue
and orange-red regions are crucial wavelengths to classify the discolored, diseased rice from sound
seed using discriminant analysis methods. It should be noted that the SFS selected wavebands
match well with the spectral differences between two different groups of seeds as shown in Figure 3.
It is interesting to note that despite a significant visual difference in spectral features of sound and
diseased seeds in the NIR region (800–1000 nm), the frequency of these being included among the
selected wavelengths is relatively lower than those selected in the visible region by SVM. However,
SFS analysis with LDA and QDA classifiers along with different preprocessing methods selected the
third highest frequency (optimal) wavelengths in the NIR region as shown in Table 2. The reason for
differently selected wavebands is that discriminant analysis focuses on minimizing variance among
group variables (between-scatter matrix) and maximizing class separation (between-scatter matrix).
Therefore, NIR regions with relatively small variance were selected by discriminant analysis. The result
of the selected optimum wavelengths by each classifier with pretreatments is shown in Table 2. It is
a similar result to a previous study regarding fungal infection in rice panicles in that the blue, green
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and red regions were also used for important feature discrimination of diseased rice [9]. To choose
the number of wavelengths, Figure 4 presents the accuracy at each number of features from 1 to 10.
As a result, all of the classifiers obtained a high accuracy with >93%. Moreover, all of the classifiers
with pretreatments have similar high accuracy when using over two wavelengths. However, for all
classification techniques, raw and smoothed data attained slightly higher accuracy than those models
developed with other preprocessing methods. It is important to keep the optimal number of variables
at a minimum. However, because a lower number of optimal variables can reduce performance
accuracy in many cases, each application should carefully consider the tradeoffs. In addition to the
accuracy issue, if the system must consider a greater number of wavelengths, it will be more expensive
and take a longer time for data processing due to the increased number of device sensors and increased
volume of measurement data. As shown in Figure 4, single wavelengths can classify sound and
diseased rice samples with high accuracy. However, the use of a single feature can be highly affected
by such things as instrumental variables, signal-to-noise ratio and environmental noise. Therefore, in
this study, the number of optimal bands considered were two or three wavelengths for further image
analysis, as there was no significant difference in classification accuracy when more wavelengths
were added.
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Figure 3. Mean spectra of diseased and sound (non-diseased) rice seeds and standard deviation bars
after preprocessing with the standard normal variate (SNV) method.

Table 2. Wavelengths of the three most important bands determined by the sequential forward selection
(SFS) method following various classifier pretreatments.

Classifier Pretreatment 1st Band (nm) 2nd Band (nm) 3rd Band (nm)

SVM

Raw 396 554 669
SNV 458 846 961

Max normalization 607 621 631
Mean normalization 396 611 870
Range normalization 401 640 669

Smoothing 396 501 664

SVM with RBF

Raw 401 640 769
SNV 463 468 635

Max normalization 396 621 674
Mean normalization 396 401 875
Range normalization 405 420 659

Smoothing 401 635 750
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Table 2. Cont.

Classifier Pretreatment 1st Band (nm) 2nd Band (nm) 3rd Band (nm)

LDA

Raw 396 583 741
SNV 396 453 846

Max normalization 559 563 865
Mean normalization 410 765 865
Range normalization 554 966 985

Smoothing 396 578 741

QDA

Raw 420 635 640
SNV 822 846 880

Max normalization 712 789 899
Mean normalization 640 918 956
Range normalization 415 607 827

Smoothing 420 631 990
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Figure 4. Performance comparison of SFS using the classifiers of (a) linear discriminant analysis (LDA);
(b) quadratic discriminant analysis (QDA); (c) support vector machine (SVM) and (d) SVM with radial
basis function (RBF) kernel, with different data preprocessing methods for two-class classification.

3.2. Classification Models Based on Selected Optimal Wavelengths

Figure 5 shows the visual evaluation of the classification models for overfitting or underfitting,
where each decision boundary is shown as a black line between colored regions. A decision boundary
with a complex curved shape indicated an overfit model. The decision boundaries of the LDA with
range normalization and SVM with raw data models (Figure 5a,c, respectively) are each a simple
straight-line and there is as much separation between the two classes as possible. The decision
boundaries of QDA with range normalization and RBF SVM with raw data has a curved line.
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To completely classify the groups, a complicated decision boundary is required which leads to
overfitting problems. The decision boundary of QDA and RBF SVM has a simple curve, which
means the model is not over-fitted. Thus, most of the validation set samples (identified by ‘x’ markers
in Figure 5) belong to the areas that are correctly classified. This result implies that the models are well
generalized and will work on an unknown data set. However, in Figure 5f, the distribution of the data
is linear indicating the linear decision boundary is a possible classifier for identifying two groups in
these two cases. The decision boundary was a relatively more complex curve than a linear decision
boundary, even though the validation sets are correctly classified (Figure 5), indicating that it does
not guarantee performance using unknown data. The 3D hyperplane decision boundaries for SVM
and RBF SVM are shown in Figure 6. The 3D decision boundary for SVM is a flat plane and has a
good separation between two groups. However, the 3D decision boundary for RBF SVM consisted of a
curved plane even though the distribution of the data is linear. Based on this result, it is not necessary
to have a complex shaped model to distinguish between the two groups, and a simple linear or nearly
planar decision boundary, as in the case of Figure 5 (when only two features are used), can provide a
sufficiently effective and simple model that performs with high accuracy.Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 16 
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3.3. Image Based Classification

As shown in Tables 3 and 4, all four classifiers perform with good accuracy (>92%) for the
validation set in all cases. Average classification accuracies of 94% and 96% for the calibration and
validation sets, respectively, are achieved when using two wavelengths. When using three wavelengths,
the classifiers performed approximately 1% better, with average classification accuracies of 95% and
97% for the calibration and validation sets, respectively. The best performance model was LDA with
an accuracy of 96.5% and 99% with max normalization using two wavelengths. The QDA with SNV
classifier achieved the best classification accuracies of 96% and 99% for calibration and validation,
respectively, when using three wavelengths. The performances of the other classifiers were inferior
compared to QDA with SNV but still presented high accuracy for both calibration and validation sets.
These models can be used for a practical system.

For using these results on other systems, the LDA and QDA with a smoothing model are suggested
since the system chooses optimal wavelengths from diverse regions, not concentrated in one region.
Furthermore, previous studies have suggested that using optimal wavelengths for multispectral
systems will help retain most of the original information of the samples [15,21,22,34]. However,
if a system uses similar wavelength regions, it cannot provide diverse information regarding the
target. Hence, by using optimal wavelengths from various regions, it can contain the most possible
original information of the target and prevent negative influence resulting from high collinearity.
For developing a system for detecting diseased rice, the LDA and QDA with a smoothing model is
suggested since wavelengths for LDA and QDA were selected, respectively, in violet, yellow and red
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regions (396, 578 and 741 nm, respectively) and violet, red, and NIR regions (420, 631 and 990 nm,
respectively). This result implies that violet and red regions (yellow, red, orange) have the most
significance for identifying diseased rice seed.
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In other studies that have used hyperspectral image analysis, colormaps are usually presented
with PCA, spectrum angle mapper and normalized cross correlation since they lead to identification of
the target [35,36]. Williams et al. (2009) [37] and Juan et al. (2010) [38] depicted maize kernel hardness
and sprout damage in Canada western red spring wheat via PCA score. Protein content prediction
in single wheat kernels was reported by colormap image with a PLS model [39], and a prediction
model based on PLS and genetic algorithm visualized total acid and moisture content in vinegar
cultures [40]. These methods are a good way to explain the variance with images in the multivariable
data. However, feature extraction methods such as PCA and PLS use full wavelength data, which leads
to a longer processing time compared to methods using data consisting of only a few wavelengths.
As the purpose of this current study was to minimize the number of spectral bands to increase the
detection speed for real-time measurements, it was necessary to select the lowest possible number of
spectral variables and to use spectrum data without signal decomposition. Thus, diseased and clean
seeds are represented with only two colors in the final detection images that resulted from using either
two or three spectral bands.
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Table 3. Calibration and validation results of each classifier with different pretreatment methods using
two subset wavelengths for diseased and sound rice seed.

Classifier Pretreatment
Calibration (%) Total

(%)
Validation (%) Total

(%)Diseased Sound Diseased Sound

LDA

RAW 92.5 97 94.8 96 100 98
SNV 92.5 100 96.3 96 98 97

Max normalization 94.5 98.5 96.5 98 100 99
Mean normalization 84.5 100 92.3 96 100 98
Range normalization 86 99.5 92.8 94 100 97

Smoothing 92.5 97 94.8 96 100 98

QDA

RAW 95.5 93 94.3 98 92 95
SNV 92.5 99.5 96 98 100 99

Max normalization 91 99.5 95.3 94 94 94
Mean normalization 91 99.5 95.3 94 98 96
Range normalization 91 99 95 98 100 99

Smoothing 95 93 94 98 92 95

C-SVM

RAW 96.5 88.5 92.5 98 86 92
SNV 88.5 99.5 94 94 100 97

Max normalization 91 99.5 95.3 98 98 98
Mean normalization 91 99 95 98 100 99
Range normalization 90 98.5 94.3 94 100 97

Smoothing 96 89 92.5 98 86 92

SVM with RBF

RAW 96 93.5 95.8 98 92 95
SNV 89 99.5 94.3 96 100 98

Max normalization 93.5 96 94.8 98 98 98
Mean normalization 89.5 100 94.8 96 100 98
Range normalization 90.5 94.5 92.5 96 92 94

Smoothing 94.5 93.5 94 98 92 95

Table 4. Calibration and validation results of each classifier with different pretreatment methods using
three subset wavelengths.

Classifier Pretreatment
Calibration (%) Total

(%)
Validation (%) Total

(%)Diseased Sound Diseased Sound

LDA

RAW 92 95 93.5 96 98 97
SNV 93 100 96.5 98 98 98

Max normalization 94 99 96.5 98 98 98
Mean normalization 88 99.5 93.8 96 100 98
Range normalization 91.5 99.5 95.5 98 100 99

Smoothing 93.5 96.5 95 96 100 98

QDA

RAW 95 93.5 94.3 98 94 96
SNV 94 99.5 96.8 100 98 99

Max normalization 93 99.5 96.3 98 94 96
Mean normalization 92.5 98.5 95.5 98 98 98
Range normalization 93 98.5 95.8 98 98 98

Smoothing 95.5 95.5 95.5 98 96 97

C-SVM

RAW 96.5 88.5 92.5 98 88 93
SNV 90.5 99.5 95 94 100 97

Max normalization 92.5 99 95.8 98 100 99
Mean normalization 92 98.5 95.3 99.5 100 99.8
Range normalization 94 98 96 98 98 98

Smoothing 95.5 87.5 91.5 98 88 93

SVM with RBF

RAW 94 91 92.5 96 90 93
SNV 95 98.5 96.8 98 98 98

Max normalization 94 98 96 98 96 97
Mean normalization 91.5 99 95.3 98 98 98
Range normalization 93.5 95 94.3 96 98 97

Smoothing 94 91 92.5 96 90 93
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Pixel values of samples that are less than or equal to the threshold values (0.5) were classified
as diseased and they were represented in red in classification images, whereas the green color in
the images represents the sound seed samples. The final color-coded images for the calibration
and validation sets, based on the LDA and QDA models, are shown in Figure 7. The images
clearly show that there were a few kernels in both the diseased and sound rice samples that were
misclassified. This could be due to the error in the original subjective sample classification by the
experts. Classification of rice seeds by humans takes a longer amount of time, and is a tedious and
fatiguing process which is prone to bias and errors. The classification error is an indication that the
imaging may be revealing aspects associated with disease that are not apparent to the human eye.
The hyperspectral imaging technique can be a potential tool for fast and accurate classification of
health/diseased and clean/dirty seeds. The next step of this study is to use a chemical assessment
method to verify the results.

4. Conclusions

The present study demonstrated that, with two or three optimized wavelengths, it is possible
to develop a highly accurate inspection system for detecting diseased rice grain, in this case likely
caused by BPB, using the four discrimination methods. The spectral information from the ROI of the
hyperspectral image were acquired and the classification models were developed by using SVM and
discriminant analysis. The classification models were based on optimal wavelengths chosen by SFS
methods. The combined approaches provided the ability to discriminate between sound and diseased
rice seed with accurate results (>91%) for calibration and validation samples. The results suggested
that violet and red regions are ideal for development of an objective sorting system that can potentially
deal with bulk processing of seeds. Such sorting systems can be used to reduce the use of infected
seeds and further mitigate BPB infection during the crop cultivation.
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