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Abstract: This paper proposes an optimal design for hybrid grid-connected Photovoltaic (PV) Battery
Energy Storage Systems (BESSs). A smart grid consisting of PV generation units, stationary Energy
Storage Systems (ESSs), and domestic loads develops a multi-objective optimization algorithm.
The optimization aims at minimizing the Total Cost of Ownership (TCO) and the Voltage Deviation
(VD) while considering the direct and indirect costs for the prosumer, and the system stability with
regard to intermittent PV generation. The optimal solution for the optimization of the PV-battery
system sizing with regard to economic viability and the stability of operation is found while using
the Genetic Algorithm (GA) with the Pareto front. In addition, a fuzzy logic-based controller is
developed to schedule the charging and discharging of batteries while considering the technical and
economic aspects, such as battery State of Charge (SoC), voltage profile, and on/off-peak times to
shave the consumption peaks. Thus, a hybrid approach that combines a Fuzzy Logic Controller
(FLC) and the GA is developed for the optimal sizing of the combined Renewable Energy Sources
(RESs) and ESSs, resulting in reductions of approximately 4% and 17% for the TCO and the VD,
respectively. Furthermore, a sensitivity cost-effectiveness analysis of the complete system is conducted
to highlight and assess the profitability and the high dependency of the optimal system configuration
on battery prices.

Keywords: multi-objective optimization; Smart grid; Nano-grids; Renewable Energy Sources; Energy
Storage Systems; cost-effectiveness analysis; Fuzzy Logic Controller; Genetic Algorithm

1. Introduction

Recent studies indicate that the world energy consumption will increase from 575 quadrillion
British thermal units (Btu) in 2015, to 663 quadrillion Btu by 2030, and then to 736 quadrillion Btu by
2040 [1]. Moreover, carbon dioxide annual emissions are expected to reach 45.5 billion metric tons in
2040 [1]. In the meanwhile, it not only leads to significant ecological degradation, but also security
crises and it engenders economic growth limitations [2]. In that regard, the European Commission
(EC) has set a target to reduce greenhouse gas (GHG) emissions to at least 40% below the 1990 level by
2030 [3]. Moreover, in December 2015, the 21st session of the Conference of the Parties (COP 21) to
the United Nations Framework Convention on Climate Change (UNFCCC) in Paris, France ended
with the landmark agreement to reduce GHG emissions by 80% by year 2050, and enhance the use of
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Renewable Energy Sources (RESs) to shift to a future with decarbonized energy supply and improving
energy efficiency [4]. Thus, the electric power generation is undergoing a new evolution phase, which
is highly characterized by a transition from hydrocarbon based energy to the post-petroleum-based
sources [5]. Regarding the economic aspects, the RESs provide affordable electricity and can help in
stabilizing energy prices in the future. In particular, the recent decrease in the cost of Photovoltaic
(PV) makes it an economically and environmentally beneficial solution at the residential level [6].
This situation prompts scientists and researchers around the world to work on the integration of RESs
into the grid [7].

Nevertheless, the inherent dependency of RESs on climatic and weather conditions makes it
an intermittent and stochastic energy source, which threatens the balance between generation and
demand, and thus it potentially leads to instabilities on the grid. Moreover, the high penetration
of grid-connected residential PV units poses tremendous technical challenges to the distribution
grid, which has not been sized accordingly. Indeed, the excess of PV generation induces voltage rise
and imbalance [8]. These challenges could be tackled by the use of Energy Storage Systems (ESSs)
that facilitate the management of the power system with high RES penetration by providing extra
flexibility [9,10]. In that regard, the ESSs are key elements in the renewable energy-driven systems
and they could be used to store excess energy from generation sources and improve the balance
between generation and demand with a local consumption of electricity [9]. Among the various ESS
technologies, Battery Energy Storage Systems (BESSs) have drawn considerable attention through
their massive advantages, such as fast response, controllability, and geographical independence [10].
Furthermore, the integration of RESs and BESSs in power systems is an effective method to perform
peak shaving, load leveling, Demand Response (DR), voltage regulation, frequency regulation, and
other ancillary services [8,11,12]. In addition, the transition from traditional power systems to the
Smart Grid (SG) solution requires considerable scientific effort.

However, one of the main drawbacks of the PV-battery systems is their relatively high capital cost
as compared to conventional energy sources [8]. Therefore, the sizing of PV units and the battery of
the ESS to meet a given demand is crucial in the system design phase. In this regard, Tervo et al. [13]
investigated, in detail, how the PV unit size and battery capacity affect the performance of the system
and the cost metrics; in particular, they demonstrated that, with appropriate sizing, the PV-battery
systems can be more affordable than PV systems alone. Similarly, Segundo et. al. [11] highlighted that
the combination of solar energy and storage units could be a good opportunity to increase the value
of renewable power generation, secure grid stability, improve asset utilization, potentially reduce
emissions, provide demand load-shifting and ancillary services, and increase both the levelized value
and the levelized cost of PV generation units. Magnor et al. [12] performed an optimal sizing of a
PV-battery system, minimizing the Levelized Cost Of Electricity (LCOE), which refers to the average
cost per kWh that is supplied to the load. In addition, the technical challenges, such as voltage stability,
have been considered as well for optimizing the system operation. Furukakoi et al. [14] investigated
the minimization of the operational cost and maximization of voltage stability of a grid-connected
PV-battery by employing a multi-objective optimization algorithm. Aryanezhad et al. [15] applied
the Genetic Algorithm (GA) to preserve the system voltage profile by minimizing Voltage Deviations
(VDs). The authors reported that VD could be substantially lowered by 71% when the ESS smooths the
fluctuating output of PV generation. Besides that, Jiaming [8] presented the optimal sizing algorithms
of grid-connected PV-battery systems for the residential houses to minimize their total annual cost
of electricity, including a centralized battery system. In this regard, the coordination of PV units
and ESSs needs to be analyzed to determine their optimal sizes, gather their potential economic
benefits, and guarantee an efficient transition to SG systems. Therefore, an economic problem that
considers the Total Cost of Ownership (TCO), which aims at minimizing all the direct and indirect
costs that are associated with their lifetime, should be solved [16]. Nevertheless, technical aspects,
such as voltage stability, should also be considered, as they play a prominent role in power quality [17].
Moreover, the successful coordination between PV, batteries, and smart grid is unlikely without an
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integration of proper controllers enabling efficient Battery-to-grid (B2G) and Grid-to-Battery (G2B)
operations in the smart grid. Therefore, the goal of the present study is to address the technical and
economic challenges that are related to PV-battery integration into the power system.

Besides that, batteries can help with the demand-generation balance, and thus need a proper
controller to enable B2G and G2B services [18]. Furthermore, controlling the charging and discharging
of batteries is required to maintain the voltage level and stability of the power system. In this regard,
Bandpey et al. [19] used a Fuzzy Logic Controller (FLC) to smooth the load profile and obtain an
optimum charging strategy when considering the State of Charge (SoC) and the Urgency Level
(UL) as inputs, which refers to battery charging urgency, and as output the Preference Factor (PF),
which indicates the batteries charging/discharging priority. Moreover, Suresh et al. [20] developed
a battery capacity fade minimization model by introducing the model predictive control (MPC)
framework, which has also been developed in [21], for the identification and realization of optimal
charge-discharge cycles for Lithium-ion batteries. The proposed approach can be used to improve the
battery life and charge carrying capacity of Li-ion batteries. Suresh et al. [21] used an MPC to develop
efficient charging protocol for optimal battery charging and to identify an optimal trade-off between
the charging time and battery life using information regarding the battery State of Health (SoH) and
three performance metrics, namely charging time, capacity losses, and energy losses. Ref. [22] also
proposed an optimized fuzzy controller to control the charging and/or discharging power of each
Electric Vehicle (EV) battery based on two variables and inputs to the fuzzy controller: battery SoC
and grid frequency deviation, while considering the 35-bus system. Additionally, Jiang et al. [23]
proposed a decentralized smart controller that is intended for a single EV charger, which determines the
optimal charging current based on three signals to the fuzzy logic controller: battery SoH, user defined
charging current and grid node voltage. However, these studies used smart control techniques to
analyze charging/discharging of BESSs in interaction with the grid, but they have not considered
both the technical and economic aspects to control the charging/discharging rates of batteries while
considering the operation constraint of energy storage units. The on/off-peak electricity prices and the
voltage profile are required in order to assess the economic, sustainable, and effective operation of
SG systems. Therefore, a proper controller in the function of variable electricity prices, PV generation,
energy consumption, on- and off-peak hours, and state of the battery (including SoC) is needed to
control the charging/discharging rates of the batteries.

Consequently, this work aims at developing a fuzzy-based control strategy for reaching an
optimum grid-connected renewable-powered BESS that enhances power quality and system stability
by minimizing the VD and decreasing the TCO while considering the purchased and sold energy prices,
operation and maintenance costs, charges, and taxes. To do so, a multi-objective optimization has been
developed using the GA for the optimal sizing of the system, coupled with an FLC based controller
for energy management. In particular, the proposed FLC controller is implemented to schedule the
charging and discharging for a centralized battery, while also considering the technical and economic
aspects (SoC, voltage characteristics, and on/off-peak prices of electricity). Indeed, this article proposes
a FL-based control strategy which controls the charging and discharging C-rate (current) of a stationary
energy storage system whose size and PV size will be defined by the GA, according to the environment
response, such as voltage, on/off peak, and SoC to find the minimum TCO and VD. For clarification,
the FL-based control strategy is designed and then implemented in the Simulink framework to find the
best PV-battery combination to minimize the above targets. In this regard, an accurate estimation of
the SoC is needed to settle the energy content of the battery and to prevent it from excessive discharge.
Moreover, precise information regarding load and power generation are required for the optimal B2G
and G2B services. In this research, the SoC, which indicates the percentage of the remaining energy of
the battery, is introduced as a direct signal for the battery energy storage system, to avert detriment due
to the excessive depth of discharge. Besides that, as the high purchase price of the storage could reduce
the financial gain of the PV system [24], a sensitivity cost-effectiveness analysis has been conducted
while varying the battery cost.
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The remainder of this paper is organized, as follows. In Section 2, the proposed grid structure
is provided. Section 3 presents the optimal sizing of the PV-battery system to deal with the cost
and voltage minimization. Section 4 proposes the formulations of the FL-based controller to enable
B2G and G2B services and control the charging/discharging rates of the BESS, by observing the SoC,
the voltage fluctuation, and the on/off-peak times. Section 5 presents the simulation results augmented
with the cost-effectiveness analysis that is associated with the payback time and expectation of future
economic profitability of the studied system based on saving and on-peak, off-peak prices of electricity.
Finally, Section 6 concludes this paper.

2. Grid Structure

The grid structure, as illustrated in Figure 1, is designed using Matlab Simulink simulation
platform and considers the Belgian electric network with a frequency of 50 Hz. The Flemish, Walloon,
and Brussels-Capital Regions are responsible for distributing electricity with a nominal voltage of
70 kV or less [25]. In the present study, 25 kV is used for the upper grid, which is transformed to 11 kV.
In addition, a second transformer is used to set the voltage for the distribution network to 400 V.
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3. Optimal Sizing of Distributed Generators (DGs): Formulation, Constraints and Algorithm 

As discussed earlier, the present research aims to find the optimal sizing of a DG system by 
adapting to a multi-objective optimization problem. In this regard, different aspects are considered 
in the optimization process, including the TCO, which refers to the total cost of the DG unit based 
on capital cost, annual Operation and Maintenance (O&M) costs, replacement cost, and the cost of 
consumed and produced energy. The first and second terms of the optimization objectives are to 
minimize the TCO and VD. Furthermore, the designed controller is implemented for the BESS to 
maintain system stability by controlling its charging and discharging rates. The proposed approach 

Figure 1. Grid structure.

The three-phase grid structure is composed of a low voltage loop, which is 400 V, a centralized PV
farm, a centralized stationary ESS, and augmented with domestic loads that encompass 692 houses.
The ESS is equipped with an FLC to control the charging and discharging rates and enable B2G and
G2B functionalities.

3. Optimal Sizing of Distributed Generators (DGs): Formulation, Constraints and Algorithm

As discussed earlier, the present research aims to find the optimal sizing of a DG system by
adapting to a multi-objective optimization problem. In this regard, different aspects are considered
in the optimization process, including the TCO, which refers to the total cost of the DG unit based
on capital cost, annual Operation and Maintenance (O&M) costs, replacement cost, and the cost of
consumed and produced energy. The first and second terms of the optimization objectives are to
minimize the TCO and VD. Furthermore, the designed controller is implemented for the BESS to
maintain system stability by controlling its charging and discharging rates. The proposed approach
involves different criteria that are based on system design, load behavior, output power of PV, BESS
capacity, DG power utilities, and owners.
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3.1. Time Sequence Characteristic of Load and DG

To consider a realistic case, the time-dependent load curve on an hourly basis for Belgium,
Brussels, is considered (see Figure 2) in the present study [26].
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3.2. TCO Minimization

The minimization of the TCO is the first objective function of the optimum design problem. It is
calculated based on the initial investment cost Cinv, the O&M cost CO&M, and the replacement cost
CRep of the DG. In addition, as generated electricity can be used locally, sold to the grid, or stored
in the battery, the TCO considers the cost of energy purchasing CP-on-P and selling CS-on-P at peak
time, and the cost of energy purchasing CP-off-P and selling CS-off-P at off-peak time. Assuming that the
DG power output in each time segment remains constant, the first cost function can be determined,
as follows:

Min f1(x) = Min
(
Cinv + CO&M + CRep + CP−on−P + CP−off−P −CS−on−P −CS−off−P

)
(1)
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The initial investment cost of PV CinvPV is defined in this study as 1200 €/kWp. Moreover,
CO&MPV and CRepPV

are the O&M cost and the replacement cost of PV, respectively, being considered
both at 47.44 €/kWp/year. CInvESS , CO&MESS , and CRepESS

are the investment cost, the O&M cost,
and the replacement cost of the BESS, respectively; their sum is taken to 350 €/kWh in this study.
Furthermore, the lifetime of PV and battery systems is defined as 20 years and 10 years, respectively [28].
Thus, the first objective function can be determined, as follows:

min f1(x) = min
[

A ∗NHouses ∗
(CInvPV+CO&MPV+CRepPV )

20 + BCap∗NHouses

∗ (CInvESS+CO&MESS+CRepESS)
10 + CP−on−P + CP−off−P −CS−on−P −CS−off−P

] (2)

where A, NHouses, and BCap are the PV installed capacity (kWp), the number of houses, and the battery
installed capacity (kWh), respectively. Note that 692 houses are considered in this study.

3.3. VD Minimization

The second objective is to minimize the VD, which determines the difference between the nodal
voltage and the specified nominal voltage. The nodal voltage is considered to be one of the most
important security and power quality indexes. Equation (3) calculates the VD, as follows:

min f2(x) = min
N

∑
i=1

∣∣∣Vi −Vspec
i

∣∣∣
Vspec

i
(3)

where N, Vi, and Vspec
i are the number of buses, the voltage magnitude at the ith bus, and the specified

nominal voltage at the ith bus, respectively. The nominal voltage is set to 400 V. When considering the
power system’s perspective, the per-unit quantity is used, i.e., Vspec

i = 1. Thus, the VD is determined,
as follows [29]:

min f2(x) = min|V1 − 1| (4)

3.4. Constraints

In the optimization model, two constraints are considered: the PV and battery installed capacities.
The PV is constrained, as follows:

Amin ≤ A ≤ Amax (5)

The following battery capacity limits apply:

BCapmin
≤ BCap ≤ BCapmax

(6)

In the above two inequality constraints, Amin, Amax, BCapmin
, and BCapmax

denote the minimum,
the maximum size for PV, and battery capacity, respectively. The minimum and maximum of PV and
Battery are set to 0 to 5 kWp and 0 to 3 kWh for each home, respectively. Indeed, the search space for
total size of PV and the battery capacity is 0 to 3.5 MWp and 0 to 2 MWh, respectively.

3.5. Overview of Optimal Sizing Problem Formulation

The present model is designed while considering the minimal cost of ownership and the minimal
VD under boundary conditions. Integrating the objectives and constraints, the problem can be
formulated, as follows:

Minimize : f(x, u) = (f1(x, u), f2(x, u)) (7)

Subject to : gi(x, u) ≤ 0, i = 1, . . . , nineq (8)
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where nineq denotes the number of inequality constraints, x is the vector which refers to the control
variables, and u is the vector of the state variables. When considering the PV installed capacity A for
each house and the unit capacity of battery BCap, the total solar power is A ∗NHouses and the total
battery capacity is BCap∗NHouses, representing the control variables of the optimization.

3.6. Genetic Algorithm

The GA, which is an artificial intelligence-based optimization technique, is one of the first
evolutionary algorithms that was developed on the basis of Darwin’s theory of evolution [30], and it is
used for the optimal sizing of DGs in the present study. GA is considered as one of the promising
algorithms for solving micro-grid problems and it has proven its suitability for application in energy
contexts [31]. Moreover, the GA can be used to solve a broad range of problems, such as smart grid
applications [32], sizing of a multi-source PV/Wind with Hybrid Energy Storage System (HESS) [33],
energy management [34], and operating costs of electricity [35]. The algorithm is widely accepted in
energy systems optimization and more specifically in multi-objective methods, where a set of optimal
solutions, called Pareto front is obtained [36]. The solution to a multi-objective optimization problem
with multiple objective functions consists of sets of compromised objectives, and the set of optimal
solutions is referred to the Pareto-optimal set, whose members are referred to as the Pareto-optimal
solutions [37]. In this way, a Pareto-optimal front is created by connecting the Pareto-optimal solutions.
In the first step of GA optimization, an initial population is randomly initiated; then the fitness of
each individual solution (chromosome) is evaluated and a new population is generated through a
combination of genetic operators: crossover and mutation. During each successive generation, the GA
conducts a process of fitness-based selection and a portion of the existing population is selected to
engender a new generation. Finally, the process ends up with the optimal solution. To clarify the GA
process, the flow chart of Figure 4 illustrates the entire method.
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4. FL-Based Controller: Formulation, Constraints and Algorithm

The integration of ESSs and RESs into the power system requires a proper control to have
better performance on the grid scale, and better energy management in a SG context. Conventional
controllers, such as Proportional Integral Derivative (PID) or Proportional Integral (PI), are not able
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to provide control under a wide range of operations and parameters. In this regard, an adaptive
charging and discharging FLC (charging and discharging rates are adapted based on the environment)
is designed and described in this section, along with its formulation, constraints, and configuration.
The controller is applied to the ESS in order to schedule the charging and discharging of batteries
while also considering the technical and economic aspects.

4.1. Fuzzy Logical Controller

The FLC, which was developed by Lofti Zadeh [38], originates from the Fuzzy set theory that
is based on Knowledge Base (KB) and human expertise rather than mathematical models, which are
difficult to model due to the complexity, nonlinearity, and time varying characteristics of the practical
systems [39]. An FLC is composed of four principal components: a fuzzification interface, a rule base,
an inference logic, and a defuzzification interface [40]. The real valued inputs are first fuzzified with
statically defined membership functions. Subsequently, the IF-THEN rules are created based on input
and output sets. The human expertise represents the “IF-THEN” rules [41]. Therefore, using an FLC
could provide controlled information for the energy management of the power system.

4.2. Constraints and Formulation of Charging and Discharging Control

A proper energy management in SGs is necessary to maintain the supply-demand power balance.
In this regard, the FLC has been implemented to the hybrid PV-battery system and is connected to
the GA (see previous section), as shown in Figure 5. Briefly, the initial population (size of battery
capacity and PV) is generated by the GA and then the generated population is forwarded to the
model to calculate VD and TCO for one year. Note that the battery tries to reduce the VD and shift
demand based on on/off peaks according to its size, while the TCO should be reduced according to
the investment costs, purchased, sold electricity from/to the grid, and so forth.
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[42]. In the present study, the battery cannot discharge to less than 20% or charge to more than 
100% of its capacity. Moreover, the input SoC is fuzzified into four ranges, as illustrated in Figure 6; 
‘Very low SoC’ (VLSoC), referring to SoC between 20% and 35%, ‘Low SoC’ (LSoC), referring to 
SoC between 36% and 60%, ‘Medium SoC’ (MSoC) for SoC between 61% and 80%, and ‘High SoC’ 
(HSoC) for SoC between 81% and 100%.  

Figure 5. Flow chart of the implemented controller and GA.

Moreover, the FLC defines four membership functions. Briefly, both the charging and discharging
power rates are controlled and adapted by the FL-based controller, according to the state of voltage,
battery SoC, and on/off peak demand. It means that the battery acts as a regulator to stabilize the
voltage and decrease the TCO through peak shaving to reach the optimal size that is based on the
boundaries and defined and detailed in the following subsections.

4.2.1. SoC Membership Function

In order to consider the energy requirements that should be met by battery owners and that can
be applied in different ways, it is important to limit the energy that is allowed for use in B2G and G2B
operation, ensuring that the battery will not be completely depleted or overcharged. Thus, the SoC
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must be limited by two different thresholds to insure safety, longevity, and performance [42]. In the
present study, the battery cannot discharge to less than 20% or charge to more than 100% of its capacity.
Moreover, the input SoC is fuzzified into four ranges, as illustrated in Figure 6; ‘Very low SoC’ (VLSoC),
referring to SoC between 20% and 35%, ‘Low SoC’ (LSoC), referring to SoC between 36% and 60%,
‘Medium SoC’ (MSoC) for SoC between 61% and 80%, and ‘High SoC’ (HSoC) for SoC between 81%
and 100%.
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4.2.3. On/Off Peak Hours Membership Function

Integrating ESSs into the grid is considered to be the best strategy for peak shaving, which consists
in providing or absorbing the power surplus, thereby shaving the total exchanged power [43]. In this
way, the coordination of charging and discharging of batteries offers the opportunity to participate
in Demand Side Management (DSM) to reduce the peak load demand in the grid and avoid the
surplus of PV generation injection into the grid [44]. Thus, the on/off-peak hours and electricity
prices should be considered and varied with the load demand to allow for the scheduled operation
of the battery and reduce the gap between the power generation and the load demand. For these
reasons, the implemented controller considers the on-peak and off-peak times and it considers an
input membership ‘On/Off peak hours’, which is fuzzified into on-peak hours: from 7 a.m. to 10 a.m.
and from 5 p.m. to 9 p.m., off-peak hours: from 10:01 a.m. to 4:59 p.m., and from 9:01p.m. to 6:59 a.m.,
as illustrated in Figure 8.
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4.2.4. Char/Dischar Rate Membership Function

In order to gather the charging and discharging power rates of the BESS, an output membership
function, ‘Char/Dischar rate’, is considered for the output of the fuzzy controller with seven ranges,
as shown in Figure 9; very high discharge (VHD), high discharge (HD), medium discharge (MD),
zero charge/discharge rate (ZR), medium charge (MC), high charge (HC), and very high charge (VHC).

The input/output functioning memberships, as shown in Figure 10, result in 140 rules
(see Appendix A, Table A1), ensuring all operating conditioning of the controller and the electric grid.
For instance, if the battery has VLSoC and the voltage is VHP and the time is in the range of 0 a.m. to 7
a.m. (Foff), which corresponds to off-peak time, then the output membership function ‘Char/Dischar
rate’ is VHC, and the battery charges with a very high rate. Another example of the implemented rules
is when the battery has HSoC and the voltage is HN and the time is in the range of 7 a.m. to 10 a.m.
(Fon), which corresponds to on-peak time, in this case, the output membership function ‘Char/Dischar
rate’ is VHDICR and the battery discharges with a very high rate. In addition, Figure 11 shows the
surface of implemented rules when considering SoC, voltage, and charging and discharging rates.
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5. Results and Discussion

In this section, the results of the optimal sizing of PV-battery systems are presented. Additionally,
the TCO, VD, and energy management technique that are used to enable B2G and G2B services during
the optimization process are discussed. Moreover, the payback time and profitability of the proposed
system are presented and discussed. Subsequently, a sensitivity analysis for different ESS costs is
conducted to assess the effect on the profitability, since there is no direct subsidy for BESSs in Europe.
The model has been run on a core i-7 computer with 12G DRR4 RAM and CPU 2.70 GHz in MATLAB®

(academic license). The time of simulation from the start to end was 111 seconds for one day with fixed
step time of one second. Table 1 provides the details of the economical parameters that have been used
in the PV-battery system optimization.

Table 1. Parameters with values used for the economic analysis.

Parameters Values References

PV system price 1852.88 €/kWp [45,46]
PV lifetime 20 years [28]

Battery system price 350 €/kWh [45,47]
Battery lifetime 10 years [47]

Sell price per kWh peak time 0.0966 €/kWh [48,49]
Sell price per kWh off-peak time 0.0712 €/kWh [48,49]

Purchase price per kWh peak time 0.0966 €/kWh [48]
Purchase price per kWh off-peak time 0.0712 €/kWh [48]

Tax included in the price 21% [50]
Increase of electricity price per year 2% [51]

In Belgium, there are several national taxes and levies, such as the electricity excise tax, also called
contribution on electricity, and the VAT rate on electricity, which is fixed at 21% since August 2015.
Moreover, federal levies are imposed to finance the federal regulator, nuclear decommissioning,
social tariffs, RESs, and Combined Heat and Power High Performance (CHP) support [50]. In addition,
the regional levies and their rates for renewable energy are set by the respective regional governments
in Flanders, Wallonia, and Brussels to fund various components, including compensation for
municipalities, support for energy efficiency, and the regional budget for actions in the energy field [50].
In this study, the purchase and sell prices per kWh are based on Luminus [48], which is a producer
and supplier of energy (electricity and natural gas) in Belgium. These prices include levies surcharge
with a VAT rate of 21% and they consider the day and night prices for on-peak and off-peak times.
Moreover, the annual inflation rate of electricity is assumed to be 2% over a year [51]. Besides that,
Belgium has a sensitive array of incentives, with the main two being a Feed-In Tariff (FIT) and some
regions have adopted a Green Certificate (GC) Scheme. In this regard, the FIT is widely used as a policy
mechanism in the world that is designed to accelerate investment in renewable energy technologies,
which accounts for a greater share of RE development than either tax incentives or renewable portfolio
standard (RPS) policies [52]. In the meanwhile, Belgium opted for investment grants, VAT reductions,
and beneficial credit terms. In this study, the sell and purchase prices per kWh are considered as same
prices, being based on the Brussels energy market [49,53].

The voltage stability analysis is critical in the operation of electric power systems. In this regard,
Furukakoi et al. [14] used the Multi-Objective Genetic Algorithm (MOGA) for multi-purpose operation
plan to achieve an improved voltage stability and reduce the PV output prediction error and it showed
a 6% improvement in the voltage stability index. Moreover, Bode et al. [54] used a multi-objective
Particle Swarm Optimization (PSO) algorithm for optimal penetration of PV, while maintaining the
system stability, and it showed an 11% improvement for the novel line stability index. In addition,
Andrew et al. [55] used a combination of PSO and Newton Raphson Power Flow (NRPF) methods
for the optimal allocation of DG to minimize VD and it showed a 16% reduction in VD. Besides that,
the results that were obtained in the present study (see Table 2) demonstrate that the used method
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improves the system performance in terms of VD reduction after integrating the optimally sized
PV-battery system into the studied grid. In particular, the results reflect reductions of approximately
4% and 17% for the TCO and VD, respectively.

Table 2. System improvement after implementation of the optimally sized DG in year 2017.

TCO (€) VD (%)

Before optimization 1136 × 103 4.35
After optimization 1094 × 103 3.62

The optimal multi-objective solution of PV-battery sizing while considering the TCO and VD
provides the results in Table 3. The PV farm and battery capacity with 2 MWp and 1.27 MWh,
respectively, are the optimal solutions with regard to improvement of system performance, system
stability, and minimization of the total cost of DG while considering the purchased and sold energy.
Figure 12 compares the voltage deviation for one day before and after the implementation of the
optimally sized PV farm and BESS.

Table 3. Optimal sizing results.

PV Farm (MWp) Battery Capacity (MWh)

2 1.27
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To verify the effectiveness and performance of the proposed FLC controller, the input/output
membership functions were introduced to control the charging and discharging rates of the battery
bank and facilitating B2G and G2B operations. The objective of controlling the charging and
discharging rates is to provide the exact power to the grid respecting voltage, load constraints,
and battery characteristics. Uncoordinated charging of batteries threatens the distribution system
and it can lead to power outage and undesirable voltage sag [19]. Hence, the real time smart control
charging strategy maximizes customer satisfaction and it adjusts both the energy that is delivered by
the grid to the battery and the energy that is injected on the grid from the battery, with fair power
allocation. To perform energy management, the real time charging and discharging rates could be
controlled via proper controllers with the aim of achieving peak shaving and enhancing the battery
to be charged during off-peak times and discharged during on-peak times. Figure 13 illustrates



Appl. Sci. 2019, 9, 1022 14 of 22

the load voltage profile through 24 hours in one-second step time. Moreover, Figure 14 shows the
behavior of the load, grid, PV, and SOC in 24 h on January 1st in one farm. The results show that,
in winter, the maximum power generation from PV can be 1.2 MW due to low irradiation. In the
meanwhile, the supplied power from the grid between 10:00 a.m. and 05:00 p.m. decreases and the
battery is charged. During peak hours (e.g., 9 a.m., 7:30 p.m.), corresponding to high load demand
(see Figure 2), and when the voltage drops below 0.98, the designed controller incites the battery to
discharge, as a ‘High SoC’ (between 81% and 100%) characterizes its SoC. During off-peak hours,
(e.g., 2:30 a.m., 3:30 p.m., 23:30 p.m.), and when the voltage is very high (VH), the designed controller
incites the battery to charge. In the case of a normal voltage (e.g., 7:30 a.m., 4:30 p.m.), the battery is
neither in charge nor in discharge mode. As a result, it can be concluded that the energy management
system properly controls the charging and discharging power rates and it enables B2G and G2B
services in sizing the DG optimization process. Therefore, the proposed technique provides successful
coordination between a RES with PV and ESS with stationary battery.
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To guarantee the global optimal solution and avoid any local solutions, the optimization process
has been run three times, as shown in Figure 15. As it can be seen, after 800 function evaluations,
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the cost has reached the same value of 1094 × 103 euros. Therefore, it can be concluded that the
solution is globally optimum for the defined problem.
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Table 4. Total yearly profit and yearly DG’s cost over 20 years.

Profits Cost (Million Euros)

Profit from PV production (sell to the grid) 0.0425 every year
Profit from PV production (load reduction) 0.383 every year

Total yearly investment, O&M, and replacement cost 0.3

The cost of batteries is one of the main factors that influence the profitability. Especially, the battery
costs could affect the payback time and provide economic benefits. The high capital cost of
battery is still the primary barrier to its widespread implementation under the current energy
market [56]. In this regard, the further decreasing cost of battery will make battery investment
more attractive and highly beneficial to consumers. The used battery prices for the residential and
commercial levels range from 120 €/kWh (absolute minimum) to 450 €/kWh (absolute maximum) [47].
Moreover, the pack price of new Li-ion batteries ranges from 400 €/kWh to 600 €/kWh for the
residential and commercial/industrial systems, while taking into consideration that the cost of the
actual installed systems in 2015 was in the range of 800 €/kWh to 1000 €/kWh, including charges,
such as inverter, software, and other installation costs [47]. For these reasons, the system profitability is
analyzed and discussed in this section with different cost scenarios for BESSs, varying the investment
cost CInvESS (see Table 5). Please note that 10 years is the assumed life-time of the battery. Table 5
provides the profits over 20 years.

Table 5. Sensitivity results for different battery investment costs.

Battery Initial Investment Cost (€/kWh)
[45–47,57] Profitability (M€)

Scenario 1 120 5.8
Scenario 2 350 5.2
Scenario 3 450 4.9
Scenario 4 600 4.5
Scenario 5 850 3.9
Scenario 6 1000 3.5
Scenario 7 2000 0.9

According to the projective studies, it has been predicted that the price of Li-ion batteries will
be substantially reduced by the end of 2030 [58]. Therefore, providing a clear picture of how the
battery prices can affect profitability with designers and battery cell manufactures could be helpful
and useful. In this regard, Schopfer et al. [45] performed a sensitivity analysis on a PV-battery system
with PV installation costs of 2500, 2000 (base case), 1500 and 1000 €/kWp, and battery storage costs of
1000 (base case), 750, 500, and 250 €/kWh, and demonstrated that the battery will only improve the
profitability of the system with a price of 250 €/kWh. Moreover, the results of the sensitivity analysis
that was performed by Magnor et al. [12] on a PV-battery system demonstrated that only battery costs
of 550 €/kWh, which are hardly available today, could lead to a profitable PV-battery system operation.
Naumann et al. [59] showed the sensitivity of the Return On Investment (ROI) to storage prices and
concluded that, when considering their assumption with a storage price of 500 €/kWh, the system is
not profitable; profit may be only made with storage prices below 450 €/kWh. However, in the present
study, the battery costs will significantly improve the profitability of the proposed system once they
are used with initial battery costs of less than or equal to 1000 €/kWh.

6. Conclusions

This paper presented an optimization framework for a grid-connected PV-battery system. The GA
optimization is used for optimal sizing of the system and it is coupled with a real-time FLC-based
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controller, which ensures the proper integration of the system into a SG infrastructure, with respect to
technical and economic aspects.

In order to integrate batteries and deal with the intermittent behavior of renewable power
generation units, the FL-Based control method was introduced and then developed. It tackles the
technical and financial problems while considering VD and TCO and allowing for G2B and B2G
functionalities. Moreover, the proposed approach could provide techno-economic benefits by offering
ancillary services, such as peak shaving, voltage and frequency regulations, demand response, and cost
reduction. Therefore, this research developed a control method to demonstrate the beneficial prospects
for the grid-friendly deployment of PV-battery systems in a SG environment. Moreover, the proposed
technique improved the system performance, maintained system stability, and reduced the direct and
indirect costs related not only to DG system costs, but also to prices of purchased and sold energy
from/to the grid. The TCO and VD were reduced by 4% and 17%, respectively. Indeed, it was
demonstrated that the introduced technique could accurately perform energy management in a SG
context enabling B2G and G2B services and while considering technical aspects, such as voltage and
battery characteristics and financial aspects, such as on/off peak hours that are related to energy
prices. Besides that, a sensitivity analysis demonstrated that a reduction in battery costs could provide
the most financially attractive solution to RES integration into the SG and the transition towards
sustainable energy.
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Appendix A.

Table A1. The designed Fuzzy rules.

Input Membership
Function SoC

Input Membership
Function Voltage

Input Membership Function
On/Off-Peak Hour

Output
Charge/Discharge Rate

VLSOC HNVoltage Foff ZR
VLSOC HNVoltage Fon ZR
VLSOC HNVoltage Soff ZR
VLSOC HNVoltage Son ZR
VLSOC HNVoltage Toff ZR
VLSOC NOVoltage Foff ZR
VLSOC NOVoltage Fon ZR
VLSOC NOVoltage Soff ZR
VLSOC NOVoltage Son ZR
VLSOC NOVoltage Toff ZR
VLSOC LPVoltage Foff MCHAR
VLSOC LPVoltage Soff MCHAR
VLSOC LPVoltage Toff MCHAR
VLSOC LPVoltage Fon ZR
VLSOC LPVoltage Son ZR
VLSOC MPVoltage Foff HCHAR
VLSOC MPVoltage Soff HCHAR
VLSOC MPVoltage Toff HCHAR
VLSOC MPVoltage Fon MCHAR
VLSOC MPVoltage Son MCHAR
VLSOC LNVoltage Foff ZR
VLSOC LNVoltage Fon ZR
VLSOC LNVoltage Soff ZR
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Table A1. Cont.

Input Membership
Function SoC

Input Membership
Function Voltage

Input Membership Function
On/Off-Peak Hour

Output
Charge/Discharge Rate

VLSOC LNVoltage Son ZR
VLSOC LNVoltage Toff ZR
VLSOC VHNVoltage Foff MDISC
VLSOC VHNVoltage Fon MDISC
VLSOC VHNVoltage Soff MDISC
VLSOC VHNVoltage Son MDISC
VLSOC VHNVoltage Toff MDISC
VLSOC VHPVoltage Foff VHCHAR
VLSOC VHPVoltage Fon VHCHAR
VLSOC VHPVoltage Soff VHCHAR
VLSOC VHPVoltage Son VHCHAR
VLSOC VHPVoltage Toff VHCHAR
LSOC HNVoltage Foff MDISC
LSOC HNVoltage Fon MDISC
LSOC HNVoltage Soff MDISC
LSOC HNVoltage Son MDISC
LSOC HNVoltage Toff MDISC
LSOC NOVoltage Foff ZR
LSOC NOVoltage Fon ZR
LSOC NOVoltage Soff ZR
LSOC NOVoltage Son ZR
LSOC NOVoltage Toff ZR
LSOC LPVoltage Foff MCHAR
LSOC LPVoltage Fon ZR
LSOC LPVoltage Soff MCHAR
LSOC LPVoltage Son ZR
LSOC LPVoltage Toff MCHAR
LSOC MPVoltage Foff HCHAR
LSOC MPVoltage Soff HCHAR
LSOC MPVoltage Toff ZR
LSOC MPVoltage Fon ZR
LSOC MPVoltage Son ZR
LSOC LNVoltage Son MDISC
LSOC LNVoltage Fon MDISC
LSOC LNVoltage Foff ZR
LSOC LNVoltage Soff ZR
LSOC LNVoltage Toff ZR
LSOC VHNVoltage Foff VHDISC
LSOC VHNVoltage Fon VHDISC
LSOC VHNVoltage Soff VHDISC
LSOC VHNVoltage Son VHDISC
LSOC VHNVoltage Toff VHDISC
LSOC VHPVoltage Foff VHCHAR
LSOC VHPVoltage Soff VHCHAR
LSOC VHPVoltage Toff VHCHAR
LSOC VHPVoltage Fon HCHAR
LSOC VHPVoltage Son HCHAR
MSOC HNVoltage Foff HDISC
MSOC HNVoltage Fon VHDISC
MSOC HNVoltage Soff HDISC
MSOC HNVoltage Son VHDISC
MSOC HNVoltage Toff MDISC
MSOC NOVoltage Foff ZR
MSOC NOVoltage Fon ZR
MSOC NOVoltage Soff ZR
MSOC NOVoltage Son ZR
MSOC NOVoltage Toff ZR
MSOC LPVoltage Foff MCHAR
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Table A1. Cont.

Input Membership
Function SoC

Input Membership
Function Voltage

Input Membership Function
On/Off-Peak Hour

Output
Charge/Discharge Rate

MSOC LPVoltage Soff MCHAR
MSOC LPVoltage Toff MCHAR
MSOC LPVoltage Fon ZR
MSOC LPVoltage Son ZR
MSOC MPVoltage Foff MCHAR
MSOC MPVoltage Soff MCHAR
MSOC MPVoltage Toff MCHAR
MSOC MPVoltage Fon ZR
MSOC MPVoltage Son ZR
MSOC LNVoltage Foff MDISC
MSOC LNVoltage Soff MDISC
MSOC LNVoltage Toff MDISC
MSOC LNVoltage Fon MDISC
MSOC LNVoltage Son MDISC
MSOC VHNVoltage Foff VHDISC
MSOC VHNVoltage Fon VHDISC
MSOC VHNVoltage Soff VHDISC
MSOC VHNVoltage Son VHDISC
MSOC VHNVoltage Toff VHDISC
MSOC VHPVoltage Foff VHCHAR
MSOC VHPVoltage Soff VHCHAR
MSOC VHPVoltage Toff VHCHAR
MSOC VHPVoltage Fon MCHAR
MSOC VHPVoltage Son MCHAR
HSOC HNVoltage Foff VHDISC
HSOC HNVoltage Fon VHDISC
HSOC HNVoltage Soff VHDISC
HSOC HNVoltage Son VHDISC
HSOC HNVoltage Toff VHDISC
HSOC NOVoltage Foff ZR
HSOC NOVoltage Fon ZR
HSOC NOVoltage Soff ZR
HSOC NOVoltage Son ZR
HSOC NOVoltage Toff ZR
HSOC LPVoltage Foff MCHAR
HSOC LPVoltage Soff MCHAR
HSOC LPVoltage Toff MCHAR
HSOC LPVoltage Fon ZR
HSOC LPVoltage Son ZR
HSOC MPVoltage Foff MCHAR
HSOC MPVoltage Soff MCHAR
HSOC MPVoltage Toff MCHAR
HSOC MPVoltage Fon ZR
HSOC MPVoltage Son ZR
HSOC LNVoltage Foff MDISC
HSOC LNVoltage Fon MDISC
HSOC LNVoltage Soff MDISC
HSOC LNVoltage Son MDISC
HSOC LNVoltage Toff MDISC
HSOC VHNVoltage Foff VHDISC
HSOC VHNVoltage Fon VHDISC
HSOC VHNVoltage Soff VHDISC
HSOC VHNVoltage Son VHDISC
HSOC VHNVoltage Toff VHDISC
HSOC VHPVoltage Foff VHCHAR
HSOC VHPVoltage Soff VHCHAR
HSOC VHPVoltage Toff VHCHAR
HSOC VHPVoltage Fon MCHAR
HSOC VHPVoltage Son MCHAR
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