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Abstract: Recently, automatic modulation recognition has been an important research topic in 

wireless communication. Due to the application of deep learning, it is prospective of using 

convolution neural networks on raw in-phase and quadrature signals in developing automatic 

modulation recognition methods. However, the errors introduced during signal reception and 

processing will greatly deteriorate the classification performance, which affects the practical 

application of such methods. Therefore, we first analyze and quantify the errors introduced by 

signal detection and isolation in noncooperative communication through a baseline convolution 

neural network. In response to these errors, we then design a signal spatial transformer module 

based on the attention model to eliminate errors by a priori learning of signal structure. By cascading 

a signal spatial transformer module in front of the baseline classification network, we propose a 

method that can adaptively resample the signal capture to adjust time drift, symbol rate, and clock 

recovery. Besides, it can also automatically add a perturbation on the signal carrier to correct 

frequency offset. By applying this improved model to automatic modulation recognition, we obtain 

a significant improvement in classification performance compared with several existing methods. 

Our method significantly improves the prospect of the application of automatic modulation 

recognition based on deep learning under nonideal synchronization. 

Keywords: deep learning; automatic modulation recognition; spatial transformer networks; signal 

processing 

 

1. Introduction 

Automatic modulation recognition (AMR) has been an important topic in wireless 

communication. AMR is essential in radio fault detection, spectrum interference monitoring, and a 

wide variety of military and civilian applications. Traditional AMR methods, as explored in [1–3], 

employed decision theory and statistical pattern recognition. Most of the maximum likelihood 

methods based on hypothesis testing have higher computational complexity and are more sensitive 

to model mismatch problems, which greatly limits their application in wild communication 

environments. Other methods used manual feature extraction combined with machine learning (ML) 

to apply classification, as explored in [4–6]. These methods based on feature extraction and likelihood 

are effective in certain scenarios. Under certain conditions, the feature-based method can achieve the 

best recognition performance close to the theoretical limit, and it has strong robustness, so it is more 

widely used. A feature of these methods is dependence on expert knowledge and signal 

preprocessing. In many cognitive radio (CR) [7–9] and spectrum detection applications, fewer expert 

design and knowledge of signal captures mean improving real-time response and automatic 
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processing capabilities. Improving of these capabilities is one of the optimization directions of the 

AMR system. With the application of deep learning, classification directly on the raw IQ signals has 

achieved some encouraging results. 

Recently, deep learning (DL) has achieved outstanding results in the domains of natural 

language processing (NLP) [10], knowledge mapping, computer vision (CV) [11], speech signal 

processing [12], and intelligent medical diagnostics [13,14]. The concept of deep learning originated 

from the study of artificial neural networks. Deep learning (DL) simulates the deep structure of the 

human brain, and the cognitive process is carried out layer by layer, and gradually realizes the 

hierarchical expression of the input information. Given the result of deep learning in other fields, DL 

can be combined with hardware to improve the upper performance limit of traditional algorithms, 

and can reduce the over-fitting to improve the robustness of the model through specific 

regularization methods. Therefore, DL has recently become a research hotspot in the communication 

domain, and its application in the field of AMR has also received widespread attention. The use of 

deep learning methods greatly reduces the reliance on expert knowledge. Through the powerful 

feature extraction ability of the DL model, the intrinsic connection and law of the sample data can be 

adaptively found, which can improve the performance of traditional modulation recognition 

methods. Thanks to the huge parameters of the deep learning model, the algorithm has strong fault 

tolerance and can achieve better generalization ability when dealing with distortion and noise-

contaminated data, which is beneficial for coping with the challenges of complex nonlinear distortion, 

such as channel effects, receiver hardware noise, etc. Besides, the deep learning model has excellent 

inductive migration capabilities, and this ability can be applied to the field of modulation recognition 

to improve the cognitive recognition systems’ ability to recognize new and more complex signals. 

In the field of signal processing, researchers are enthusiastically to apply deep learning methods 

to AMR. Shi et al. [15] evaluate the classification performance of fractal dimension extraction methods 

combined with pattern recognition algorithm. The effects of random forests, back-propagation (BP), 

etc. applying to AMR were evaluated in experiments. O’Shea et al. [16–18] introduced Convolutional 

Neural Network (CNN) to AMR domain, by directly applying classification with the time domain in-

phase and quadrature (IQ) signal captures. He has also done extensive research on network design 

and optimization for AMR. Convolution neural network (CNN) is a kind of feedforward neural 

network with convolution transformation and deep structure. It is one of the representative 

algorithms of deep learning. CNN extracts translation-invariant features of input data by layer-by-

layer convolution and pooling operations in the architecture. For digital communication signals, 

there are features that can distinguish signals of different modulation modes. For example, different 

order quadrature amplitude modulation (QAM) signals have amplitude and phase hopping points 

that occur between different symbols. CNN can effectively extract such features. Besides, the 

convolution kernel parameter sharing and the sparseness of the inter-layer connection in the CNN 

architecture enable the convolutional neural network to have a grid-like topology with a small 

amount of computation, which is advantageous for processing a large amount of RF data. In fact, 

CNN has achieved excellent results in processing audio data, and this advantage is consistent when 

dealing with complex baseband signals. Therefore, we believe that CNN, a mature deep learning 

model, has great potential for application in AMR tasks. Hauser et al. [19] discussed the impact of 

deep neural network design on communication receivers. Besides, the effects of certain errors bound 

in detection and isolation are analyzed. It was shown that for the frequency offset and sample rate 

offset not covered in the training samples, there is a significant decline in the test samples. 

Summarizing the existing research on the application of classification on raw baseband signals, there 

is less consideration of the errors introduced in signal detection and isolation and the robustness of 

the algorithm performance in such offsets. However, in blind wide-band signal processing, these 

offsets caused by parameter estimation or hardware defects are difficult to avoid. In the AMR system, 

a technique that can reduce the influence of signal isolation and detection error needs to be proposed. 

In this article, we study the AMR method based on the raw IQ signals under parameter estimation 

errors. Firstly, the influence of parameter estimation errors on the performance of the CNN classifier 

is analyzed. Then, an AMR method based on a spatial transform network (STN) is proposed. By 
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applying this improved model, the robustness of the AMR method under parameter estimation errors 

has been significantly improved. 

The remainder of this paper is presented as follows: In Section 2, we provide an overview of 

flow for blind wideband signal capture model. Section 3 introduces the classification method based 

on STN. Section 4 introduces the evaluation setup for AMR. Section 4 presents simulations and 

results. Finally, Section 5 concludes the paper. 

2. Wireless Signal Modulation Recognition Model 

In digital communications in real radio frequency (RF) environments, the transmitter forms a 

binary bit stream of information. After that, the bits stream is encoded and modulated, and finally 

transmitted via the wireless channel. During the modulation process, the baseband signal is moved 

to the shifted by the carrier frequency to produce the wireless signal. 

A typical flow of modulation recognition signal processing is presented in Figure 1. At the 

receiving end, we consider a typical communication receiver in the noncooperative mode. In general, 

there is only a partial or even minimal prior knowledge of communication. The receiver monitors the 

activity of the radio frequency (RF) signal in the electromagnetic spectrum of interest through a 

spectrum analyzer and gives an estimated value of the centre frequency, the bandwidth of the signal. 

Based on these parameters, the receiver through the bandpass filtering and downconverts to flit the 

signal capture to appropriate intermediate frequency (IF). For the digital communication signal, the 

phase-locked loop is used to further accurately extract the carrier frequency and phase parameters of 

the intermediate frequency signal. Then, using the orthogonal downconversion technique, the 

baseband signal of the unknown modulation mode is outputted at the output end of the matched 

filter. Then, parameters such as baud rate and symbol timing are obtained by symbol synchronization 

technology, matched filtering, and synchronous sampling are performed to obtain a symbol sequence 

of an unknown modulation mode. The signal is then subjected to subsequent demodulation. Our 

approach focuses on AMR on complex baseband signals, which is a coherent, asynchronous AMR 

method. During signal reception and processing, due to imperfections in the detection and isolation 

stages, carrier frequency estimation errors, bandwidth estimation errors, etc. are introduced during 

the RF signal to the IF signal acquisition process. In the processing of the intermediate frequency 

signal to the complex baseband signal, carrier frequency and phase synchronization errors are also 

introduced. Then, given the channel impairments and hardware defects of the receiver, the baseband 

signal we obtained is the corrupted version of the originally transmitted signal. In the AMR 

application for the original baseband signal, the definition and evaluation of these impairments is 

very important. We define typical signal impairments: 

 Frequency Offset: Frequency offset is introduced during the RF signal isolation phase and IF signal 

parameter estimation. The receiver local oscillator (LO) introduces frequency deviation due to 

hardware impairments. 

 Phase offset: Phase offset is caused by the frequency offset of LO, which causes an instantaneous 

phase drift of signal captures. 

 Timing drift: Timing drift is caused by unmatched sampling rates. It is introduced due to the 

estimated bandwidth deviation of the RF signal isolation phase. Besides, the sampling rate error is 

introduced due to hardware impairment of the receiver LO. 

 Noise: Noise introduced by components such as the antennas and receivers. We usually model 

this noise as additive white Gaussian noise (AWGN). 
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Figure 1. Recognition Signal Processing Flow. 

Signal capture and processing flow of the receiver includes: amplifying, mixing, low-pass 

filtering, and analog-to-digital conversion. Then, the raw baseband IQ signal is obtained. N-th point 

sampling are performed on the baseband IQ signal. We present the values as 
N

rawr  . This matrix 

is the input sequence of the AMR, which contains information if signal captures such as the type of 

wireless technology, the type of modulation method, interferer, etc. The task of AMR is to obtain the 

type of modulation through this segment of the signal capture. Therefore, the output of the end-to-

end system can be expressed as l . The output of the system output is the judgment of AMR, which 

is the highest confidence of modulation type in the result set. Then, the observed data consists of k  

pairs of input and output. For AMR tasks, these pairs can be organized into datasets S , which can 

be denoted as: 

      1 1 2 2,  , ,  , ,  raw raw rawk kS r l r l r l    (1)

3. Proposed Method 

To effectively perform the raw complex baseband signal AMR, we further clarify the four typical 

errors defined in Section 2. This definition helps us to generate simulation offsets and propose 

corresponding methods for generating mechanisms. Among these four kinds of errors defined in 

Section 2, the frequency offset and phase offset are caused by frequency offset, and the time drift is 

caused by the sample rate. Therefore, the method we propose mainly focuses on frequency offset, 

sample rate offset and noise. Our basic idea is to adaptively correct the above offset by designing a 

parameters transformer module. We introduce the attention model in the field of computer vision 

into AMR to solve this problem. 

Spatial transformer networks (STN) [20] is the deep learning attention model proposed in 2015. 

It is an end to end feedforward network. The basic structure of STN includes localization net, grid 

generator, and sampler. The localization net provides parameter regression, the grid generator 

implements pixel coordinates, and the sampler implements microscopic coordinate transformation. 

In the field of computer vision, STN is widely used to implement image translation, scaling, rotation 

etc. through 2D affine transformation [21], superior performance in image alignment tasks is shown 

in the paper. In the geometric corrections of image synthesis, STN also has good results [22], robust 

normalization is performed by application of the 3D morphable model. O’shea [23] made an initial 

attempt to introduce STN into the field of radio signals. He designed an attention model based on 

CNN. The classification accuracy test was carried out on the RadioML 2016.04C [24] dataset, but the 

results did not reflect the role of the proposed method in signal synchronization and regularization 

representation. 
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We propose a new signal classification network based on STN architecture, which introduces 

the parameter transformation of the radio domain. This architecture normalizes the signal before 

classification, automatically reducing the impact of sample rate offset and frequency offset on 

classification. Through the introduction of this attention model, our classification results exceed our 

nonattention model, the classifier discriminant task is reduced, and the network performance is 

improved. The framework we propose consists of two parts, one is the signal classifier and the other 

one is signal spatial transformer module (SSTM). The proposed AMR system is shown in Figure 2. 

To establish an AMR system under the parameter estimation error. We must develop a transform 

that adaptively corrects the estimation errors described above. Therefore, we designed the STN-based 

signal spatial transformer module (SSTM). This module is cascaded before the signal classifier. SSTM 

includes automatic transformation and the signal parameter estimation network, grid generator, and 

signal sampler. After SSTM, we implement a CNN network for signal classification. We evaluated 

various network structures with variation between activation functions, connections, and loss 

function. The structure and hyperparameters of the network have been experimentally adjusted to 

optimize performance, and detailed parameter setting is listed in Section 4. We regard this CNN 

classifier as the baseline for AMR. We design the structure of the proposed method through a lot of 

experiment. An important principle is to design the SSTM separately after using the optimal baseline 

classifier as the evaluation criteria. In this section, we mainly introduce the implementation of SSTM. 

 

Figure 2. The framework of the proposed method with SSTM for directly using raw in-phase and 

quadrature (IQ) samples. 

3.1. Automatic Signal Transformation 

In this paper, automatic signal transformation involves two signal processing methods, one is 

the real-value equivalent representation of the raw complex baseband signal, and the other is based 

on the original signal amplitude and phase extraction representation. These two transformations are 

based on signal modulation characteristics. We apply these two transformations to the raw baseband 

signal 
N

rawr   for better extraction of features. The transformations are as follows: 

Transformation (IQ vector): the k-th point raw signal data 
N

rawr   can be translated to the k-

th feature vector 
N

kx  . Then, the in-phase and quadrature component parts of the complex 

baseband signal 
N

rawr   are represented as two real-valued matrices Ix , Qx , that is: 

T

IQ I

k

Q

x
x

x





 
  
  

 (2)

For 
2IQ N

kx
 , mathematically, the transformation can be written as 
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:     

               IQ

Tran

N N

raw k

f

r x





 
 (3)

Transformation ( A /   vector): the k point raw signal data rawr  is mapped into the k-th feature 

vector 
IQ

kx . We use the phase vector Ax  and magnitude vector x  to represents 
IQ

kx , that is: 

A/

T

A

k

x
x

x








 
  
  

 (4)

where, the Ax  and x  is calculated with 

    

 
 
 A arctan 2 ,      0,1, , 1

I

I

Q

x n x n

x n
x n n N

x n

 

 
    

 


 (5)

In this transformation, we use the atan2 function to obtain continuous phase changes. The 

ordinary atan function causes the sign of the phase to change, losing the phase information of the 

second and third quadrants. Then, a real-valued convolution layer is used to augment the feature 

map. For 
A/

kx


, we use M convolution kernels with 2 8  receptive fields to convolve and get the 

transformed output as 

A/

2

2 2 2

2
  

:     

                 IQ

Tran

N N N M

Tran
k k kx

f

x x 

   



 



  
 (6)

3.2. Signal Parameterized Estimation Network 

The signal parameterized estimation network takes the input feature map 
2M NU   , outputs 

a set of signal estimation parameters  .   is a set of parameters used for signal transformation. In 

this paper, we consider the variation caused by time drift, symbol rate conversion, sample rate offset, 

and centre frequency offset. Time drift involves shifting the signal with the correct initial amount. 

The symbol rate conversion and sample rate offset can be corrected using the correct sample 

increment resampling and interpolation. We implement these two changes to approximate the 2D 

affine transformation in the image. 

11 12 13

21 22 23

  

  

 
 
 

 (7)

For centre frequency offset correction, we estimate the phase offset for each sample point to 

compensate with  

3,     0,1, , 1n n N    (8)

The phase noise caused by the CFO is compensated by the phase offset of a constant term 4 . 

 estf U   is used to represent the signal parameterized estimation function. Within the 

scope of this paper,   has eight parameters, including six parameters of the 2D affine 

transformation and two parameters of phase and carrier frequency recovery. 

We use a deep neural network model to implement  . Long short-term memory (LSTM) [25] 

network is a recurrent neural network suitable for processing and predicting important events with 

relatively long intervals and delays in time series. LSTM is an effective technique for solving long-
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order dependency problems. Because of the specificity of radio data, the sampling points are highly 

in temporal correlation. Different modulation signals have trip points in phase and amplitude. The 

range of signal contextual information is large, and this problem causes the influence of the input of 

the hidden layer on the network output to decline as the network loop continues to recurse. 

Therefore, we use Bi-directional LSTM [26] to extract radio signal modulation features, which is an 

extended model of LSTM. The Bi-LSTM contains two input sequences, one is the positive sequence 

and the other is the inverted sample of the input sequence. The two-way cyclic network structure can 

perform well on sequence classification problems. The architecture of Bi-LSTM presents in Figure 3. 

 

Figure 3. The bi-directional long short-term memory (Bi-LSTM) structure in the signal 

parameterized estimation network. 

In the signal parameterized estimation network model, we implemented two Bi-LSTMs, then 

two fully connected layers. Finally,   is obtained by the linear activation function. We use the 

appropriate weight initialization, dropout, and regularization tricks to achieve optimal performance 

under this network model. 

3.3. Signal Grid Sampling 

We normalize signal by transformation models, which are widely used in CV. The 

transformation model is capable of fitting geometric distortions between the source image and the 

background image by geometric transformation. The transformation models that can be used are as 

follows: rigid transformation, affine transformation, perspective transformation, and non-linear 

transformation. To perform the deformation of the input feature map, we apply resampling and 

transformation by sample point   . In our method, the resampled pixels  ,t t
i ix y  form the 

output feature map 
2M NV   . Based on the analysis of the radio signal characteristics in the 

previous part, we consider the variation caused by time drift, symbol rate conversion, sample rate 

offset, and centre frequency offset. Time drift involves shifting the signal with the correct initial 

amount. This task is similar to translation in the 1D affine transformation. Translation in the time 

dimension provides correction for time drift. The symbol rate conversion and sample rate offset can 

be corrected using the correct sample increment resampling and interpolation. This task is similar to 

scaling in the 2D affine transform. We implement these two changes to approximate the 2D affine 

transformation in the image. We define the transformation   , consisting of two parts. One is the 
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2D affine transform A , then there is the frequency and phase compensations R . In this affine case, 

the pointwise transformation is 

 11 12 13

3 4

21 22 23

 0,1, , 1
+          

( / )
1 1

t t
i is
t ti
i is

i

x x
i M Nx

A R y n y
n ceil i My

 

  
 

  

   
        

                  
   


，  (9) 

where  ,s s
i ix y  are the target coordinates of the grid in the output feature map. The resampling 

application applies the parameters we estimated by signal parameterized to the signal 

transformation. 

4. Evaluation Setup 

To mitigate the impact of estimation errors in the detection and isolation stage of a receiver on 

AMR, we introduce the attention model of the computer field to AMR. Synthetic radio datasets 

containing different estimation errors are used to verify the validity of our proposed method. 

4.1. Dataset Description 

To evaluate the classification performance of our proposed method, we use datasets that 

simulate the centre frequency offset and sample rate offset to train and test the method. In addition 

to the two major errors in the datasets, we also consider the damage in a variety of signal 

transmissions, including signal arrival times, nonimpulsive delay spread, Doppler offsets, and 

Gaussian thermal noise. Since these common time-varying random channel effects exist in most 

wireless systems, we include these effects in the datasets as much as possible. 

The dataset includes eight digital modulation methods, namely CPFSK, 4-PAM, GFSK, BPSK, 

QPSK, 8-PSK, 16-QAM, and 64-QAM. We extract the baseband signal of 128 sample points in the 

signal stream generated by the combination of each modulation mode, estimation error, and channel 

impairment. We divide signal captures into IQ two-way storage as with the signal representation 

described above. With each frequency offset, sample rate offset, and SNR combination, we get 500 

test signal captures and 500 training signal captures. Each sample includes 3–20 symbols. The signal 

captures are generated at various SNRs between −10 and 20 dB. To simulate different degrees of 

frequency offset and sample rate offset, we use the datasets listed in Table 1, ideal detectors without 

frequency and sample rate offsets (ideal), Dataset with various sample rate offsets (SRO 1 and SRO 

2), detector with varying carrier frequency offset (CFO 1 and CFO 2). It is worth noting that the 

datasets listed in Table 1 are training sets. We train on training sets with different frequency and 

sample rate offsets to evaluate the models’ tolerance to parameters estimation error. 

Table 1. Considered neural network training scenarios. 

Dataset Name Frequency Offset Range Sample Rate Range (Multiple of Bandwidth) 

Ideal No offset 2 

CFO 1 0.05% of sample rate 2 

CFO 2 0.1% of sample rate 2 

SRO 1 No offset 1–1.5 

SRO 2 No offset 1–4 

4.2. Implement Details 

We use Keras [27] and Tensorflow [28] mixed programming. Keras is used for definitions of 

standard layers, such as pooling, convolution, dense, and Softmax. Tensorflow is mixed with defining 

custom layers in SSTM. We use a deep learning workstation with the high-performance central 

processing unit (CPU) and NVIDIA 1080Ti graphics card. The neural networks parameters are 

optimized by the ADAM [29] algorithm. We train 500 epochs on the networks with an optimized 
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learning rate. The learning rate is estimated based on Bayesian optimization [30] with the open source 

Hyperopt [31] library. Hyperparameters used for training are listed in Table 2. The structure of the 

baseline network is shown in Table 3. 

Table 2. Hyperparameters in signal spatial transformer module (SSTM)-based method training. 

Hyperparameters Value 

Loss Function Categorical Crossentropy 

Optimizer ADAM 

Dropout Rate 0.4 

Initializer Lecun Normal [18] 

Learning Rate 0.0024 (baseline), 0.00081(SSTM) 

Batch Size 256 

Epochs 500 

Table 3. Structure of baseline classifier. 

Layer Type Input Size Parameters Activation Function 

Convolution Layer 128 × 128 
6 × 6 filter kernel 

64 feature maps 
Leaky ReLU 

Pooling Layer 128 × 128 × 64 2 × 2 max pooling None 

Convolution Layer 64 × 64 × 64 
3 × 3 filter kernel 

32 feature maps 
Leaky ReLU 

Pooling Layer 64 × 64 × 32 2 × 2 max pooling None 

Flatten 32 × 32 × 32 Flatten feature map None 

Dense 32,768 64 neurons ReLU 

Dense 64 8 neurons Softmax 

5. Simulations 

To mitigate the impact of estimation errors in the detection and isolation stage of a receiver on 

AMR, we introduce the attention model of the computer field to AMR. Synthetic radio datasets 

containing different estimation errors are used to verify the validity of our proposed method. 

5.1. Baseline Convolution Networks 

To evaluate the impact of CFO on classification performance, we use CNN as a baseline. The 

baseline network uses training and optimizing methods described in [16], which can representatively 

evaluate classification performance under different degrees of offset. We train the baseline networks 

on the CFO1 and CFO2 datasets. For test scenarios, the CFO is shifted from −6% to 6% of the sample 

rate. Figure 4 shows the classification accuracy in the CFO1 and CFO2 scenarios. 

  
(a) (b) 
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Figure 4. Overall classification accuracy of baseline classifier for various training scenarios vs. 

frequency offset and SNR. (a) CFO1; (b) CFO2. 

For frequency offset outside the training range, the classification performance of CNN classifiers 

declines rapidly. The consistent decline in performance occurred in both training datasets. This shows 

that the baseline classifier is sensitive to frequency offsets. Besides, at all frequency offsets, as the SNR 

is shifted from −10 to 10 dB, the classification accuracy continues to increase significantly. However, 

when SNR exceeds 10 dB, the classification accuracy cannot be further improved. We believe this is 

because as the SNR increases, higher SNR does not provide more useful information to help optimize 

network parameters. 

We test on signal captures with sample rate range from 1 to 8 multiples of the bandwidth to 

verify the effect of sample rate offset on modulation recognition performance. We train the baseline 

networks on the SRO1 and SRO2 datasets. As presented in Figure 5, for sample rate offsets outside 

the training range, the classification accuracy decreases rapidly, and this reduction occurs in both test 

set scenarios. Besides, this reduction in classification performance shows consistency across all SNR 

scenarios. At the same sample rate offset, the classification accuracy versus SNR is similar to 

frequency offset scenario. 

  
(a) (b) 

Figure 5. Overall classification accuracy of baseline classifier for various training scenarios vs. sample 

rate offsets and SNR. (a) SRO1; (b) SRO2. 

In Figure 6, we present a sectional view of overall accuracy versus the frequency offset and 

sample rate when SNR is fixed at 20 dB. These simulations help to show the trends observed in 

Figures 4 and 5. Numerical analysis for all training scenarios in typical SNRs and offsets is shown in 

Table 4. In all offsets and training set scenarios, as the SNR increase, the classification performance 

can be significantly improved. For low frequency and sample rate offsets, the classifiers on all training 

sets have similar performance. For medium frequency and sample rate offsets, the classifiers obtained 

on the SRO2 and CFO2 training sets perform significantly better than the classifiers obtained on the 

SRO1 and CFO1 training sets. As frequency and sample rate offsets increase, the classification 

performance decreases consistently across all SNR and training set scenarios. 



Appl. Sci. 2019, 9, 1010 11 of 15 

  
(a) (b) 

Figure 6. Overall classification accuracy for various offsets in Ideal, SRO1, SRO2, CFO1, CFO2, with 

SNR fixed at 20 dB (a) frequency offsets in Ideal, CFO1, CFO2; (b) sample rate offsets in Ideal, SRO1, 

SRO2. 

Table 4. Performance comparison for different training scenarios in typical SNR. 

Scenarios SNR Low Offset 
Medium 

Offset 
High Offset 

SRO1 

High 0.89 0.29 0.18 

Medium 0.80 0.24 0.17 

Low 0.25 0.18 0.15 

SRO2 

High 0.88 0.71 0.34 

Medium 0.80 0.62 0.31 

Low 0.32 0.27 0.17 

CFO1 

High 0.85 0.41 0.31 

Medium 0.79 0.39 0.28 

Low 0.52 0.25 0.17 

CFO2 

High 0.82 0.53 0.37 

Medium 0.78 0.48 0.30 

Low 0.47 0.28 0.20 

5.2. Convolution Networks with SSTM 

We apply the module proposed in Section 2 to the baseline CNN network. Using the same 

training and test scenarios as the baseline, we get typical results shown in Figure 7 for the CFO1 and 

SRO1 datasets. In Figure 7a, it is shown that our method achieves a classification accuracy 

improvement of 5% to 30% over the absolute value of the frequency offset from 0.1% to 0.4%. For 

smaller frequency offsets, the classification performance is improved more. The proposed method 

achieves a broader performance gain over a larger range of training offsets. The increase in 

classification accuracy arises within the entire test dataset. For the performance decline caused by 

sample rate offset, our method shows better results. In Figure 7b, the optimization of classification 

performance is demonstrated in two aspects: Firstly, due to the introduction of SSTM, higher 

classification accuracy is obtained in the sample rate within the range of training datasets. Then, a 

consistent classification accuracy improvement is produced at sample rates outside the range of the 

training dataset. When the test sample rate range exceeds the training dataset, the classification 

accuracy of our method will not drop drastically. 
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(a) (b) 

Figure 7. Overall classification accuracy of the classifier with SSTM for various training scenarios vs. 

frequency offset and SNR. (a) CFO1; (b) SRO1. 

In Figure 8, we plot a cross-sectional view of overall accuracy versus frequency offset or symbol 

rate at a fixed 20 dB SNR. According to the different processing steps of the received signals, the 

signal models can be divided into the following three types: model of radio frequency signals (MRF), 

model of baseband signals (MBB), and model of the output of the matched filter at receiver (MMF). 

According to the preprocessing requirement, the AMR method can be divided into three types: 

environment of ideal synchronization (EIS) algorithm, environment of nonideal synchronization 

(ENIS) algorithm, and environment of no synchronization (ENS) algorithm. Our method is an ENS 

method under the MBB signal model. Therefore, we compare our method with the DL-based method 

of different synchronization requirements under MBB model. For ENS and ENIS methods, we 

compare the methods with RTN, which is proposed by O’shea [23]. For EIS methods, we compare 

with the CNN method with the best performance in the DL-based method, namely the baseline 

method in this article. Besides, the effects of different signal parameterized estimation network 

structures on classification performance are evaluated, including multilayer perceptrons and CNN. 

We represent these frameworks as SSTM_Dense and SSTM_CNN. The compared networks have 

undergone the same optimal hyperparametric search to achieve optimal performance. 

  
(a) (b) 

Figure 8. Overall classification accuracy with various offsets in SRO1 and CFO1 scenarios with the 

aforementioned methods. (a) CFO1; (b) SRO1. 

It is shown in Figure 8a that, for the frequency offset, the methods based on our network model 

provide a certain performance improvement. The Bi-LSTM method provides the best results, 

followed by CNN and multilayer perceptrons [32]. It is shown in Figure 8b that for the symbol rate, 

Bi-LSTM in our network model yields an increase in accuracy overall test ranges. The network 

performance improvement with the addition of the CNN-based SSTM module is gradual, with 

performance decline at higher dynamic range symbol rates. We believe this is because CNN’s limited 
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spatial convertibility is unable to cope with a wide range of difference in signal captures, resulting in 

the inability to effectively train at larger symbol rates. The multilayer perceptron is close to the 

baseline performance. Overall classification accuracies of all methods at typical offsets are shown in 

Table 5, with SNR fixed at 20 dB. With all methods increasing with frequency or sampling rate offset, 

the classification accuracy is significantly reduced. The proposed method achieves optimal 

performance with frequency and sample rate shifts. Our method has a promotion of 51% at high 

sampling rate offset, which indicates that the application of SSTM corrected sample rate offset 

implicitly. Thereby, the signals of various sample rate offset are normalized. This processing reduces 

the classifying difficulty of the baseline classifier. 

Table 5. Performance comparison for methods versus typical offsets in SRO1 and CFO1 scenarios. 

Framework Offset SRO1 CFO1  

Baseline 

High 0.17 0.31 

Medium 0.70 0.41 

Low 0.88 0.85 

RTN 

High 0.29 0.31 

Medium 0.64 0.44 

Low 0.87 0.83 

SSTM_CNN 

High 0.26 0.35 

Medium 0.77 0.53 

Low 0.88 0.80 

SSTM_Dense 

High 0.17 0.44 

Medium 0.70 0.57 

Low 0.89 0.83 

SSTM_BiLSTM 

High 0.68 0.46 

Medium 0.85 0.62 

Low 0.91 0.84 

6. Conclusions 

Using deep neural networks for AMR directly on IQ signals is currently common. However, the 

performance of the network in the actual scene is greatly affected by errors introduced in the signal 

acquisition process. Also, automatic modulation recognition for different symbol rate signals is also 

an urgent problem to be solved without considering resampling. Aiming at the dependence of 

modulation identification on parameter estimation error, such as carrier frequency and symbol rate, 

we proposed an integrated method of parameter estimation and modulation recognition based on 

the attention model. We establish a baseline CNN network to evaluate the effect of parameter 

estimation errors introduced during detection and isolation. With the idea of a spatial transformation 

network in the field of deep learning, we concatenate the SSTM before convolutional neural 

networks. The signal transformation network eliminates signal variations introduced in the wireless 

channel and receiver hardware by adaptively applying parameter transformations. This includes 

resampling to adjust the time offset, symbol rate, and clock recovery, mixing with the carrier to 

correct frequency offset. Applying this improved model to AMR significantly reduces the 

dependence of recognition performance on parameter estimation. The results prove that our method 

can bring significant performance improvement under the influence of offset. Our method realizes 

the integration of parameter estimation and signal captures classification, reduces the dependence on 

parameter estimation errors, and performs well under fading channel. However, our method exhibits 

greater tolerance to the offsets in symbol rate estimation than frequency offset, and this result 

deserves further study. Besides, no further analysis is performed on the SSTM processed signals, 

which require further research. 

In future work, we plan to explore the application of the attention model in AMR, such as 

channel blind equalization, synchronization, and resampling. 
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