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Abstract: Image degradation caused by shadows is likely to cause technological issues in image
segmentation and target recognition. In view of the existing shadow removal methods, there are
problems such as small and trivial shadow processing, the scarcity of end-to-end automatic methods,
the neglecting of light, and high-level semantic information such as materials. An end-to-end deep
convolutional neural network is proposed to further improve the image shadow removal effect.
The network mainly consists of two network models, an encoder–decoder network and a small
refinement network. The former predicts the alpha shadow scale factor, and the latter refines to obtain
sharper edge information. In addition, a new image database (remove shadow database, RSDB)
is constructed; and qualitative and quantitative evaluations are made on databases such as UIUC,
UCF and newly-created databases (RSDB) with various real images. Using the peak signal-to-noise
ratio (PSNR) and the structural similarity (SSIM) for quantitative analysis, the algorithm has a big
improvement on the PSNR and the SSIM as opposed to other methods. In terms of qualitative
comparisons, the network shadow has a clearer and shadow-free image that is consistent with the
original image color and texture, and the detail processing effect is much better. The experimental
results show that the proposed algorithm is superior to other algorithms, and it is more robust in
subjective vision and objective quantization.
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1. Introduction

Today’s world is an era of rapid information development. With the continuous upgrading
of multimedia technology and electronic products, human beings are exposed to more multimedia
information such as text, images, and audio in their daily life. Most of this multimedia information is
obtained through people’s visual systems. We define the multimedia information obtained through
this channel as an image. However, when the image is acquired, it is susceptible to various conditions
that generally degrade the quality of image. Shadows are one of them. Shadows are a phenomenon
of quality degradation caused by imaging conditions. These conditions lead to missing or interfered
information reflected by the target; therefore, the interpretation accuracy of the image is sharply
reduced, and it affects various quantitative analyses and applications of the image.

Shadow detection and removal [1–4] is one of the most basic and challenging problems in
computer graphics and computer vision. The removal of shadow images are important pre-processing
stages in computer vision and image enhancement. The existence of shadow not only affects the visual
interpretation of the image, but also affects the analysis of the image and the subsequent processing
results. For instance, a darker area (caused by shadows) introduces incorrect segments in image
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segmentation [5,6]; radiation changes (caused by shadows) reduce the performance of the target
recognition [7] system; and the presence of shadows reduces the performance of the target tracking [8]
system. Therefore, it is necessary to perform shadow detection and analysis on the image in order to
reduce or eliminate the influence of the image shadow, it also increases the visual authenticity and
physical authenticity of the image through editing and processing.

Shadows are generated by different illumination conditions, and the shadow image Is is
represented by the multiple of the shadow-free image Is f and the shadow ratio α (pixel level ⊗)
according to [9–11], as shown in (1).

Is = α⊗ Is f . (1)

Shadows can be divided into two categories according to different causes [12]: one type is
self-shadow, which is produced by the occluded object itself not being illuminated by the light source;
the other type is projection (cast shadow), which is caused by an object blocking the light source while
producing shadows on the surface of other object. The projection is further divided into an umbra zone
and penumbra zone, wherein the umbra zone is formed by completely direct ray-blocking, and the
penumbra zone is partially blocked by light.

Given a single shadow image, shadow removal aims to generate a high-quality, shadow-free
image with the original shadow image area restored to the shadow-free image in texture, color,
and other features. Existing methods of removing shadow regions typically involve two steps: shadow
detection and shadow removal. Firstly, shadow detection is used to locate the shadow area [13,14] or
the user manually marks the shadow area [9,15,16], then the model is constructed to rebuild both and
to remove shadows.

However, shadow detection is an extremely challenging task. Traditional physics-based methods
can only be applied to high-quality images, while statistical learning-based methods rely on features
that users have to manually label [15,17]. With the development of neural networks, convolutional
neural networks (CNNs) [14,18,19] are used to learn the features of shadow detection. CNNs overcome
the shortcomings of traditional methods that require high-quality images and manual annotation
features. However, they still limited to small network architectures, owing to the shortage of
training data.

Similarly, even if the shadow area is known, it is still a challenge to remove it. At the same time, it
can be clearly understood that the effect of shadow detection will seriously affect the result of shadow
removal. If the effect of shadow detection is not very good, it is impossible to obtain a high-quality,
shadow-free picture in the subsequent removal process.

Inspired by the classical adaptive algorithm, Calvo-Zaragoza and Gallego [20] used the
convolutional automatic encoder for image binarization, which is an end-to-end network structure
and shows good performance in image binarization processing. Image binarization can be formulated
as a two-class classification task at the pixel level, which is similar to the shadow removal task. At the
same time, one of the biggest drawbacks of the current image shadow removal is the lack of the
end-to-end channel. Inspired by this, the purpose of this paper is to design an end-to-end and fully
automated network structure to remove image shadows. Thereby, through the ex-trained network
structure, the input of a single shadow image can be transformed to a high-quality, shadow-free image,
which provides a good basis for subsequent target detection and target tracking.

Different from traditional methods, this paper applies the most prominent features of the deep
encoding–decoding model framework of end-to-end and convolutional neural network (CNN) design.
Inputting a single shadow image, a shadow mask is obtained. It can describe the global structure of
the scene and the high-level semantic information of shadow characteristics. Using the relationship
between the shadow ratio and shadow image, Equation (1) realizes an end-to-end fully automated
algorithm to restore the shadow-free image. At the same time, this paper designs a small network
structure for refinement in order to better handle local information, thus predicting a more accurate
alpha mask and sharper edge information.
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2. Related Work

In recent years, many scholars have analyzed the characteristics of shadows, established shadow
generation models, and proposed a number of algorithms for shadow detection and shadow removal.
Analyzing the research results comprehensively, it is not difficult to find that the shadow removal
algorithm mostly follows these principles: detecting the shadow or marking it manually, then creating
models to remove the shadow.

Gong and Cosker [15] proposed a statistical-based, interactive shadow removal method for
shadows in extreme conditions with different shadow softness, irregular shadow shapes, and existing
dark textures. First, using the dynamic learning method, two users roughly marked the shadow and
non-shadow areas in the image, meaning the shadow area was highlighted and the non-shadow area
was resisted, so the shadow area could be extracted easily. On this basis, the model was constructed
for shadow removal. Gong and Cosker used a rough hand-marked form to detect shadows while
sacrificing finer shadows and a full range of simpler user input autonomy. Gryka [16] and Yu [21]
et al. also proposed to manually mark the shadows in an interactive manner to achieve the purpose
of shadow removal. Different from Gong and Cosker, Yu [21] proposed a color line-based artificial
interactive shadow removal algorithm, which required users to provide shaded areas, shadow-free
areas, and areas with similar textures changing significantly in brightness. In the work of Gryka [16],
they used the unsupervised regression algorithm to remove the shadows through inputting the shaded
area as processed by user, and mainly focused on the soft shadows in the real scene.

Finlayson [22] proposed a shadow removal algorithm based on Poisson’s equation, which had a
good effect on a considerable part of the image. However, there was no consideration of the influence
of ambient illumination and material changes, thus resulting in poor texture restoration in shadow
areas. Generally, the brightness contrast between the shadow area and the non-shadow area in
the image are relatively large while the features such as texture and color are similar. Therefore,
the shadow area and the non-shadow area have similar gradient fields. Liu et al. [23] used this
feature to propose an image shadow removal algorithm based on gradient domain, which solved
some shortcomings of Poisson equation, but it had a poor performance on discontinuous or small
shadow regions. Xiao et al. [24] proposed a shadow removal algorithm based on Subregion Matching
Illumination Transfer. This method takes into account the different reflectivity characteristics of
different materials, which makes the processing of shadow regions in complex scenes better.

On the one hand, Zheng [25] proposed a projection shadow detection and elimination algorithm
based on the combination of texture features and luminance chrominance chroma (YUV) color space.
Firstly, a moving object was detected using a pixel-based adaptive segmenter (PBAS) algorithm that
resisted shadows. In addition, a portion of the projected shadow candidate area was obtained by
texture detection. Then, another projected shadow candidate area was obtained by shadow detection
that was based on the luminance chrominance chroma (YUV) color space. Finally, the two portions
of the projected shadow candidate regions were filtered and merged by the shadow features. In the
work of Murali [26], they proposed a simple method for detecting and removing shadows from a
single red green blue (RGB) image. The shadow detection method was selected based on the average
value of the RGB images in the A and B planes of the CIELab color model (LAB) equivalent image,
and the shadow removal method was based on the recognition of the amount of light irradiated on
the surface. The brightness of the shaded areas in the image was increased, and then the color of
the surface portion was corrected to match the bright portion of the surface. Tfy et al. [27] trained a
kernel least-squares support vector machine (LSSVM) to separate shadow and non-shadow regions.
It was embedded it into the Markov random field (MRF) framework and pairwise contextual cues
were added to further enhance the performance of the region classifier so the detection of shadow area
was realized. A shadow removal method based on area re-lighting is raised based on this.

On the other hand, for the umbra and penumbra regions in projection, researchers have proposed
an image shadow removal algorithm based on convolutional neural network structure (CNN) [14,18]
or intensity domain [9,11] in deep learning. Both Khan [14] and Shen [18] used convolutional neural
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networks (CNN) for learning. The former used multiple CNN structures for fusion applications
and conditional random field (CRF) for image shadow region predictions, while the latter applied
structured label information to the classification process. The two methods were different in the process
of extracting and removing shadows. The former used the Bayesian framework, while the latter applied
the least-squares method of optimization to perform the final recovery optimization. Arbel et al. [9]
used the Markov random field to determine the penumbra region, and then created a smoothing model
in the shadow region to construct a shadow mask. Wu [11] extracted the shadow mask by considering
features such as color shift, texture gradation, and shadow smoothness. Meanwhile, it reserved the
texture of the shadow area during the extraction process.

Analyzing and summarizing the above methods, we find that the current method of shadow
removal can either restore the texture of the shadow area effectively, or neglect the influence of
environment and material of the object. Most methods are interactive rather than fully automated,
which greatly reduces the efficiency of use. Therefore, the purpose of this paper is to propose an
end-to-end, fully automatic network structure to remove image shadow.

With the development of artificial intelligence in recent years, some researchers have established
fully automatic models for image shadow removal [28–31]. A shadow removal algorithm based
on generative adversarial networks (GANs) is proposed in the work [30], which uses two GANs
for joint learning in order to detect and remove shadows. Although this allowed fully automatic
shadow detection using GANs, it relied on the shadow detection result of the previous generation
against the network in the shadow removal stage, and it did not perform well when dealing with
small shadow areas and shadow edges. In the work of Yang [28], a three-dimensional inherent image
restoration method based on bilateral filtering and a two-dimensional intrinsic image is proposed.
Two-dimensional original images are derived from the original image, and then the shadow restoration
method of the three-dimensional original image is proposed by deducing two-dimensional original
images and bilateral filtering. Finally, an automatic shadow removal method for a single image is
realized. However, since the reconstruction of the image may result in changes in the non-shaded area,
a high-quality image consistent with the shadow-free image generally cannot obtained.

Therefore, this paper aims to explore the end-to-end deep convolutional neural network for image
shadow removal. An encoding–decoding neural network is used, and a small neural network with a
two-layer neural network structure is used to train learning. Then, the original image (shadow image)
is inputted into the trained network structure to realize fully automatic shadow removal. Finally,
a high-quality, shadow-free image is obtained.

3. End-To-End Convolutional Neural Network

This article aims to solve the shadow removal problem using an end-to-end deep convolutional
network structure, which is named RSnet. It aims to learn a mapping function between the shadow
image and its shadow matte. The RSnet model mainly includes two parts: an encoding–decoding
stage and an elaboration stage. Specifically, we used a network structure of a deep convolutional
encoder–decoder that took an image as the input, and it took into account penalties for the shadow
mask factor (α) that predicted loss and penalties for new composition loss. At the same time, a refined,
small network structure was introduced in order to consider multi-context scenarios as well as
process local information and edge information, etc. The related information of the two networks,
the training of RSnet model, and how to get the shadow-free image will be described in detail in the
following chapters.

3.1. Encoding–Decoding Phase

The deep encoding–decoding network structure is a very common model framework in deep
learning. The encoder and decoder parts can be any text, voice, image, or video data. The model
can use CNN, recurrent neural network (RNN), long short-term memory (LSTM), gated recurrent
unit (GRU), and so on. One of the most notable features of the encoder–decoder framework is that
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it is an end-to-end learning algorithm. It has been widely used in various fields and has succeeded
in many other computer vision tasks, such as image segmentation [32], object edge detection [33],
and image restoration [34]. The encoding–decoding network structure in this paper consisted of two
parts, one was the encoder network for extracting features and the other was the decoder network for
reconstructing images. Therefore, the encoder network inputted a shadow image, and the output was
a related feature; the decoder network took the output of the encoder network as an input and finally
outputted a shadow mask through the deconvolution layer and the unpooling layer.

Encoder network: The encoder network was based on the VGG16 network [35], which was
originally designed for object recognition. Recent studies have shown that CNNs train a large amount
of data on image classification tasks and can be well generalized in databases and tasks, such as
depth prediction [36,37] and semantic segmentation [38]. Therefore, this paper used the pre-trained
convolution layer of the VGG16 model [35] and transferred its feature representations to shadow
masks by fine-tuning, for the function of task-prediction.

As is known, the VGG16 network consists of thirteen 3× 3 convolutional layers (five convolutional
blocks) and three fully connected layers, as well as five maximum pooling and subsampling layers.
These five convolutional layers and spatial aggregations greatly increased the acceptance of the
network, so that the characteristics of the global context and semantic scenes could be extracted.
However, these five largest pooling layers introduced a 32-pixel stride in the network, so the final
prediction graph was quite rough. Therefore, in order to extract more detailed features and obtain more
intensive predictions, the step sizes of the first, third, and fifth layer pooling layers in the VGG16 model
were modified to 1. In addition to this modification, the sub-sampling layer was abandoned, and all
fully connected layers in the VGG16 network were replaced with a 1 × 1 convolutional layer [38].
These 1 × 1 convolutional layers enabled the network to operate in a fully convolutional manner.
Specifically, the encoder network had a total of 14 convolutional layers and five largest pooling layers.

Decoder network: In the decoder stage, this paper used the deconvolution network proposed by
Zeiler [39], which was mirror-symmetric with the convolutional network. The deconvolution network
had an unpooling layer and deconvolution layer. With the successful application of deconvolution in
neural network visualization, it had been adopted in more and more work, such as scene segmentation,
model generation, etc. Deconvolution is also known as transposed convolution, and it can be clearly
seen that the forward propagation process of the convolutional layer is the reverse propagation process
of the deconvolution layer, and the reverse propagation process of the convolutional layer is the
forward propagation process of the deconvolution layer. The unpooling layer captures instance image
space information. Therefore, it can effectively reconstruct the detailed structure of an object with
finer resolution.

However, in order to speed up the training of the network, the network structure of the
VGG16 was rejected. A small network structure was defined to sample the features acquired in
the encoding network to obtain the desired output. Specifically, the decoder network was defined as
eight convolutional layers, five deconvolution layers, and the last layer was the prediction layer of the
shadow mask factor α.

In order to prevent over-fitting and achieve local optimum values, dropout was applied after
each convolutional layer of the encoding–decoding network, so that the over-fitting problem could
be effectively mitigated and achieve the regularization effect to some extent. This article no longer
used the activation function rectified linear unit mentioned in the VGG16 network, ReLU [40]. Instead,
the parameter rectification linear unit (PReLU) was used throughout the encoding–decoding phase,
which was an improved ReLU proposed by the He Kaiming group [41] and featured non-saturation.
PReLU introduced an additional parameter to avoid the over-fitting problems. The definition of PReLU
is as follows:

p(xi) =

{
xi xi ≥ 0

λxi xi < 0
, (2)
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where xi is the input to the activation function p at channel i, and λ is the learning parameter.
In particular, when λ is a fixed non-zero smaller number, it is equivalent to LeakyReLU (a special
version of the Rectified Linear Unit (ReLU)); when the parameter λ is 0, PReLU is equivalent to ReLU.

3.2. Refinement Phase

While the first part of the RSnet network prediction worked well, the results could sometimes
be too smooth as a result of the encoder–decoder structure. Therefore, we designed a multi-context
mechanism for local detail correction and the previous stage of the encoding–decoding network.
Thereby, the results of the first phase were further improved so that the prediction result α of the entire
network structure was more precise, and the edge processing effect was more refined.

Network structure: The refinement phase was the second phase of the RSnet network, which aimed
to improve the prediction result α obtained in the first phase. Therefore, the input of this stage
connected the image patch with the obtained α predicted value of the first stage and produced a
4-channel input, and the output was the true shadow scale factor α in the image. To ensure convergence
speed and granularity, the network was designed as a small, fully convolutional network with three
convolutional layers. Each one had a nonlinear ReLU layer without a down-sampling layer in the first
two convolutional layers, as the purpose of this article was to preserve the very subtle structures in the
first phase. The specific configuration is shown in Figure 1.

Figure 1. The architecture of the RSnet. RSnet consists of two cooperative sub-networks. The left side of
the dotted line shows the encoding–decoding network, and the right side shows the refinement network.

In the refinement phase, instead of making large-scale changes to the alpha mask, we refined and
sharpened solely the alpha values.

3.3. Training

The relationship between the shadow image Is and its shadow mask α is given by Equation
(1). In training, the actual shadow mask α was calculated according to a given pair of shadows and
shadow-free images. Then, to establish the relationship between the shadow image Is and the shadow
mask α, the mapping function was as follows:

α = F(Is, β). (3)

Among them, β was the learning parameter of the convolution network. During training, a linear
fusion of two loss functions was used to adaptively train the RSnet model.
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α prediction loss: The first loss was called α prediction loss, which was the difference between the
absolute ground actual α value and the predicted α′ value of each pixel. The mean square error (MSE)
is used as a loss function to approximate it:

L(β) =
1
N

N

∑
i

∥∥∥F(Ii
s, β)− αi

∥∥∥, (4)

where N is the total number of training samples in the batch, F(Ii
s, β) is the shadow mask of the ith

image pair output by the prediction layer through the training network, and αi is the true shadow
mask of the ith image pair.

Composition loss: The second loss was called the composition loss, which was the discrepancy
between the true shadow image RGB color and the predicted shadow image RGB color. The predicted
shadow image RGB color was synthesized by the shadow-free image and the shadow layer factor α′

outputted in the prediction layer. The loss function approximation is as follows:

L(c) =
√
(c′ − c)2 + ε2, (5)

where c represents the RGB channel of the real shadow image, c′ represents the RGB channel of the
predicted shadow image synthesized by the predicted shadow mask factor α′, ε represents a small
value, and 10−5 is taken in this training. The derivative ∂L

∂c′ is easy to calculate, its formula is defined
as follows:

∂L
∂c′

=
c′ − c√

(c′ − c)2 + ε2
. (6)

Overall loss: It is a linear fusion of two losses, namely:

Loverall = λL(β) + (1− λ)L(c) λ ∈ [0, 1]. (7)

Here, λ was set to 0.5.
Training method: Although the performance increased significantly with the increase of network

depth, it was an extraordinary task to train a deeper network due to the problem of vanishing
gradient and exploding gradient. In this paper, the following three methods were used to achieve fast
convergence and avoid over-fitting:

(1) Staged training. Since the RSnet network structure was a combination of two networks,
each network was trained separately in the training process. When the network reached a certain
precision, the two were combined and trained together, and finally the combined optimization of
the two was realized.

(2) Multi-level training. According to the size of the shadow scale factor, different levels of images
were set for training, for instance, training hard shadow image databases before soft shadow
image databases, and combining the two to form a database for training in the last step. At the
same time, considering the difference in pixel size of the user input image, images of different
pixel sizes can also be divided into multiple levels for training. All of those methods are more
robust in this paper, and help the network to learn context and semantics information better, thus,
multi-level training results were finally achieved.

(3) Data augmentation. Hundreds of individual scene images cannot achieve good results for the
purpose of training a deeper network. In order to diversify the training data and expand the
number of data pairs in the shadow database, the training of multiple scenes images was carried
out, and the database of the same scene was expanded by adopting the methods of cutting and
rotating. All this had realized the diversification of the database.
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Obtain shadow-free image: The RSnet model aimed to learn a mapping function between the
shadow image and its shadow mask. When the RSnet model was trained to obtain the mapping
function between the two, the shadow mask corresponding to the shadow image could be obtained
through the trained RSnet model, and the corresponding shadow-free image could also be obtained
according to the Formula (1).

In the Formula (1), Is is the shadow image, Is f is the shadow-free image, α is the shadow mask,
and ⊗ is the product of the pixel level.

To be specific, the shadow image was given by the user input, and the shadow mask was obtained
by the trained RSnet model. The shadow-free image can be obtained by dividing them at the pixel
level according to Formula (1).

4. Experiment

Given the complexity of the image composition, it was rather difficult to obtain accurate
evaluations through visual observation alone. Therefore, this paper used RSV to evaluate RSnet
on different databases. Specifically, during the experiment course, the UCF shadow database [42],
the LRSS database [16], the UIUC shadow database [13], and the RSDB database (a new remove
shadow database) were used for testing, respectively, through the RSnet network. The restored image
and the shadow-free image were compared to ensure the diversity and enrichment of the data. At the
same time, structural similarity (SSIM) and peak signal-to-noise ratio (PSNR) were used as evaluation
indicators to evaluate the performance of RSnet.

4.1. Database

Shadow removal has important research significance. Researchers at home and abroad have been
extensively studying this issue, especially in the past decade, but a database specifically constructed
for this problem is very rare. Currently, the most widely used databases are presented by Guo [13] and
Gryka [16], but they only contain 76 and 37 pairs of shadow/shadow-free image pairs. In order to
better evaluate the shadow removal algorithm proposed in this paper, we constructed a new RSDB
database, which contained 2685 shadow and shadow-free image pairs. The comparison with other
shadow removal databases in recent years is shown in Table 1.

Table 1. Comparison table with other shadow databases.

Database Amount Content of Images Type

LRSS [16] 37 Shadow/Shadow-free pair
UIUC [13] 76 Shadow/Shadow-free pair
UCF [42] 245 Shadow/Shadow mask pair

RSDB (ours) 2685 Shadow/Shadow-free pair

In order to better collect data and build a new shadow removal database, we used a tripod
to fix the camera in the specified position and a wireless Bluetooth remote control unit to capture
images during the shooting process to ensure that the shadow/shadow-free image was consistent
with the background. Firstly, to set a fixed exposure compensation, focal length, and other parameters,
the exposure compensation was set to 0, and the focal length was 4 mm; then, the shadow image
projected by different objects was taken. Finally, the shadow cast by the object was removed, that is,
the projection of the object was removed, and the background image of the corresponding shadow
image was captured, that is, the image without shadow.

In addition, to diversify the database, the new RSDB database had the following characteristics:
Brightness: In order to capture shadows, databases with different softness, that is, shadow

databases with different light intensities, included soft shadows and hard shadows. We collected
shadow images at the same time in different weather conditions and different time periods in the same
conditions. For example, we can take shadow pictures at the same time (including 11 noon) on cloudy
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and sunny days, or we can choose 7:00 in the morning, 12 in the afternoon, and 6 in the afternoon at
different times of the day. The data was collected to obtain a soft shadow and hard shadow database.

Shape: In order to ensure the shape diversity of the shadow database, during the shooting process
the shadows were projected by various shapes of objects such as school bags, umbrellas, bicycles,
etc. In the meantime, the characteristics of subjective initiative are fully utilized, and the body was
projected as a shadow. The object performed a multi-pose change and then projected it into a specified
area, thus obtaining a shadow database with various shapes.

Scenario: Multiple scenes were another requirement for shadow removal databases. Given this,
we collected separate shadow images for different scenes in the process of shadow-collecting, such as
grass, roads, campus, and walls.

Reflection: When we were shooting a shadow database, we reflect the shadows of different objects
to mirror the existence of shadows in real life more realistically. An example of an RSDB database is
shown in Figure 2.

Figure 2. Illustration of several shadow and shadow-free image pairs in the RSDB database. The (a1,
b1, c1) columns show the shadow images (inputs) in different scenes. The (a2, b2, c2) columns indicate
true shadow-free images (targets) corresponding to the (a1, b1, c1) columns.
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4.2. Performance Comparison Analysis

In order to evaluate the performance of the RSnet network, this paper chose to use the structural
similarity SSIM (structural similarity) and the peak signal-to-noise ratio (PSNR) as evaluation indicators
to assess the model. On this basis, the RSnet algorithm proposed in this paper was compared with
several popular algorithms in recent years.

SSIM is an index to measure the similarity between two images. It is widely used to evaluate
the quality of image processing algorithms. The larger the SSIM value of two images, the higher the
similarity between them and the better the corresponding shadow removal effect in the model is.
Conversely, the smaller the value of SSIM, the lower the similarity between the two, and the worse the
removal effect of the corresponding algorithm is. PSNR is the most common and widely used objective
measurement method for evaluating image quality. It is similar to SSIM. When the PSNR value of
two images is larger, it indicates that the corresponding shadow removal model is better. Otherwise,
the smaller the PSNR value, the worse the removal effect of the corresponding algorithm is. (Notably,
the PSNR score is not exactly the same as the visual quality seen by the human eye. It is possible that a
higher PSNR seems to be worse than a lower PSNR. It is because the sensitivity of the human eye to
the error is not absolute, and the perceived result is affected by many factors.) The definitions of SSIM
and PSNR are as follows:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (8)

PSNR = 10× lg(
L× L
MSE

) here MSE =
1
n

n

∑
i=1

(xi − yi)
2. (9)

It is worth noting that in order to better reflect the removal effect of the shadow image,
we chose shadow/output and target/output as the quality measurement properties of the algorithm,
where shadow/output represented the corresponding evaluation index value between the original
shadow image and the shadow removal obtained by the algorithm. target/output represented the
actual ground shadow-free image (target) and the evaluation index value corresponding to the shadow
removal image obtained by the algorithm. In order to evaluate the performance of the algorithm
more fairly, we only showed the shadow/output values of the UCF database in different algorithms,
and the target/output value is not given since the UCF database did not provide a true ground-free
shadow (target).

It can be clearly seen from Table 2 that the SSIM index values obtained in the RSnet model
were superior to the SSIM values of other algorithms, regardless of shadow/output or target/output.
In particular, as can be seen from the last line of Table 2, in the newly created RSDB database, when the
SSIM values of other algorithms were compared with the SSIM values obtained by the RSnet model
of the algorithm, the SSIM value of the former was lower, the shadow removal effect of the image
was poorer, and the value of the RSnet model was much higher than other algorithms. Particularly,
in the evaluation of the real ground shadow-free image and the shadow removal image obtained
by the algorithm, it can be seen from Table 2 that it was 1.09 times the SSIM value obtained by the
shadow removal algorithm proposed by Yu [21], and 1.47 times the SSIM value obtained by the model
proposed by Yang [28].

Of course, the comparison on the database proposed in this paper was not standardized. Therefore,
Table 2 also shows the SSIM values on other shaded databases such as LRSS. By analyzing the SSIM
values on other databases in Table 2, it can be found that RSnet exhibited better robustness and
better image shadow removal. The processing effect was much better, especially in the third line
UIUC database, which demonstrated a desired shadow removal effect. The SSIM value between the
original shadow image and the algorithm-derived shadow removal image was larger than the value
under the LRSS database. The overall effect of the SSIM value was smoother and more stable than
other databases. From the perspective of the algorithm, the algorithms proposed by Wang [30] and
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Qu [31] were both based on deep learning, and both of them had better performances compared with
the other five algorithms, indicating that the shadow removal effect of them was better than other
algorithms. Even for UIUC data sets, the SSIM value between the shadow removal image (output)
and the real ground shadow-free image (target) obtained by the model proposed by Wang [30] was
the best, which was even better than the model proposed in this paper. It can be concluded that the
model proposed by Yang [28] had the worst overall performance, since it was easy to change the
non-shaded area in the original image during the shadow removal process, which resulted in poor
similarity between the two. The image shadow removal model proposed by Yu [21] and Gong [15]
was relatively better than other algorithms, but it was inferior to the RSnet model proposed in this
paper. The RSnet model had more stability, and the image shadow processing effect was better.

Table 2. Quantitative results using structural similarity (SSIM) (the bigger the better), the maximum
value is shown in bold.

Database Description Fin.
[22]

Yang
[28]

Guo
[13]

Gong
[15]

Yu
[21]

Wang
[30]

Qu
[31] Ours

LRSS [16]

Shadow/
Output 0.7558 0.8336 0.8507 0.8953 0.9580 0.9162 0.9587 0.9772

Target/
Output 0.8976 0.8549 0.9074 0.9496 0.9633 0.9780 0.9679 0.9814

UIUC [13]

Shadow/
Output 0.7904 0.8549 0.9495 0.9423 0.9543 0.9676 0.9641 0.9788

Target/
Output 0.8336 0.8889 0.9226 0.9576 0.9773 0.9868 0.9801 0.9848

UCF [42]

Shadow/
Output 0.8525 0.8651 0.8625 0.8931 0.9487 0.9121 0.9556 0.9832

Target/
Output – – – – – – – –

RSDB (ours)

Shadow/
Output 0.8580 0.6904 0.7875 0.8609 0.8591 0.8953 0.9011 0.9826

Target/
Output 0.8124 0.6725 0.7704 0.9122 0.9063 0.9344 0.9532 0.9910

The PSNR value in Table 3 showed a large difference between the shadow/output and
target/output values when comparing the shadow/output (target/output) values of different
algorithms under the same database or different databases of the same algorithm. We uncovered some
valuable clues, which are needed to evaluate the algorithm. Comparing the PSNR values of different
algorithms in the same shaded database in Table 3, it can be found that the value of the RSnet model
was higher than other algorithms, especially in the RSDB database proposed in this paper, and the
PSNR value was higher. The effect of the shadow removal model proposed by Yu [21] was similar to
that of Gong [15]; the model PSNR values proposed by Yang [28] were relatively inferior, and so was
the shadow removal performance. Qu [31] proposed an algorithm that had good performance, second
only to the model proposed in this paper. As can be seen from the fourth line in Table 3, Qu’s [31]
proposed algorithm was superior to the model proposed in this paper, and the PSNR value of the
model proposed by Wang [30] was slightly lower than that of the RSnet model. The three methods
based on deep learning were all superior to the other five algorithms, which showed that the deep
learning method achieved good results in the image shadow removal task. Comparing the PSNR
values of the same algorithm under different databases, it can be clearly found that the proposed
algorithm was different from other algorithms, and the PSNR values were higher under different
databases. Therefore, the RSnet model was more stable, the image shadow removal effect was much
better, and the algorithm was more robust. Comparing the PSNR values of the shadow removal model
proposed by Guo [13] under a certain attribute and different databases, for example, the PSNR value
on the shadow/output can be found, and the variation range of the PSNR was larger, indicating that
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the corresponding algorithm was not stable and the robustness was poor. At the same time, it can be
concluded from Table 3 that the model proposed by Finlayson [22] had a smaller PSNR value under
the target/output attribute of the RSDB database. Despite that it was higher than the model proposed
by Yang [28], it was still 1.27 times lower than the value obtained by RSnet proposed in this paper.

Table 3. Quantitative results using peak signal-to-noise ratio (PSNR) (the bigger the better),
the maximum value is shown in bold.

Database Description Fin.
[22]

Yang
[28]

Guo
[13]

Gong
[15]

Yu
[21]

Wang
[30]

Qu
[31] Ours

LRSS
[16]

Shadow/
Output 12.9899 15.5075 17.0192 18.8039 19.3035 20.3452 19.8817 23.0102

Target/
Output 29.3137 29.6752 29.9656 30.0192 31.6604 31.1917 31.6946 33.6863

UIUC
[13]

Shadow/
Output 17.6398 19.1518 22.6825 22.9292 21.2515 23.1865 23.9611 24.4204

Target/
Output 29.6504 29.2484 32.2745 34.4854 34.0058 34.4204 35.6052 35.9611

UCF
[42]

Shadow/
Output 16.6190 15.3573 19.5558 20.7869 20.7128 23.1614 25.9801 25.1759

Target/
Output – – – – – – – –

RSDB
(ours)

Shadow/
Output 16.8726 12.1715 19.1940 20.6937 22.3105 22.9801 23.7084 25.7078

Target/
Output 28.5124 24.2104 29.5787 31.5248 33.1614 32.4272 32.6855 36.1148

4.3. Qualitative Analysis

In order to demonstrate the effect of RSnet network shadow removal properly, we selected part of
the image in the database as the original image, and compared the processing results with the shadow
removal effects of several other algorithms. The comparison diagram is shown in Figures 3–5.

Figure 3. Schematic diagram of shadow removal in simple scenes.
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Figures 3–5 show the image shadow removal effects of different algorithms under simple
semantics, complex semantics, and special semantics. The first column is the original image (shadow
image), the second column is the real shadow-free image, and the last eight columns are the shadow
removal images obtained by eight different algorithms. The last column is the shadow removal image
obtained by the RSnet model proposed in this paper. It is worth noting that the first few lines of
Figures 3 and 4 show the image shadow removal effect when the projection object is smaller and more
trivial, and the last few lines show the shadow removal effect when the projection object is larger.
Comparing the processing effects of these two different projection objects, it can be clearly found that
when the projection object was larger and the shadow area was more concentrated, that is, the shadow
occupied a large proportion of the entire image, the overall removal effect of the image shadow was
much better than that of the trivial projection object, and had a smaller shadow area.

Figure 4. Schematic diagram of shadow removal in complex scenes.

Analyzing the image shadow removal effect diagram in Figure 3, we found that Finlayson [22]
and Yu [21] had relatively stable results for shadow images in simple scenes; the former was better than
the latter. The algorithm proposed by Yu [21] had a better overall effect than the other four methods
without deep learning, however, when comparing the shadow removal effect map obtained by the fully
automatic RSnet model proposed in this paper, it can be seen that Rsnet’s shadow-free image quality
was higher, especially for the detail processing, which was far better than the interactive method
proposed by Yu [21]. Observing the last three columns in Figures 3–5, it can be found that the depth
learning-based methods proposed by Wang [30] and Qu [31] and the Rsnet algorithm proposed in this
paper were better than the previous ones. It reflected that the overall effect of deep learning applied to
image shadow removal was better. It can be clearly seen from the fifth column in Figures 3–5 that the
bilateral filtering-based algorithm proposed by Yang [28] changed the non-shaded area. Of course,
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for the first and second rows of the fifth column in Figure 3, the image reconstruction effect was good,
the reconstruction effect of the non-shadow region was good, and the non-shadow region was not
significantly changed. However, the effect of shadow removal was not good enough, and the shadow
area could still be observed more clearly from the shadow-free image after removal. At the same time,
using these two images to compare the shadow-free image obtained by the Rsnet model proposed
in this paper, it can be seen that the latter removal effect was better in both the non-shadow area and
the shadow area, and the obtained shadow-free image quality was higher. Of course, for the shaded
areas in the third and last lines, the algorithm proposed in this paper did not perform preferably on
the removal of shadow areas, but still had advantage over other algorithms, especially for the detailed
processing of edge information.

Figure 5. Schematic diagram of shadow removal in special scenes.

Figure 4 mainly shows the shadow removal effect of different algorithms under complex scene
conditions. A comprehensive analysis of Figures 3 and 4 shows that some algorithms had better
shadow removal effects in simple scenes, but the shadow removal effect in complex scenes was
relatively poor. These algorithms of the overall analysis and comparison show that the quality of
the shadow-free image obtained in the simple scene was higher than that of the shadow-free image
obtained in the complex scene. Therefore, it can be explained that these algorithms had poor stability
and could not adapt to shadow images with multiple semantic inputs at the same time. When the
texture was complex and the shadows were small, these algorithms could not obtain high-quality,
shadow-free images. Of course, the two methods based on deep learning were more stable than the
other five algorithms. However, when comparing the RSnet model, it can be found that Wang [30] had
a poor effect on small shadows, and Qu [31] had a poor shadow removal effect on complex scenes,
such as grass. The Rsnet model had excellent shadow removal effects for both scenarios, and both
had high quality, shadow-free images. Analysis of lines 4 and 5 in Figure 4 revealed that when
shadows were projected onto a wall with complex textures, Yu [21], Gong [15], Guo [13], Yang [28],
and Finlayson [22] did not get high-quality, shadow-free images, and the shadow removal effect was
not ideal. The shadow-free image quality obtained by the Rsnet network in this case was relatively
higher, and the shadow removal effect was better, even equivalent to the true shadow-free image in
the second column.

The last line in Figure 4 shows the shadow removal effect of different algorithms when people and
bicycles were used as projection objects. This was a common shadow image in our daily life, but the
shadow removal methods of the other models were not satisfactory. In particular, the more complicated
and fine shadow processing effects on the bicycle tire was extremely poor, and the corresponding



Appl. Sci. 2019, 9, 1009 15 of 17

shadow area was not substantially removed. The Rsnet model proposed in this paper obtained a
high-quality, shadow-free image using a fully automated end-to-end convolutional neural network.
Moreover, when the obtained shadow-free image was compared with the real shadow-free image,
there was basically no difference between the two, and the shadow removal effect was excellent.

Figure 5 illustrates the effect of image shadow removal in some special cases. From the first three
lines, it can be found that when the shadow area involved multiple semantic inputs, the other five
shadow removal effects were extremely inferior. The model removal effect proposed in this paper
was quite satisfactory. In particular, in the second row of Figure 5, which had stairs and involved
two different colors, the Yang [28], Gong [15], and Guo [13] algorithms basically could not handle the
shadow area, and they even changed the non-shadow area. From the last line in Figure 5, it can be
found that when the real ground had a black texture, most of the shadow removal algorithms would
mistake it for the shadow area to be removed, and the methods proposed by Wang [30] and Qu [31]
presented the same situation. However, the RSnet model proposed in this paper could distinguish
between shadow regions and non-shadow regions more accurately, and, thus, obtain higher quality,
shadow-free images.

5. Summary and Outlook

Based on the analysis of the background, significance, and current research status of image
shadow removal, this paper focuses on the shortcomings of existing image shadow removal algorithms.
A fully automatic image shadow removal model based on an end-to-end deep convolutional neural
network is proposed. This model uses a small-scale network to refine the processing that is based
on the encode–decoder network to obtain finer semantic information, which enhances the quality
of shadow-free images and better process the details. In the RSnet model, a more diverse training
method is adopted in the training process, which performs the network training effect better and,
thus, is applied to image shadow removal in a finer way. At the same time, a new image shadow
removal RSDB database is provided, which offers more data types for future shadow removal. It can
be seen from the comparison results that the image shading is removed by using this algorithm,
the performance index is better, and the quality of the shadow-free image is higher, which has great
application values in the later target recognition and target tracking stages. Of course, there are still
some limitations with our method. In the following work, we would continue to optimize this method.
The database size of the image shadow can be further expanded; the network expression ability can
be improved, the convergence speed can be accelerated, and, thus, a more robust algorithm may
be obtained.
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