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Abstract: In recent years, the formation control of multi-mobile robots has been widely investigated
by researchers. With increasing numbers of robots in the formation, distributed formation control
has become the development trend of multi-mobile robot formation control, and the consensus
problem is the most basic problem in the distributed multi-mobile robot control algorithm. Therefore,
it is very important to analyze the consensus of multi-mobile robot systems. There are already
mature and sophisticated strategies solving the consensus problem in ideal environments. However,
in practical applications, uncertain factors like communication noise, communication delay and
measurement errors will still lead to many problems in multi-robot formation control. In this paper,
the consensus problem of second-order multi-robot systems with multiple time delays and noises
is analyzed. The characteristic equation of the system is transformed into a quadratic polynomial
of pure imaginary eigenvalues using the frequency domain analysis method, and then the critical
stability state of the maximum time delay under noisy conditions is obtained. When all robot delays
are less than the maximum time delay, the system can be stabilized and achieve consensus. Compared
with the traditional Lyapunov method, this algorithm has lower conservativeness, and it is easier to
extend the results to higher-order multi-robot systems. Finally, the results are verified by numerical
simulation using MATLAB/Simulink. At the same time, a multi-mobile robot platform is built, and
the proposed algorithm is applied to an actual multi-robot system. The experimental results show
that the proposed algorithm is finally able to achieve the consensus of the second-order multi-robot
system under delay and noise interference.
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1. Introduction

In recent years, with the continuous development of computer science, complex network theory
and control theory, autonomous mobile robots have received more and more attention [1]. Compared to
single mobile robots, multi-mobile robot systems have better stability, higher fault tolerance and higher
work efficiency. As a result, they have better application prospects and higher research value in the
fields of reconnaissance, patrol, rescue and environmental survey. Formation control of multi-mobile
robots is the basis of multi-mobile robot systems, and has become a hotspot in the field of robotics [2].

As part of the design process of multi-robot formation control algorithm, many problems need
to be considered, including robot model, external environmental interference, sensor measurement
noise, algorithm control precision, and the controllability of different formations [3]. The existing
formation control algorithms for multi-robots mainly include the leader-follower algorithm [4], the
behavior-based algorithm [5], the graph theory-based method [6], the virtual structure method [7],
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and the artificial potential field method. The leader-follower algorithm has flexible motion strategy
and scalability, but the algorithm cannot form stable and reliable feedback between the follower
and the leader. Therefore, the control error of the follower will increase with interference from the
environment. In particular, when the leader fails, it can cause the entire multi-robot system to crash.
The behavior-based algorithm can effectively reduce the complexity of the entire formation control
algorithm, but it has higher requirements in terms of sensor sensing ability and communication ability
between robots, and cannot accurately quantify the behavior of robots during operation. Thus, it is
difficult to guarantee the system’s robustness using the behavior-based algorithm. The virtual structure
method is convenient for designing the formation behavior of multi-robot systems, while due to the
constraints of rigid structures, it lacks flexibility with respect to obstacle avoidance and formation
transformation. The artificial potential field algorithm has a simple structure and can effectively avoid
collisions and obstacles, but it is susceptible to interference when maintaining the formation, and it is
difficult to perform precise formation control. Moreover, the potential energy function needs to be
reset if the formation transformation is performed, leading to a lack of flexibility.

In view of the shortcomings of the traditional formation control algorithm, considering the
increase in the number of robots in the multi-robot system and the continuous improvement of
the data processing capability of a single robot, the distributed multi-robot control algorithm has
attracted the attention of researchers. The distributed multi-robot system can make full use of the data
processing resources of the robot and share the pressure of the central processing machine, which has
great advantages in terms of flexibility and fault tolerance [8,9]. In addition, solving the consensus
problem is the core of the distributed multi-robot control algorithm [10]. There are already mature and
sophisticated strategies for solving the consensus problem in ideal environments [11,12]. However,
in practical applications, uncertain factors like communication noise, communication delay and
measurement error will still lead to many problems in multi-robot formation control. Some algorithms
have considered some practical problems. Reference [13] studied the conditions of the system reaching
consensus under uniform delay, when the communication structures of second-order multi-robot
systems were a directed graph with spanning tree or a strongly connected graph, respectively. However,
that paper does not consider the noise condition or consensus under different delay conditions.
Reference [14] studied the consensus problem of second-order multi-robot systems under noisy
conditions. A control protocol based on distributed sampling data was proposed to achieve system
consensus, but the delay condition was not taken into account in the algorithm. Reference [15]
studied the consensus of second-order multi-robot systems under non-uniform and multi-time delays
using the frequency domain analysis method. Compared with the Lyapunov method, it has lower
conservativeness, and the results were extended to higher-order multi-robot systems. However, it
did not take noise into consideration, which is unavoidable in practical environments. Reference [16]
studied the consensus of second-order multi-robot systems under uniform time delay and noise
environments, and designed different control protocols for different types of noise, thus achieving the
consensus of the system. These algorithms provide some basic solutions to the second-order system
consensus problem, but the problems encountered by multi-robots in practical applications are far
more varied than these. On the basis of these algorithms, this paper performs a more in-depth analysis,
especially considering the consensus of the second-order system in which there are many different
time delays and multiplicative noises in the system, laying the foundations for a formation control
algorithm for second-order multi-robot systems that can be truly implemented in real robot systems.

In summary, this paper analyzes the consensus problem of second-order multi-robot systems
under various delay and noise conditions. The system character equations are transformed into
quadratic polynomials of pure imaginary eigenvalues based on frequency domain analysis, and then
solved. Finally, its critical steady state is obtained and verified using Matlab numerical simulation.
Compared with existing algorithms, this algorithm has lower conservativeness, and it is easier to
extend the results to higher-order multi-robot systems. Since the omnidirectional mobile robot is
a fully driven robot, and the horizontal and vertical directions can be separately controlled, it can
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be constructed as two one-dimensional second-order multi-robot systems. Therefore, experiments
were carried out on a multi-omnidirectional mobile robot platform built in the laboratory using the
proposed algorithm [17,18], which verifies the effectiveness of the proposed algorithm.

2. Pre-Preparation and Problem Description

2.1. Graph Theory

G = {V, E} represents the communication topology between robots, in which each robot
represents a node. V is a set of nodes. E is a set of edges, representing the connection state between
robots. The topology map is represented by a Laplacian matrix, which is L = D−A. D is the degree
matrix, which represents how many nodes are adjacent to each node. A = [aij] is the adjacent matrix
and i, j ∈ V. Ni represents all sets of nodes adjacent to the i node. If node j is adjacent to node i, then
aij > 0. If aij = aji for any i, j ∈ V, the graph is an undirected graph; otherwise, it is a directed graph.
If there is a directed path on any two nodes in the graph, the directed graph G is strongly connected.
If there is a directed path to a node in the graph to any other node, then the directed graph G contains
a spanning tree. If the undirected graph G is strongly connected, it is called a connected graph. When
the undirected graph G is a connected graph, its Laplacian L matrix contains a zero root, and the other
eigenvalues are positive real numbers. When a directed graph G contains a spanning tree, its Laplacian
L matrix contains a zero root, and the rest eigenvalue’s real part are positive.

2.2. Problem Description

Suppose the system consists of n omnidirectional robots. The dynamic characteristics of the
omnidirectional robot in the x direction are:{ .

xi(t) = vi(t)
.
vi(t) = ui(t)

(1)

where xi(t) is position, vi(t) is velocity and ui(t) is input control. If any i robot and j robot in the
multi-robot system satisfy the identities as follows:

lim
t→+∞

[xi(t)− xj(t)] = 0 (2)

lim
t→+∞

[vi(t)− vj(t)] = 0 (3)

then the multi-robot system (1) has achieved consensus under the control protocol ui(t) Let the state
vector of the i robot be δi(t) = [xi(t), vi(t)]

T , then the multi-robot system state vector is S(t) =

[δ1(t), δ2(t), δ3(t), . . . , δn(t)]. Rewrite system (1) as:

.
S(t) = ΨS(t) (4)

where Ψ = I⊗ A− L⊗ B, A =

[
0 1
0 0

]
, B =

[
0 0
k1 k2

]
, ⊗ is Kronecker. When ideally without

noise and delay, the control protocol designed in [13] is as follows:

ui(t) = ∑
j∈Ni

aij
{

k1[xi(t)− xj(t)] + k2[vi(t)− vj(t)]
}

(5)

where aij > 0 is the topology weight of the communication between robot i and robot j, k1 is the
position scale factor that needs to be designed, k2 is the velocity scale factor that needs to be designed.
Lemmas 1 and 2 give the conditions that the coefficient matrix Ψ of control protocol (5) must satisfy
when the communication topology of system (4) is undirected graph and directed graph, respectively.
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Lemma 1. When the communication topology of multi-robot system (4) is connected graph, the coefficient
matrix Ψ has a double zero root, and the real part of other eigenvalues is negative.

Proof. Let there be an orthogonal matrix Q, such that:

QTLQ = diag{0, λ2, λ3, . . . , λn} (6)

where 0, λ2, λ3, . . . , λn is the eigenvalue of the Laplacian matrix L, and λi > 0 (i = 2, 3, . . . , n).
Formula (7) is obtained from Formula (6):

(Q⊗ I2)
TΨ(Q⊗ I2) = diag{A, A− λ2B, A− λ3B, . . . , A− λnB} (7)

The determinant of Formula (7) is obtained:

|diag{A, A− λ2B, A− λ3B, . . . , A− λnB}| = s2
n

∏
2

s2 + λik2s + λik1 = 0 (8)

Because there is s2 in Formula (8), there must be a double zero root in the eigenvalue. By solving
polynomial equation s2 + λik2s + λik1 = 0, we can get:

s1 =
−λik2 +

√
(λik2)

2 − 4λik1

2

s2 =
−λik2 −

√
(λik2)

2 − 4λik1

2

Based on this analysis, when (λik2)
2 > 4λik1, obviously −λik2 ±

√
(λik2)

2 − 4λik1 < 0, so the

eigenvalues s1 and s2 are negative. When (λik2)
2 < 4λik1, because λik2 > 0, so−λik2 < 0, the eigenvalues

s1 and s2 have negative real parts. Lemma 1 is proved. �

Lemma 2. When the communication topology of multi-robot system (4) is directed graph and contains spanning
tree, k1 ∈ (0, k0k2

2) the coefficient matrix Ψ has a double zero root, and the real part of other eigenvalues is

negative. Where k0 = min
‖λi‖6=0

{
‖λi‖2real(λi)

imag(λi)

}
.

Proof. The characteristic determinant of system (4) is obtained by Formula (8), assuming that there are
polynomial equations:

s2 + s(a + bj) + k(a + bj) = 0 (9)

where a > 0, k, a, b ∈ R. Let s = jw:

− w2 − bw + ka + (aw + kb)j = 0 (10)

Solving Formula (10), we can get:{
−w2 − bw + ka = 0
aw + kb = 0

(11)

Thus, solved: {
k1 = 0

k2 = a(a2+b2)
b2

(12)
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Document [13] proves that when 0 < k < a(a2+b2)
b2 , the roots of Formula (9) are all on the left open

half plane. Formula (8) is modified according to Formula (9):

s2
n

∏
2

s2 + λik2s + λi
k1

k2
k2 = 0 (13)

The analysis shows that when k0 = min
‖λi‖6=0

{
‖λi‖2real(λi)

imag(λi)

}
, k1 ∈ (0, k0k2

2), the coefficient matrix Ψ

has a double zero root, and the real part of other eigenvalues is negative. Lemma 2 is proved. �

3. Consensus Analysis of Multi-Robot with Various Delays and Noise Conditions

In the previous section, we analyzed the conditions under which second-order systems achieve
consensus in an ideal environment. However, in real environments, due to noise interference and
communication differences between different robotic hardware, the above control protocols need to be
improved. Assuming that there are D kinds of different delays in the system, the multi-agent system
(4) can be changed to:

.
S(t) = (I⊗A)·S(t)−

D

∑
d=1

(Ld ⊗ B)·ζ(t)·S(t− τd) (14)

where ζ(t) is the communication noise or measurement noise between robots, τij is the transmission
delay, which represents the time taken by i robot to receive and process information transmitted by j
robot, Ld is the Laplacian matrix corresponding to the sub-topological graph of the robot node when

the delay is τd, and
D
∑

d=1
Ld = L.

Theorem 1. If system (14) is a connected graph, the system can achieve consensus when the system delay τd is
less than τmax under the action of noise ζ(t). Among them:

τmax =
[
arctan

(
k2
k1

wmax

)]
/wmax

wmax =

√
λ2

maxk2
2ζ2(t)+ζ(t)

√
ζ2(t)(λ2

maxk2
2)

2
+4λ2

maxk2
1

2

(15)

Proof. Using the frequency domain analysis method for analysis, the Laplace transform of Equation (14)
can be obtained:

S(s) = (sI2n − (In ⊗A) +
D

∑
d=1

(Ld ⊗ B)ζ(t)e−τds)−1S(0) (16)

Let Gτ(s) = sI2n− (In⊗A)+
D
∑

d=1
(Ld ⊗ B)ζ(t)e−τds, so the eigenvalues of the determinant |Gτ(s)|

are the eigenvalues of the system. Lemma 1 proves that multi-robot system (4) achieves the conditions
of consensus. According to Lemma 1, how can the eigenvalues of system (14) be kept in the negative
half-plane under the interference of time delay τ and noise ζ(t) relative to the system (4)? Because the
measurement noise and communication noise are uncertainties in real environments, it is impossible
to carry out accurate quantitative analysis. Therefore, only when the system delay τ increases to a
value under the action of noise ζ(t) does a non-zero eigenvalue of the system appear on the virtual
axis for the first time, while the time delay τ is the critical value for the system to maintain stability.
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Assuming that the eigenvalue of the system is on the imaginary axis, let s = jw be the eigenvalue;
then α = α1 ⊗ [1, 0]T + α2 ⊗ [0, 1]T is the eigenvector corresponding to the eigenvalue, and if ‖α‖ = 1,
α1, α2 ∈ Cn, then: [

jwI2n − (In ⊗A) +
D

∑
d=1

(Ld ⊗ B)ζ(t)e−jwτd

]
α = 0 (17)

The imaginary eigenvalues of the system appear in pairs in conjugate form. This paper only
analyzes the case where w > 0. Formula (17) left multiplied by αH is:

αH

[
jwI2n − (In ⊗A) +

D

∑
d=1

(Ld ⊗ B)ζ(t)e−jwτd

]
α = 0 (18)

Because each line of the left matrix of Formula (17) is zero, so jwα1 = α2, and substituting it into
Formula (18):

D

∑
d=1

βdζ(t)e−jwτd =
w2

k1 + jwk2
(19)

where βd = αH(Ld⊗I2)α
αHα

. Replace A with B in Formula (19):

F(w) =
D

∑
d=1

βdζ(t)ejwτd =
w2

k1 − jwk2
(20)

Take module operation on both sides of the upper equal sign:

‖F(w)‖ = ‖
D

∑
d=1

βdζ(t)e−jwτd‖ < ‖
D

∑
d=1

βdζ(t)‖ = αH(L⊗ I2)α

αHα
ζ(t) ≤ λmaxζ(t) (21)

Let wmax =

√
λ2

maxk2
2ζ2(t)+ζ(t)

√
ζ2(t)(λ2

maxk2
2)

2
+4λ2

maxk2
1

2 get w ≤ wmax, upper formula establishment.
From Formula (20):

θ(w) = argz[F(w)] = arctan(
k2

k1
w) (22)

where θ(w) ∈ [0, 2π). Let τ(w) = θ(w)
w , a = k2

k1
, deriving for τ(w), we can obtain:

M1(w) =
dτ(w)

dw
=

1
w2 M2(w) =

1
w2

[
aw

a2w2 + 1
− arctan(aw)

]
(23)

Deriving for M2(w) we can obtain:

dM2(w)

dw
= − 2a3w2

(a2w2 + 1)2 < 0 (24)

M2(w) is decreasing, so when w > 0, M2(w) < M2(0) = 0, so M1(w) < 0; that is, τ(w) is also
decreasing. So τ(w) ≥ τ(wmax) = τmax. When τd < τmax, when τd < τmax, we can get:

τ(w) =
θ(w)

w
=

argz
(

D
∑

d=1
βdζ(t)ejwτd

)
w

≤ max[wτd]

w
<

wτmax

w
< τmax (25)

That is to say, it contradicts τ(w) ≥ τ(wmax). Therefore, when τd < τmax, the eigenvalues of the
system can be maintained in the left half plane, and the consensus of system (14) can be achieved.
Theorem 1 is proved. �
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Theorem 2. If system (14) is a directed graph and there is a spanning tree, the system can achieve consensus when
the system delay τd is smaller than the τmax under the action of noise ζ(t), and k1 ∈ (0, k0k2

2). Among them:
τmax = min

‖λi‖6=0

[[
arctan

(
k2
k1

wi

)
− argz(λi)

]
/wi

]
wi =

√
λ2

i k2
2ζ2(t)+ζ(t)

√
ζ2(t)(λ2

i k2
2)

2
+4λ2

i k2
1

2

(26)

where argz(λi) ∈ (−π
2 , π

2 ).

Proof. Lemma 2 proved that, when the communication topology of multi-robot system (4) is directed
graph and contains spanning tree, k1 ∈ (0, k0k2

2), the coefficient matrix Ψ has a double zero root, and
the real part of the other eigenvalues is negative. The same analysis is performed using the frequency
domain analysis method. Similar to the proof of Theorem 1, only when the system delay τ increases to
the value under the action of noise ζ(t) does a non-zero eigenvalue of the system first appear on the
imaginary axis, while the delay τ is the critical value for the system to maintain stability. Take modulo
operation on Formula (20):

‖F(w)‖ = ‖ w2

k1 − jwk2
‖ (27)

Let w be a function of ‖F(w)‖; then the above formula can be written as follows:

w =

√√√√‖F(w)‖2k2
2 +

√
(‖F(w)‖2k2

2)
2
+ 4‖F(w)‖2k2

1
2

(28)

Then we can get that w is an incremental function about ‖F(w)‖. From Formula (20):
argz[F(w)] = arctan( k2

k1
w)

argz[F(w)] ≤ argz(
D
∑

d=1
βd) + max(wτm)

(29)

So:

arctan(
k2

k1
w)− argz(

D

∑
d=1

βd) ≤ max(wτm) (30)

Because βd = αH(Ld⊗I2)α
αHα

, so
D
∑

d=1
βd = λi,where λi is the non-zero eigenvalue of Laplace matrix L.

So ‖F(w)‖ ≤ ‖ζ(t)λi‖. Because w is an incremental function about ‖F(w)‖, so:

w(‖F(w)‖) ≤ w(‖ζ(t)λi‖) = wi =

√√√√λ2
i k2

2ζ2(t) + ζ(t)
√

ζ2(t)(λ2
i k2

2)
2
+ 4λ2

i k2
1

2
(31)

When τd < τmax, we can get:

max(wτd) < wiτmax = min
[[

arctan( k2
k1

wi)− argz(
D
∑

d=1
βd)

]
/wi

]
wi

≤ arctan( k2
k1

w)− argz(
D
∑

d=1
βd)

(32)

We can find that this contradicts Formula (30), so when τd < τmax, the eigenvalue of the system
can be maintained in the left half plane, and the consensus of system (14) can be achieved. Theorem 2
is proved. �
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4. Simulation Verification

In this section, two sets of Matlab/Simulink numerical simulation experiments are carried out to
verify the consensus of the system described in Theorems 1 and 2 when the communication topology
is undirected graph and directed graph under the conditions of noise and various delays.

Experiment 1. Let system (14) consist of four robots whose communication topology is shown in Figure 1.
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Figure 1. Experiment 1 system communication topology.

As can be seen from Figure 1, the time delay between robots 1 and 2 is τ1, between robot 2 and
robot 3 it is τ2, between robot 3 and robot 4 it is τ1, between robot 4 and robot 1 it is τ2. If the adjacent
communication weight aij is 1, then the Laplace matrix L is:

L =


2 −1 −1
−1 2 −1

−1 2 −1
−1 −1 2

 (33)

We can get λmax = 4. Assume that the communication noise or measurement noise is white noise
with a maximum amplitude of two. According to Theorem 1, τmax = 0.226.

In the first group of Experiment 1, set τ1 = 0.21, τ2 = 0.22, and the initial posture is assumed to
be (1,0), (2,0), (3,0), (4,0). The simulation results are shown in Figure 2.

To verify Theorem 1 and compare with the first group of experiments, in the second group of
experiments, set τ1 = 0.23, τ2 = 0.24 under the same conditions. The simulation results are shown in
Figure 3.

According to Experiment 1, system (14) satisfying lemma 1 can achieve consensus when all τd are
less than τmax, and the system will diverge when all τd are greater than τmax, which cannot achieve
consensus; thus Theorem 1 is verified.
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The time delay from Robot 1 to Robot 2 is τ1, from Robot 2 to Robot 3 it is τ2, from Robot 3 to
Robot 4 it is τ3, from Robot 4 to Robot 1 it is τ4. If the adjacent communication weight aij is 1, then the
Laplace matrix L is:

L =


2 −1
−1 1 −1

−1 2
−1 −1 1

 (34)

Then k0 = min
‖λi‖6=0

{
‖λi‖2real(λi)

imag(λi)

}
= 5×2

1 = 10, so k1 ∈ (0, 10k2
2). Assume that the communication

noise or measurement noise is white noise with a maximum amplitude of two. Set k1 = 1, k2 = 1,
according to Theorem 2, τmax = 0.137.

In the first group of experiment 2, set τ1 = 0.13, τ2 = 0.12, τ3 = 0.11, τ4 = 0.1, and the initial
posture is assumed to be (1,0), (2,0), (3,0), (4,0). The simulation results are shown in Figure 5.

To verify Theorem 2 and compare with the first group of experiments, in the second group
of experiments, set τ1 = 0.14, τ2 = 0.141, τ3 = 0.142, τ4 = 0.143 under the same conditions.
The simulation results are shown in Figure 6.
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According to experiment 2, system (14) satisfying Lemma 2 can achieve consensus when all τd are
less than τmax, and the system will diverge when all τd are greater than τmax, which cannot achieve
consensus; thus Theorem 2 is verified.

5. Physical Experiment Verification

To verify the proposed formation control algorithm, we did the experiment based on a
pre-constructed multi-mobile robot research platform built by our laboratory, which was constructed
with a self-designed three-wheeled omnidirectional robot carrying an UWB (Ultra-Wide Band) ranging
module. The system is shown in Figure 7, the omnidirectional robot is shown in Figure 8, and the
performance parameters are shown in Table 1. Because the consensus of the second-order system
is analyzed in the theoretical analysis part, the speed and position are consistent, and while the
omnidirectional robot is a fully driven robot, the horizontal and vertical directions can be controlled
separately. Because the velocity control in a given direction is a second-order system, therefore,
multi-omni-directional mobile robots can be decomposed into two one-dimensional second-order
multi-robot systems. Therefore, omni-directional robots are used to verify the proposed algorithm.
In the experiment, it is possible to determine whether the algorithm is valid based on whether the
speed and the position of the robot after final stabilization are consistent. In the data acquisition part,
the external positioning data of the robot are collected by the UWB positioning system built by myself,
and the speed of the robot itself is collected by the encoder on the wheel of the robot and transmitted to
the central processing computer via Wi-Fi for processing. The ranging error between the UWB ranging
modules used in the experiment is 7 cm. Experiments were carried out in an indoor environment with
length × width of 4 m × 5 m in order to verify the effectiveness of the proposed algorithm.

Table 1. Omnidirectional robot parameters.

Parameter Name Value

weight 1.5 Kg
diameter 235 mm

Maximum linear velocity 1.2 m/s
Maximum angular velocity 6.6 rad/s

Battery capacity 2800 mah
No-load Maximum Standby Time 2 h

Maximum Load Weight 3 Kg
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It should be pointed out that when the proposed algorithm is applied to a practical multi-robot
system, it is necessary to first determine the maximum communication delay between robots and the
maximum amplitude of the noise environment, and then design k1 and k2 based on this. At the same
time, it should be noted that this experiment mainly focuses on verifying whether the system can
achieve consensus under the control law. The collision avoidance behavior of the multi-robot system
is not the emphasis in this research. Therefore, the collision avoidance algorithm program is written
in the bottom control program of the robot in this experiment. When the robot is about to collide,
the formation algorithm program will be interrupted, and the collision avoidance behavior will be
executed. When a safe distance between the robots has been reached, the formation algorithm program
will continue to be executed [17,18].

The communication topology used in the experiment is shown in Figure 4. The adjacent
communication weight aij is 1, so k1 ∈ (0, 10k2

2). The central processor logs on each robot remotely
through SSH, and obtains the communication delay between two robots whose communication weight
A is not zero by PING command. The time delay between robots in the actual communication
environment is time-varying, so take its maximum delay. We get τa1 = 0.56s, τa2 = 0.043s, τa3 = 0.047s,
τa4 = 0.061s. The time taken for each robot to receive data and process them is τb1 = 0.021s,
τb2 = 0.02s, τb3 = 0.021s, τb4 = 0.021s. Therefore, the time delay between robots is τ1 = 0.077s,
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τ2 = 0.063s, τ3 = 0.068s, τ4 = 0.082s. Because this experiment is being performed in a laboratory
environment, it is assumed that the communication noise is white noise with a maximum amplitude
of 2. According to Formula (26) and the moving speed of omnidirectional robot, set k1 = 1, k2 = 1.4.
Four omnidirectional robots were placed in arbitrary positions, (0.83,2.20,0), (0.35,1.74,0), (0.67,0.88,0),
(0.56,0.48,0), respectively. In the practicality experiment, the robot cannot converge to one point, so
Formula (2) is changed to:

lim
t→+∞

[xi(t)− xj(t)− Fp] = 0 (35)

where Fp is the formation parameters and p = 1, 2, . . . , n. Since the system only installs a UWB ranging
sensor to provide positioning for the robot, the robot will perform pose determination before the
experiment starts, and the robot’s body coordinate system will be consistent with the global coordinate
system. The experimental results are shown in Figure 9. The experimental video address can be found
in reference [19].
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The experimental data collected by the UWB positioning system are shown in Figure 10.
The experiments show that the multi-robot system can eventually achieve consensus and form a

formation in a variety of time-delay and noise environments, which verifies the effectiveness of the
proposed algorithm.
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6. Conclusions

Aiming at the consensus of multi-mobile robots under uncertain conditions such as
communication delay, communication noise and measurement noise, we used the frequency domain
analysis method, transformed the characteristic equation into the quadratic polynomial of the pure
imaginary eigenvalue, and then obtained the conditions for achieving consensus under various time
delay and noise conditions for a second-order multi-robot system. That is, when the time delays of all
robots are less than the maximum time delays, the system can achieve consensus. In this paper, based
on two aspects of system communication topology—directed graph and undirected graph—the results
were verified by numerical simulation using MATLAB/Simulink, verifying the correctness of the
theoretical derivation of the proposed algorithm. Finally, a multi-robot research platform was built, and
formation control experiments were carried out in a real laboratory environment. The experimental
results showed that the proposed algorithm could effectively make the second-order multi-mobile
robot systems consistent. This paper only analyzes the consensus problem of second-order systems,
while most existing multi-mobile robot systems are higher-order systems. Therefore, the consensus
analysis of higher-order systems under noise and time delay conditions will be the focus of our
next research.
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