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Abstract: An adaptive neuro-fuzzy inference system (ANFIS)-based model was developed to predict
the punching shear strength of flat concrete slabs without shear reinforcement. The model was
developed using a database collected from 207 experiments available in the existing literature. Five
key input parameters were used to build the model, which were slab effective depth, concrete strength,
reinforcement ratio, yield tensile strength of reinforcement, and width of square loaded area. The
output parameter of the model was punching shear strength. The results from the adaptive neural
fuzzy inference model were compared to those from the simplified punching shear equations of ACI,
BS-8110, Model Code 2010, Euro-Code 2, and also experimental results. The root mean square error
(RMSE) and the correlation coefficient (R) were used as evaluation criteria. Parametric studies were
presented using ANFIS to assess the effect of each input parameter on the punching shear strength
and to compare ANFIS results to those from the equations proposed in commonly used codes. The
results showed that the ANFIS model is simple and provided the most accurate predictions of the
punching shear strength of two-way flat concrete slabs without shear reinforcement.
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1. Introduction

Generally, the contact surfaces between columns and slabs are very small in flab slab systems,
and therefore high stresses are concentrated in the connections area. A punching shear failure may
occur if the stresses exceed the limitations. This failure is brittle and may occur unexpectedly. To avoid
this type of failure, various construction methods have been developed [1].

In the design and analysis of two-way flat slabs without shear reinforcement, the punching shear
strength is an important parameter. Much research has been conducted throughout the current century,
and the key variables affecting the punching shear strength of slabs have been identified [2–5]. Most of
the research has been concerned with the generation of experimental data and the development of
empirical equations in addition to the equations proposed by ACI 318-14 [6], BS-8110-97 [7], Model
Code 2010 [8], and Euro-Code 2 [9]. However, the subject still needs further study to understand the
complexity of punching shear behavior and to develop better prediction tools.

Fuzzy logic (FL) and neural network (NN) techniques have been widely used in civil engineering
applications over the last two decades. In this study, an alternative model was developed within
the framework of an adaptive neuro-fuzzy interface system (ANFIS) to predict the punching shear
of two-way slabs without shear reinforcement. This model was developed using a large database
(207 experimental results) compiled from 17 scientific studies. The predictions from this model were
compared to those from the equations proposed in commonly used codes.
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2. ANFIS: Literature Review

The solution of problems associated with engineering systems requires the use of several different
disciplines implementing different methods of modeling and analysis. For a complex engineering
system, often a physics-based mathematical model is used, which is extremely difficult to formulate.
For such a system, several other approaches (neural networks, fuzzy inference systems, etc.) under
the rubric of “soft computing” provide a useful alternative. Soft computing models are becoming
popular and have been of increasing interest during the last three decades. This approach is based
on human reasoning and learning and uses the human tolerance for uncertainty and imprecision
and fuzziness in the decision-making processes [10]. Recently, artificial neural networks (ANNs)
and ANFIS have been used extensively for various civil engineering applications in construction
management, building materials, hydraulics, structural engineering, geotechnical and transportation
engineering, etc. Here, a selected few recent works in the area related to our subject are presented.
Kasperkiewicz et al. [11] developed an ANN to predict the compressive strength of high-performance
concrete mixes. Takagi and Sugeno [12] developed a fuzzy inference system (FIS) model and applied
it to modeling and controlling concepts. Topçu and Saridemir [13] applied ANN and FL to predict
rubberized mortar properties. Bilgehan [14] used ANFIS and NN models to determine the critical
buckling load. Tesfamariam and Najjaran [15] developed an ANFIS model to estimate the concrete
strength of a given mix proportion based on existing datasets. Akbulut et al. [16] used ANFIS to
predict the shear modulus and damping coefficient of sand and rubber mixtures. Inan et al. [17] used
an adaptive neuro-fuzzy system to simulate nonlinear mapping in the sulphate expansion of Portland
cement (PC) mortar. Experimental data that had previously been collected for various parameters
were treated in the analysis. Fonseca et al. [18] developed a neuro-fuzzy model to classify and to
predict the behavior of steel beams under concentrated loads. Wang and Elhag [19] applied ANFIS to
assess bridge risk based on multiple bridge maintenance projects. Batenia and Jeng [20] used ANFIS to
investigate the characteristics of a scour hole that develops around a group of piles in a well-defined
field situation and to determine the parameters that control the scour hole. Mashrei [21] developed an
ANFIS model to predict the shear strength of concrete beams reinforced with fiber-reinforced polymer
(FRP) bars. Bilgehan and Kurtoglu [22] applied ANFIS to predict the moment capacities of reinforced
concrete (RC) slabs exposed to fire. Mansouri et al. [23] investigated the ability of radial basis neural
networks and ANFIS methods in the prediction of ultimate strength and strain of concrete cylinders
confined with FRP sheets. Naderpour and Mirrashid [24] used ANFIS to determine the shear strength
of RC beams with shear reinforcement. Basarir et al. [25] used an ANFIS model to predict the uniaxial
compressive strength of cemented backfill.

3. Existing Equations Used for Two-Way Flat Slabs

For the design of a two-way flat slab–column connection, the shear stress is usually assumed
to be a function of strength of concrete and the geometric parameters of the slab and column. The
critical section for checking punching shear in slabs is usually situated between 0.5 and 2 times the
effective depth from the edge of the load or reaction. Many empirical equations have been published
to estimate the punching shear strength of two-way slabs, such as the equations proposed in ACI
318-14, BS-8110-97, Model-Code-2010, and Euro-Code 2 [6–9].

3.1. ACI 318-14 Building Code Equations

A set of simple equations were proposed in the ACI 318-14 code to calculate the shear strength
provided by concrete. The control perimeter is half of the effective depth of the slab (0.5d) from the
loaded area for punching shear stress. ACI 318-14 requires that the nominal shear resistance for
slabs without shear reinforcement be approximated as the smallest value of Vn calculated from the
following expressions:

Vn = 0.083
(

2 +
4
βc

)
λ
√

f ′c bo d , (1)
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Vn = 0.083
(

αs
d
bo

+ 2
)
λ
√

f ′c bo d , (2)

Vn = 0.33 λ
√

f ′c bo d , (3)

where Vn is the shear strength in N, bo is the perimeter of the critical section in mm, d is the effective
depth of slab in mm, and λ = 1.0 for normal weight concrete and 0.75 for all lightweight concrete.
Otherwise, λ is determined based on volumetric proportions of lightweight and normal weight
aggregates, but does not exceed 0.85. Here, αs = 40 for interior columns, 30 for edge columns, and 20
for corner columns; βc is the ratio of the longer to the shorter dimension of the loaded area; and f ′c is
the cylinder compressive strength of concrete in MPa.

3.2. Model Code 2010

The nominal punching shear strength is assumed to be proportional to ( fck)1/3 in Model Code
2010. The influences of the slab depth and steel reinforcement are also considered in this model. The
punching strength according to Model Code 2010 is expressed by

Vn = 0.18 bo d× ξ × 3
√

100× ρ× fck , (4)

where fck is the characteristic cylinder compressive strength in MPa, ξ = 1 + (200/d)1/2 is a size effect
coefficient, d is the slab effective depth in mm, ρ is the ratio of flexure reinforcement, and bo is the
length of the control perimeter at 2d from the column face in mm.

3.3. British Code: BS-8110-97

The British Code provisions proposed the following expression to estimate the shear strength
of slabs:

Vn = 0.79(100× ρ)
1
3 (400/d)

1
4 ×

(
fcu

25

) 1
3 bod

1.25
, (5)

where fcu is the cubic compressive strength in MPa. It should be noted that in the British Code,
the critical section for shear is considered to be 1.5d from the face of the column. All terms were
defined previously.

3.4. Euro-Code 2 (EC2)

The Euro-Code 2 (EC2) recommends that the punching shear resistance be expressed as

proportional to ( fck)
1
3 , where fck is the compressive strength of concrete. In EC2, the influences

of slab depth and steel reinforcement are also considered. The punching shear resistance according to
EC2 may be calculated as

Vn =
0.18
γc

Kbod(1000× ρ× fck)
1
3

2d
acrt
≥ 0.035 k

3
2 fck

1
2

2d
acrt

bod, (6)

where γc is the material resistance factor for concrete = 1.5, d is the effective depth,
K = 1 +

√
200/d ≤ 2 is the size factor of the effective depth, ρ is the flexural reinforcement ratio

≤ 2%, fck is the cylinder compressive strength of concrete, and acrt is the distance from column face to
the control perimeter.

It should be noted that some codes do not consider the size effect in estimates of the punching
shear strength of slabs, such as ACI 318-14, while some common codes, such as Model-Code-2010
and Euro-Code 2, consider the size effect in the design of slabs for punching shear in the same form
as presented in Equations (4) and (6). Deferent forms of the size effect have been presented by many
researchers to consider the effect of this factor on punching shear strength: More details about the size
effect can be found in References [26–30].
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4. ANFIS: An Introduction

Recently, a fundamental change has occurred in the methodology of empirical analysis. Because
of the nonlinearity and high degree of uncertainty associated with structural behavior, traditional
mathematical models are difficult to develop. As an alternative, FIS- and ANN-based models
(belonging to “soft computing”) are being used for many civil engineering problems. Nowadays,
ANNs have been accepted as very useful tools for modeling nonlinear systems and are being widely
used. FIS has emerged as a useful tool to represent and analyze complex systems [31–33]. Each
method has its own advantages and disadvantages. Whereas in FIS there is no systematic procedure
for designing a fuzzy controller, ANNs have the ability to map the input and output datasets through
supervised learning and a self-organized structure. For this reason, it was proposed to combine an
FIS and ANN together to get ANFIS, which enhances the efficiency of the systems and the modeling
of problems using available data. ANFIS is thus an integration of an ANN and an FIS and uses basic
FIS rules and the ANN network architecture to update system parameters using existing input and
output pairs. ANFIS was first introduced by Jang [34]. In both an ANN and FIS, input parameters
pass through the input layer using an input membership function, and the output parameters are seen
in the output layer using output membership functions. In this method, the parameters are changed
until an optimal solution is reached using a learning algorithm. A basic flow diagram of computations
in ANFIS is illustrated in Figure 1. Several fuzzy inference systems have been developed by different
researchers [12,35–38], who commonly use Mamdani-type and Takagi–Sugeno-type systems. In this
study, a Takagi–Sugeno-type system was used.
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system (ANFIS).

5. ANFIS: This Study

In this study, an ANFIS model was developed using MATLAB R2013a [39] with five input
parameters: The slab effective depth (d), compressive strength of concrete ( f ′c), reinforcement ratio
(ρ), yield strength of reinforcement

(
fy
)
, and width of square loaded area (c). The output variable

is punching shear strength of a two-way slab (V). A set of 207 experimental data points, collected
from several sources [40–56], was used to develop the model. The experimental data were randomly
divided into two sets: The first one, with 164 data points, was used for training the model, and the
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second one, with 43 data points, was used for testing. A subtractive clustering technique produced
by Chiu [57] was used to generate the ANFIS model with the (genfis2) function in MATLAB. Genfis2
is used to help in the creation of the initial set of membership functions for sets of input and output
data. Genfis2 preforms this model by extracting a set of rules. The rule extraction method first uses
the subclust function to determine the number of rules and antecedent membership functions. The
type and the number of membership functions were evaluated when the training and testing datasets
were giving good predictions according to the root mean square error (RMSE). After experimenting
with different learning algorithms with a number of different epochs, the best correlations were found
through a hybrid learning algorithm (a combination of least squares and back-propagation algorithms
for membership function parameter estimations). The final errors of the model for training and testing
were 0.45 and 0.52, respectively, and were achieved after 200 epochs. The structure of the ANFIS
model is illustrated in Figure 2. In the model, 10 of the Gaussian membership functions (gaussmf) are
selected for each input, and 10 rules define the relationship between inputs and outputs. A Gaussian
membership function has two parameters: c, responsible for its center, and σ, responsible for its width,
and the equation for this type is [39,58]

A(x)Gauss = exp

[
−
(

x− c
2σ

)2
]

. (7)

Readers are referred to Reference [58] for more details on this type of membership function. The
numerical range of input parameters of the current study is listed in Table 1. The data used to build the
ANFIS model are summarized in Table A1 in Appendix A. After the training procedure, the model was
tested using the remaining data not used for the training. Figure 3 shows the performance for training
and testing datasets. Figures 4 and 5 show the matching of the experimental results with the results
of the ANFIS model for both training and testing sets, respectively. Figure 6 shows a comparison
between the experimental results of punching shear and the results predicted by the ANFIS model for
all samples used in the model (training and testing sets). The adequacy of the developed ANFIS was
evaluated by considering the coefficient of correlation (R), the average and standard deviation of the
ratio of predicted to experimental punching shear strength, and the root mean square error (RMSE).
The equations of the statistical parameter RMSE and the coefficient of correlation (R) that were used to
compare the performance of each method are

RMSE =

√
∑N

i=1(Vne −Vni)
2

N
, (8)

R = 1−

√√√√∑N
i=1(Vne −Vni)

2

∑N
i=1(Vne)

2 , (9)

where Vne and Vni are the experimental and prediction nominal punching shear strength (Vn) of
two-way flat slabs, respectively, and N is the total number of samples considered.

Table 1. Range of input parameters in the database.

Parameters Range

The slab effective depth (d) (mm) 35–550
Concrete cylinder compressive strength ( f ′c) (MPa) 14.2–119

Reinforcement ratio (ρ) (%) 0.25–5.01
Yield strength of reinforcement

(
fy
)

(MPa) 294–720
Width of square loaded area (c) (mm) 80–500
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6. ANFIS: Results and Comparison

Figures 7–18 show the comparison of the results obtained from the ANFIS model, ACI-14 code,
Model Code 2010, British Code, and Euro-Code 2 for both training and testing datasets. A comparison
of the results of the five models was also made with the experimental results. It was noted that the
results of the ANFIS model were better than the results of four design codes: However, the results
from BS-8110-97 were reasonable when compared to the experimental results. Table 2 summarizes
the average and standard deviation (STDEV) of the ratios of predicted punching shear strength (Vni)
to the experimental results (Vne). The ANFIS model gave an average Vni/Vne ratio for the training
and test datasets of 1.0 and 1.01, respectively, and a standard deviation of 0.11 and 0.13, respectively.
These results indicate that the ANFIS model could make more reliable predictions of the punching
shear strength compared to those from the four design codes. Table 3 also confirms this conclusion
when comparing the correlation coefficient for all models for training, testing, and the combined
datasets. The values of 0.996, 0.995, and 0.995 for the ANFIS training, testing, and combined datasets,
respectively, were very close to 1.0 and higher than those of the other four design codes. Finally, the
same conclusion could be made from the root mean square error, as listed in Table 3: The minimum
values of the RMSE were 0.45 and 0.52 for the training and testing sets, respectively.
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Table 2. Comparison of punching shear between the experimental and predicted results for the training
and testing sets. STDEV: Standard deviation.

Specimens No.

Average of Vni/Vne STDEV of Vni/Vne

ANFIS ACI-14
Code

Model-Code
2010

BS-8110
Code

Euro-Code
2

ANFIS ACI-14
Code

Model-Code
2010

BS-8110
Code

Euro
Code 2

Training set 164 1.0 0.88 1.10 1.01 1.45 0.11 0.30 0.16 0.14 0.20

Testing set 43 1.01 0.84 1.07 0.98 1.42 0.13 0.26 0.15 0.13 0.19

Table 3. Comparison summary of correlation (R) and root mean square error (RMSE %).

Type Correlation (R) RSME %
Training Testing All Data Training Testing

ANFIS 0.996 0.995 0.995 0.45 0.52
ACI 318-14 Code 0.927 0.952 0.927 2.06 2.05
Model-Code-2010 0.986 0.992 0.986 0.93 0.72

BS-8110-97 0.986 0.992 0.987 0.83 0.93
Euro-Code 2 0.985 0.993 0.986 3.12 2.70

7. Parametric Studies

After building and testing the ANFIS, and based on the comparison between the results obtained
from the ANFIS model and the ACI 318-14 code, Model Code 2010, BS-8110, and Euro-Code 2, it could
be concluded that the ANFIS was a suitable model in the prediction of the punching shear strength of
two-way flat concrete slabs. The effect of each input parameter used to build the model was further
investigated. The methodology of the parametric study was to vary one input parameter at a time,
and the other input parameter were kept constant. Figures 19–23 show the predicted punching shear
strength of a two-way flab slab as a function of each input variable. They show that the punching shear
strength increased with an increase in the slab effective depth, concrete strength, and width of square
loaded area. In general, the parametric tendencies of ANFIS agreed with the results from the ACI318-14
code, Model Code 2010, BS-8110, and Euro-Code 2, as shown in Figures 19–21. The punching shear
strength increased with an increase in the reinforcement ratio: This result agreed with the other models,
except for the ACI code, as shown in Figure 22. Finally, the sensitivity of the punching shear strength
to the yield strength of reinforcement is presented in Figure 23, where it can be seen that all models
except ANFIS showed no effect on the punching shear strength. Interestingly, ANFIS predicted a slight
increase in shear strength with increasing yield strength, which was in agreement with some of the
experimental results used to build the ANFIS model.Appl. Sci. 2019, 0, x FOR PEER REVIEW  13 of 21 
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8. Conclusions

An adaptive neuro-fuzzy inference system (ANFIS)-based model was developed to predict the
punching shear strength of two-way flat concrete slabs without shear reinforcement. A database of
207 test results available in the literature was used to train and test the model. The database covered
a rather wide range of two-way flat slab parameters, including slab thickness, concrete strength,
reinforcement ratio, yield strength of reinforcement, and width of square loaded area. Five variables
were selected as inputs into the ANFIS, with punching shear strength as the output variable. Within
the framework of ANFIS, different models may be developed using different learning algorithms
with different membership functions and epochs. After experimenting with several of these different
models, a model was chosen that had the best potential to predict experimental results. An ANFIS
model with a hybrid learning algorithm, 200 epochs, and 10 Gaussian membership functions was
selected and then tested. The results from the ANFIS model were compared to the experimental results
and to those from the equations recommended in ACI 318-14, BS-8110-97, Model Code 2010, and
Euro-Code 2. For these comparisons, the correlation coefficient (R), the root mean square error (RMSE),
and the average and standard deviations of the ratios of predicted (Vni) to experimental (Vne) punching
shear strength were used as evaluation criteria. The values of R, RMSE, and average and standard
deviations of Vni/Vne for the training set were found to be 0.996, 0.45, 1.0, and 0.11, respectively, and
for the testing set were 0.995, 0.52, 1.1, and 0.13, respectively, for the ANFIS model. This demonstrated
that (i) the ANFIS model was capable of making highly reliable predictions of experimental results,
(ii) the ANFIS model outperformed the equations recommended in four design codes currently used in
practice, and (iii) the ANFIS model showed that it was a good tool for developing parametric studies
to assess the influence of each parameter on the shear strength. In summary, the model developed in
this study may serve as an economical, efficient, and reliable tool for the prediction of punching shear
strength of flat concrete slabs.
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Appendix A

Table A1. Experimental data used to construct the ANFIS.

Test No. d fc fy ρ c Vn Reference

1 118 25.2 332 1.16 254 365

[43]

2 118 36.8 332 1.16 254 351
3 118 20.3 332 1.16 254 356
4 114 19.5 321 2.5 254 400
5 114 37.4 321 2.5 254 467
6 114 27.9 321 2.5 254 512
7 114 22.6 321 3.74 254 445
8 114 26.5 321 3.74 254 534
9 114 34.5 321 3.74 254 547

10 118 26.1 332 1.18 356 400
11 114 25 321 3.74 356 498
12 121 26.2 294 0.55 356 236
13 114 14.2 324 0.48 254 178
14 114 47.6 321 0.48 254 200
15 114 43.9 341 2 254 505
16 114 50.5 325 3.02 254 578
17 118 29 332 1.16 254 356
18 114 27.8 321 2.5 356 534
19 114 47.7 303 1.01 254 334

20 114 27.5 400 1.38 305 394

[44]

21 114 23.2 400 1.06 254 390
22 114 22 400 1.03 254 356
23 114 23.8 400 1.13 254 334
24 114 25.3 400 1.02 254 379
25 114 35.1 400 1.13 254 374
26 114 20.4 400 1.13 254 312
27 114 24.2 400 1.06 203 379
28 114 23 400 1.5 305 433
29 114 26.5 400 1.38 152 312
30 114 24.4 400 1.06 254 393
31 114 22.1 400 1.06 203 343

32 51 21.1 386 1.1 152 79

[41]

33 51 15.5 386 1.1 203 93
34 50 27.2 386 2.2 203 133
35 51 22.9 386 2.2 254 152
36 51 23 386 1.1 305 114
37 51 27.7 386 1.1 356 139
38 51 25 386 2.2 356 184
39 51 24.9 386 1.1 406 145
40 50 24.6 386 2.2 406 185
41 50 27 386 1.1 152 102
42 50 28.5 386 1.1 102 86
43 50 24.9 386 2.2 102 102
44 50 53.8 386 2.2 152 172
45 50 21.1 386 1.1 152 99
46 50 17 386 2.2 152 105
47 51 18 336 2.2 152 99
48 51 23.3 336 1.1 254 109
49 50 26.4 386 2.2 305 159
50 50 20 386 1.1 152 112
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Table A1. Cont.

Test No. d fc fy ρ c Vn Reference

51 100 35.7 706 0.8 125 216

[42]

52 99 28.6 701 0.81 125 194
53 199 28.6 670 0.89 250 600
54 200 30.3 657 0.8 250 603
55 98 33.3 720 0.35 125 145
56 99 31.4 712 0.34 125 148
57 200 31.7 668 0.34 250 489
58 197 30.2 664 0.35 250 444

59 77 23.3 500 1.2 200 176

[45]

60 77 33.4 500 0.92 200 194
61 79 21.7 480 0.75 200 165
62 79 31.2 480 0.8 200 186
63 200 36.3 530 0.98 250 825
64 128 34.5 485 0.98 160 390
65 64 34.5 480 0.98 80 117
66 128 35.7 485 0.98 160 365
67 64 35.7 480 0.98 80 105
68 64 37.8 480 0.98 80 105

69 41 31.5 530 0.42 100 36

[46]

70 41 31.5 530 0.69 100 49
71 41 36.2 530 0.82 100 56
72 41 36.2 530 1.03 100 66
73 41 30.4 530 1.16 100 71
74 41 30.4 530 1.29 100 71
75 41 30.4 530 1.45 100 79
76 41 30.6 530 0.52 100 44
77 41 30.6 530 0.8 100 55
78 41 35.3 530 0.6 100 49
79 41 35.3 530 0.69 100 52
80 41 35.3 530 1.99 100 85
81 47 29.4 530 0.44 100 45
82 47 29.4 530 0.69 100 66
83 47 31.7 530 1.99 100 97
84 35 39.6 530 0.42 100 29
85 35 39.6 530 0.69 100 38
86 35 31.7 530 1.99 100 73
87 54 28.3 530 0.42 100 63
88 54 33.5 530 0.69 100 88
89 41 31.5 530 0.56 100 49
90 41 36.2 530 0.88 100 57
91 41 30.6 530 1.11 100 67
92 47 29.4 530 1.29 100 90
93 35 39.6 530 1.29 100 57
94 54 33.5 530 1.29 100 124
95 54 28.3 530 1.99 100 126
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Table A1. Cont.

Test No. d fc fy ρ c Vn Reference

96 76 24.1 430 2.05 102 129

[47]

97 76 22.6 430 2.05 102 136
98 113 22.6 430 2.14 152 311
99 113 24.8 430 2.14 203 357

100 122 24.8 430 0.66 203 271
101 73 25 430 5.01 152 202
102 86 23.2 430 0.45 152 107
103 81 25.5 430 1.47 102 121
104 123 22.1 430 0.47 203 271
105 113 15.1 430 2.14 203 278
106 81 14.5 430 1.47 152 108
107 73 52.1 430 5.01 203 323
108 81 52.1 430 1.47 152 243
109 76 24.6 430 2.05 102 129
110 81 25 430 1.47 152 160
111 122 16.1 430 0.66 203 230
112 122 52.1 430 0.66 203 306
113 86 52.1 430 0.45 152 148

114 95 42 490 1.47 150 320

[40]

115 95 67 490 0.49 150 178
116 95 70 490 0.84 150 249
117 95 69 490 1.47 150 356
118 90 66 490 2.37 150 418
119 120 30 490 0.94 150 396
120 125 68 490 0.64 150 365
121 120 69 490 1.11 150 436
122 120 74 490 1.61 150 543
123 120 80 490 2.33 150 645
124 70 75 490 1.52 150 258
125 70 68 490 1.87 150 267
126 95 72 490 1.47 220 498
127 95 74 490 1.19 150 356
128 120 70 490 0.94 150 489

129 70 70 490 0.95 150 196
130 95 71 490 1.47 300 560

131 275 64 500 1.49 200 2050

[48]

132 275 112 500 1.49 200 2450
133 275 90 500 2.55 200 2400
134 200 88 500 1.75 150 1100
135 200 87 500 1.75 150 1300
136 200 119 500 1.75 150 1400
137 275 84 500 1.49 200 2250
138 200 70 500 1.75 150 1200
139 200 90 500 2.62 150 1450
140 200 98 500 2.62 150 1450
141 200 80 500 2.62 150 1250
142 200 108 500 2.62 150 1550
143 88 85 500 1.4 100 330

144 200 90 643 0.8 250 965

[50]

145 200 91 627 0.8 250 1021
146 200 92 596 1.19 250 1041
147 201 109 633 0.6 250 960
148 202 84 634 0.33 250 565
149 194 86 620 0.82 250 889
150 198 95 631 0.8 250 944
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Table A1. Cont.

Test No. d fc fy ρ c Vn Reference

151 98 88.2 550 0.58 150 224

[49]

152 98 56.2 550 0.58 150 212
153 98 26.9 550 0.58 150 169
154 98 101.8 550 0.58 150 233
155 98 60.4 550 1.28 150 319
156 98 43.4 550 1.28 150 297
157 98 98.4 550 1.28 150 362
158 98 41.9 650 1.28 150 286
159 98 84.2 650 1.28 150 405
160 100 56.4 650 0.87 150 341
161 100 37.6 650 1.27 150 294
162 98 58.7 550 0.58 150 233
163 98 60.8 550 1.28 150 341
164 100 32.9 650 1.27 150 244
165 102 33.7 650 1.03 150 227

166 100 39.4 488 0.97 200 330

[51]

167 150 39.4 465 0.9 200 583
168 200 39.4 465 0.83 200 904
169 300 39.4 468 0.76 200 1381
170 400 39.4 433 0.76 300 2224
171 500 39.4 433 0.76 300 2681

172 210 27.6 400 1.5 260 1024

[52]

173 210 28.5 400 0.25 260 445
174 464 32.4 400 0.33 520 2153
175 210 32.2 400 0.25 260 408
176 210 29.3 400 0.33 260 550
177 96 34.7 400 1.5 130 236
178 100 34.7 400 0.75 130 243
179 102 34.7 400 0.25 130 118
180 210 40.5 400 0.25 260 439

181 102 34.7 400 0.33 130 141
182 210 28.5 400 0.33 260 540

183 100 24 718 0.8 250 270
[53]184 100 24.4 718 0.8 250 250

185 125 27.2 718 0.64 150 265

186 124 33.1 488 1.54 250 483
[54]187 190 33.5 531 1.3 300 825

188 260 31 524 1.1 350 1046

189 158 35 490 2.17 250 678

[55]

190 128 70 490 2.68 250 801
191 158 66.7 490 1.67 250 802
192 113 70 490 1.88 250 480
193 163 33 490 0.52 250 479
194 138 68.5 490 2.48 250 788
195 158 61.2 490 1.13 250 811
196 105 34 490 0.4 250 228

197 105 44.7 400 0.45 250 219

[56]

198 183 35 400 0.35 250 438
199 183 70 400 0.35 250 574
200 218 40 400 0.73 250 882
201 220 76 400 0.43 250 886
202 268 75 400 1.13 400 1721
203 263 65 400 1.44 400 2090
204 313 40 400 1.57 400 2234
205 313 60 400 1.57 400 2513
206 153 50.2 400 0.55 250 491
207 218 64.7 400 0.73 250 1023
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