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Abstract: The coupling of ultrasound and heat–reflux extraction (UHRE) was developed for
separation for quercetin (QU), kaempferol (KA), ginkgetin (GI) and sciadopitysin (SC) from Mairei
Yew leaves. The Box–Behnken design was used to optimize the UHRE conditions for obtaining
the maximum yield of flavonoids. The optimal extraction conditions were as follows: boiling 80%
methanol (V/V) for extraction solvent, 20 min for the extraction time, 200 W for the ultrasonic power
and 26 mL/g for the liquid–solid ratio. By UHRE, the yields of QU, KA, GI and SC were, respectively,
0.109, 0.406, 0.031 and 0.355 mg/g, and total yield of four flavonoids was 0.901 mg/g, which were,
respectively, 1.25-fold and 1.23-fold higher than those by using ultrasonic-assisted extraction (UAE)
and heating reflux extraction (HRE). Moreover, the extraction time for the equilibrium yields of
flavonoids using UHRE was 83.3% and 27.8%, respectively, less than the corresponding time using
UAE and HRE. Compared with HRE and UAE, UHRE showed the increase of cell disruption degree
as observed by scanning electron microscopy, which may be the reason for high yield and rapid
extraction of target compounds.
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1. Introduction

Mairei Yew (Taxus chinensis var. mairei) is a unique yew variety of China. Recently, the studies on
active compounds of Mairei Yew mainly have been focused on taxanes, especially paclitaxel, which
has antitumor activity [1–3]. However, there are many active ingredients in branches and leaves of
Taxus, such as flavonoids, polyphenols, volatile oils, polysaccharides, tannins, etc. [4].

Natural flavonoids from plants have antioxidant, anti-cancer, anti-inflammatory and heart
protecting functions [5–8]. Quercetin (QU), kaempferol (KA), ginkgetin (GI) and sciadopitysin (SC) are
mainly the flavonoids in Taxus chinensis var. mairei leaves [9–12]. The chemical structural formulas
of QU, KA, GI and SC are shown in Figure 1. These four flavonoids have many pharmacological
activities, including anti-inflammatory, anti-tumor, anti-influenza virus, anti-platelet aggregation,
cardiovascular protection and blood glucose regulation, improving depression associated with epilepsy
and immunosuppressive activity [13–22].
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Figure 1. The chemical structures of quercetin (QU), kaempferol (KA), ginkgetin (GI) and 
sciadopitysin (SC). 
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extraction (UAE) has been applied for extraction of natural active ingredients, including flavonoids 
[24–28]. Because of ultrasonic vibration, high speed, strong cavitation effect and mixing effect 
constantly producing numerous internal pressure, reach thousands of atmospheric pressure 
microcavitation, and constantly “blasting” produce microscopic powerful shock wave on plant 
material. Thus, the matrix of plant materials was constantly eroded, and the active ingredients that 
were not belonging to plant structure were separated continuously [29–31]. In addition, cell walls’ 
expansion can decrease the barrier of mass transfer between plant cell walls and solvents, thus 
accelerating the release of target components in a shorter time [32]. 

Temperature is an important parameter affecting the yield of target components in the process 
of ultrasonic extraction [33]. With the increase of extraction temperature, the solvent permeability 
and the solubility of target components increase, while the viscosity of solution decreases [24]. Thus, 
the increase of temperature can increase the yields of target components [34]. However, it is also 
reported that excessive temperature may lead to degradation of some thermal unstable components 
[33,35]. In the known reports, the extraction temperatures used in ultrasound extraction are all less 
than the boiling point of solvents [36]. In fact, when the solvent reaches its boiling point, a part of the 
solvent going into the cell can be transformed from the liquid to the gaseous, which promotes 
destroying the cell wall, accelerating the separation of target components from the plant matrix. 
Therefore, the ultrasound extraction using boiling solvents may increase the yield of target 
components. 
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sciadopitysin (SC).

The traditional method for extraction of flavonoids is mainly heating reflux extraction (HRE).
However, the yield of flavonoids obtained by HRE is low and extraction time is long [23].
Thus, it is necessary to propose a more effective method for extracting flavonoids. Lately,
ultrasound-assisted extraction (UAE) has been applied for extraction of natural active ingredients,
including flavonoids [24–28]. Because of ultrasonic vibration, high speed, strong cavitation effect
and mixing effect constantly producing numerous internal pressure, reach thousands of atmospheric
pressure microcavitation, and constantly “blasting” produce microscopic powerful shock wave on plant
material. Thus, the matrix of plant materials was constantly eroded, and the active ingredients that were
not belonging to plant structure were separated continuously [29–31]. In addition, cell walls’ expansion
can decrease the barrier of mass transfer between plant cell walls and solvents, thus accelerating the
release of target components in a shorter time [32].

Temperature is an important parameter affecting the yield of target components in the process of
ultrasonic extraction [33]. With the increase of extraction temperature, the solvent permeability
and the solubility of target components increase, while the viscosity of solution decreases [24].
Thus, the increase of temperature can increase the yields of target components [34]. However,
it is also reported that excessive temperature may lead to degradation of some thermal unstable
components [33,35]. In the known reports, the extraction temperatures used in ultrasound extraction
are all less than the boiling point of solvents [36]. In fact, when the solvent reaches its boiling
point, a part of the solvent going into the cell can be transformed from the liquid to the gaseous,
which promotes destroying the cell wall, accelerating the separation of target components from the
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plant matrix. Therefore, the ultrasound extraction using boiling solvents may increase the yield of
target components.

Maran et al. found that the yield of flavonoides from Nephelium lappaceum L. fruit peel increased
as the extraction temperature from 30 ◦C to 50 ◦C and the yields reached the maximum at 50 ◦C in the
process of ultrasonic extraction [37]. Khan et al. demonstrated that the yield of flavanone glycosides
from orange increased as the increase of temperature with the range between 10 ◦C and 40 ◦C [38] and
the maximum yield of flavanone glycosides was reached at 40 ◦C. Prommuak et al. [39] found that the
highest yields of flavonoids from Thai silk waste were obtained at the highest of 70 ◦C. In addition,
Zhang et al. [40] found that the highest yields of flavonoids from Prunella vulgaris L. were obtained
at the highest of 79 ◦C. Moreover, it has been reported that flavonoids will not be degraded less than
75 ◦C [41]. Therefore, it is very possible to improve the flavonoid yield by ultrasonic extraction with a
boiling solvent whose boiling point is lower than 75 ◦C. The boiling point of methanol is 65 ◦C, which
is lower than that of flavonoid degradation. At present, methanol has been applied in the extraction
of flavonoids from plant materials [35,36]. Therefore, it is imperative to study the effect of boiling
methanol on the yield of flavonoids in ultrasonic extraction.

In this study, in order to overcome the disadvantage of conventional heating reflux extraction, a
novel coupling ultrasound with heat–reflux extraction method (UHRE), i.e., the ultrasonic extraction
method with boiling methanol for improvement of the extraction of QU, KA, GI and SC from Mairei
Yew leaves was developed. The method of UHRE combined with the advantages of UAE and HRE
was used to shorten the time and improve the yield of compounds.

Several conditions that could influence the yields of flavonoids, such as the ultrasonic power,
time and liquid–solid ratio were evaluated and optimized using response surface methodology (RSM)
with a Box–Behnken design (BBD). Furthermore, the yield of the flavonoids obtained by UHRE and the
yield obtained by conventional extraction methods (UAE and HRE) were also compared. In addition,
the extraction kinetics were fitted and cell disruption by three extraction methods (UAE, HRE and
UHRE) was further discussed to demonstrate the advantage of UHRE.

2. Materials and Methods

2.1. Materials and Chemicals

Mairei Yew leaves were harvested from Fuyang, Zhejiang Province, China. These leaves
were dried, milled, sieved (250 µm) and placed in a closed desiccator until use. Quercetin (98%),
kaempferol (98%), ginkgetin (98%) and sciadopitysin (98%) were obtained from Sigma Aldrich
(Shanghai, China). HPLC grade methanol was purchased from DIKMA Technologies (Beijing, China).
Analytical grade reagents were obtained from Tianjin Tianli Reagent Company (Tianjin, China).

2.2. Extraction Process

2.2.1. Ultrasonic Heat–Reflux Extraction

The UHRE equipment was composed of a thermostatic temperature water bath and an ultrasonic
unit according to reference [32]. The schematic diagram of device is seen in Figure 2. The water bath
with a temperature controller and ultrasonic devices were connected by a circulating water system.
A round-bottom flask was connected to the spherical condenser in the ultrasonic unit.

Three grams of Mairei Yew leaves powder were added to a 250 mL of flask with a proper volume
of methanol; then, the flask was put in a water bath of the UHRE apparatus set at 70 ◦C. Finally,
the extraction procedure was performed according to the set parameters of the experiment design.
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Figure 2. The schematic representation of the ultrasonic heat–reflux extraction device.

2.2.2. Heat–Reflux Extraction

Three grams of leaves powder were placed into a 250 mL flask with 90 mL methanol, and the
flask was put in a water bath at 70 ◦C. The extraction process was performed in 180 min.

2.2.3. Ultrasonic-Assisted Extraction

Three grams of leaves powder were placed into 250 mL flask with 90 mL methanol, the flask
was put in the KQ-250 DE ultrasonic unit with 250 W of power, and then extracted for 60 min.
The extraction temperature was kept at 25 ◦C with a constant temperature water bath.

2.3. Determination of Four Flavonoids by HPLC

An Agilent 1260 HPLC system (Agilent Technologies infinity, Santa Clara, CA, USA) were used
to determine four flavonoids in extracts. Chromatographic column separation was achieved on an
ODS (octadecyl silane) reversed-phase column (4.6 mm × 250 mm, 5 µm, KYA Technologies, Tokyo,
Japan) and the column temperature was kept at 30 ◦C. Mobile phase A was methanol-acetic acid
(99:1, v/v), and mobile phase B was water-acetic acid (99:1, v/v). The mobile phase A and B were used
as mobile phases for gradient elution. The gradient composition was used: 80% A, in the first 8 min;
decreased to 70% A, 8–15 min; 70% A, after 15 min. After the end of each gradient step, the column
was re-equilibrated for 10 min with 80% A before the next analysis. In addition, 1.0 mL/min of flow
rate and 10 µL of injection volume were used. The chromatograms of standards and extract were
supervised at 337 nm.

After extraction, the extracts were filtered using filter paper and filtrates were kept at a constant
volume to 100 mL with the extraction solvent. The solution was filtered using a 0.45 µm nylon
membrane before HPLC analysis. The quantitative analysis of flavonoids in extract solution was
performed using the standard addition method and the solution was determined in triplicates.
The HPLC chromatograms for standards and extract from Mairei Yew leaves are shown in Figure 3.
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2.4. Experimental Design of UHRE

After testing the initial range of the extraction variables, a single factor experiment was conducted.
Three factors (10–30 min for extraction time, X1; 150–250 W for ultrasonic powder, X2; 20–40 mL/g for
liquid–solid ratio, X3) combined with BBD were chosen to estimate the main effect and mutual effect
of various factors with experimental range by RSM to allow the yields for QU (Y1), KA (Y2), GI (Y3)
and SC (Y4) to be obtained. The experimental data were fitted by second-order polynomial equation:

Y = β0 + ∑ 3
i=1βiXi + ∑ 3

i=1βiiX2
i + ∑ 2

i=1 ∑ 3
j=i+1βijXiXj, (1)

where Y represented the response variable; β0, βi, βii and βij were the regression coefficients, Xi and Xj
were the independent variables.

2.5. Kinetic Model

The kinetics for the yield of flavonoids from Mairei Yew versus extraction time was fitted by
mathematical models. The yield of four flavonoids was evaluated using UAE, HRE and UHRE
methods. Each group was operated three times, and the extraction yields were averaged. Experimental
data were fitted to different extraction kinetic models (Table 1) using the “Regression Wizard” module
of SigmaPlot 10.0 software (version, Systat software, Inc., San Jose, CA, USA. The choice of the optimal
model was based on the analysis of the highest correlation coefficient (R2), and the lowest standard
error of estimate of experimental data to fitted value of the equations.

Table 1. Theoretical kinetic models for the extraction of flavonoids in Mairei Yew leaves.

Model Equation Reference

Phenomenological Yt = A1
(
1 − e−A2t) [42]

Pseudo-second order Yt =
t

B1+B2t [43]
Power law Yt = C1tC2 [44]

* Yt is the flavonoids yield (mg/g) at extraction time t; A1, A2, B1, B2, C1, C2 are the constants.
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2.6. Estimation of cell Disruption by Scanning Electron Microscopy (SEM)

The plant samples treated by different method were observed by high vacuum SEM at 450 ×
magnification by reference [45].

2.7. Statistical Analysis

The data values are averages ± SD (standard deviation) of three independent recorded values.
One-way analysis of variance with p < 0.05 by Office Excel 2013 (Microsoft, Redmond, WA, USA) was
used for experimental data acceptance.

3. Results and Discussion

3.1. Effect of Single Factors on Four Flavonoids Yields

3.1.1. Effect of Methanol Concentration on the Flavonoids Yield

The concentration of solvent plays a key role on the selectivity and solubility of the four flavonoids.
The effect of methanol concentration (from 50% to 100%, V/V) on the yields of the four flavonoids was
investigated at the same time (20 min), ultrasonic power (200 W) and liquid–solid ratio (30 mL/g).
Figure 4a showed that the yields of four flavonoids increased greatly with the increase of methanol
concentration from 50% to 80%. However, with further increases in the methanol concentration from
80% to 100%, slight decreases of the four flavonoids yields were observed. Therefore, 80% methanol
was chosen as the suitable solvent for the subsequent experiments.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 17 
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3.1.2. Effect of Extraction Time on the Flavonoids Yield

The effect of extraction time on the yields four flavonoids was evaluated with a range of 10–40 min
by 200 W of ultrasonic power at the 30 mL/g of liquid–solid ratio. Figure 4b shows that the yields of
the four compounds increase firstly with the extraction time increasing, the highest yields of the four
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flavonoids were obtained at 20 min and then the four target compounds yields did not significantly
change after 20 min. Thus, the 20 min of extraction time was chosen for the further experiments.

3.1.3. Effect of Ultrasonic Power on the Yield of Flavonoids

The effect of ultrasonic power on the yield of four flavonoids was evaluated with a range of
100–250 W using 20 min of extraction time at 30 mL/g of liquid–solid ratio. It can be seen from
Figure 4c that the increase of the ultrasonic power from 100–200 W, and the yields of target flavonoids
increased continuously. However, declined yields were found when ultrasonic power exceeded 200 W.
Hence, 200 W was used as the appropriate ultrasonic power for the subsequent experiments.

3.1.4. Effect of Liquid–solid Ratio on the Flavonoids Yield

The effect of various liquid–solid ratio from 10 to 50 mL/g on the yields of QU, KA, GI and SC
was studied for optimizing the extraction conditions. The results are shown in Figure 4d. The yield
of the four flavonoids increased with the increase of liquid–solid ratio from 20 to 30 mL/g, reaching
the maximum at 30 mL/g of the liquid–solid ratio. When the liquid–solid ratios continue decreasing,
the yields of target compounds decreased slightly. Therefore, 30 mL/g of the liquid–solid ratio was
selected as the further optimization study.

3.2. Optimization of UHRE Conditions

The BBD was used for optimizing the experimental conditions for extracting the four flavonoids.
The experimental runs were randomized for minimizing the effects of uncontrollable factors. The test
results of 17 runs are shown in Table 2.

Table 2. The Box–Behnken design of independent variables for process optimization.

Runs
Independent Variables Yield (mg/g)

Extraction Time
(X1, min)

Ultrasonic
Power (X2, W)

Liquid–Solid
Ratio (X3, mL/ g) QU KA GI SC

1 30 (1) 150 (−1) 30 (0) 0.083 0.326 0.023 0.278
2 10 (−1) 250 (1) 30 (0) 0.080 0.299 0.020 0.240
3 20 (0) 200 (0) 30 (0) 0.105 0.400 0.030 0.355
4 20 (0) 250 (1) 20 (−1) 0.063 0.244 0.017 0.211
5 30 (1) 250 (1) 30 (0) 0.093 0.351 0.024 0.317
6 30 (1) 200 (0) 20 (−1) 0.060 0.262 0.017 0.207
7 20 (0) 200 (0) 30 (0) 0.105 0.400 0.030 0.355
8 20 (0) 150 (−1) 40 (1) 0.089 0.293 0.028 0.309
9 10 (−1) 150 (−1) 30 (0) 0.086 0.339 0.023 0.277
10 30 (1) 200 (0) 40 (1) 0.101 0.356 0.025 0.319
11 20 (0) 200 (0) 30 (0) 0.105 0.400 0.030 0.355
12 20 (0) 150 (−1) 20 (−1) 0.068 0.283 0.020 0.239
13 10 (−1) 200 (0) 20 (−1) 0.079 0.331 0.025 0.280
14 10 (−1) 200 (0) 40 (1) 0.098 0.365 0.025 0.324
15 20 (0) 200 (0) 30 (0) 0.105 0.400 0.030 0.355
16 20 (0) 250 (1) 40 (1) 0.097 0.378 0.025 0.341
17 20 (0) 200 (0) 30 (0) 0.105 0.400 0.030 0.355

* QU, KA, GI and SC are quercetin, kaempferol, ginkgetin and sciadopitysin, respectively.

Using multiple regression analysis based on the experimental data, the response variables and
independent variables were expressed by second-order polynomial equations:

Y1 = 0.105 − 6.76 × 10−4X1 + 8.68 × 10−4X2 − 1.43 × 10−2X3 + 4.06 × 10−3X1X2 − 5.34 × 10−3X1X3 −
3.35 × 10−3X2X3− 7.25 × 10−3X1

2 − 1.25 × 10−2X2
2 − 1.34 × 10−2X3

2,
(2)

Y2 = 0.400 − 5.00 × 10−3X1 + 3.84 × 10−3X2 − 3.39 × 10−2X3 + 1.61 × 10−2X1X2 − 1.49 × 10−2X1X3 −
3.12 × 10−2X2X3, −2.09 × 10−2X1

2 − 5.01 × 10−2X2
2 − 5.02 × 10−2X3

2,
(3)
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Y3 = 3.01 × 10−2 − 5.46 × 10−4X1 − 9.03 × 10−4X2 − 3.07 × 10−3X3 + 9.38 × 10−4X1X2 − 1.81 × 10−3

X1X3 + 3.29 × 10−5X2X3 − 3.67 × 10−3X1
2 − 3.95 × 10−3X2

2 − 3.58 × 10−3X3
2,

(4)

Y4 = 0.355 + 3.18 × 10−5X1 + 6.56 × 10−4X2 − 4.46 × 10−2X3 + 1.90 × 10−2X1X2 − 1.72 × 10−2X1X3 −
1.49 × 10−2X2X3 − 3.48 × 10−2X1

2 − 4.26 × 10−2X2
2 − 3.79 × 10−2X3

2,
(5)

where Y1, Y2, Y3 and Y4 represent yields of quercetin, kaempferol, ginkgetin and sciadopitysin (mg/g),
respectively; X1, X2 and X3 respectively represent extraction time (min), ultrasonic power (W) and
liquid–solid ratio (mL/g).

Analysis of variance (ANOVA) for second-order polynomial models is shown in Table 3.
The statistical significance and adequacy of the regression model are evaluated by F-value and p-value.
As can be seen from Table 3, greater F-values (F > 7.84) and low p-values (p < 0.01) for model terms
displayed that the four fitting models were statistically significant and indicated that the yields of four
flavonoids by UHRE could be well described with those models.

Table 3. Analysis of variance (ANOVA) for response surface quadratic model.

Source Sum of
Squares

Degrees of
Freedom

Mean
Square F-value p-Value Significance a

Yield of quercetin (QU)
Model 3.68 × 10−3 9 4.09 × 10−4 32.80 0.000 **

X1 3.66 × 10−6 1 3.66 × 10−6 0.29 0.605 ns
X2 6.03 × 10−6 1 6.03 × 10−6 0.48 0.509 ns
X3 1.64 × 10−3 1 1.64 × 10−3 131.40 0.000 **

X1X2 6.59 × 10−5 1 6.59 × 10−5 5.29 0.055 ns
X1X3 1.14 × 10−4 1 1.14 × 10−4 9.15 0.019 *
X2X3 4.49 × 10−5 1 4.49 × 10−5 3.61 0.099 ns
X1

2 2.21 × 10−4 1 2.21 × 10−4 17.76 0.004 **
X2

2 6.57 × 10−4 1 6.57 × 10−4 52.73 0.000 **
X3

2 7.52 × 10−4 1 7.52 × 10−4 60.37 0.000 **
Residual 8.72 × 10−5 7 1.25 × 10−5

Lack of fit 8.72 × 10−5 3 2.91 ×10−5

Pure error 0.00 4 0.00

Yield of kaempferol (KA)
Model 4.07 × 10−2 9 4.52 × 10−3 14.36 0.001 **

X1 2.00 × 10−4 1 2.00 × 10−4 0.64 0.451 ns
X2 1.18 × 10−4 1 1.18 × 10−4 0.37 0.560 ns
X3 9.19 × 10−3 1 9.19 × 10−3 29.21 0.001 **

X1X2 1.04 × 10−3 1 1.04 × 10−3 3.29 0.112 ns
X1X3 8.88 × 10−4 1 8.88 × 10−4 2.82 0.137 ns
X2X3 3.91 × 10−3 1 3.91 × 10−3 12.42 0.010 *
X1

2 1.84 × 10−3 1 1.84 × 10−3 5.86 0.046 *
X2

2 1.06 × 10−2 1 1.06×10−2 33.60 0.001 **
X3

2 1.06 × 10−2 1 1.06 × 10−2 33.74 0.001 **
Residual 2.20 × 10−3 7 3.15 × 10−4

Lack of fit 2.20 × 10−3 3 7.34 × 10−4

Pure error 0.00 4 0.00

Yield of ginkgetin (GI)
Model 2.98 × 10−4 9 3.31 × 10−5 7.84 0.006 **

X1 2.39 × 10−6 1 2.39 × 10−6 0.56 0.477 ns
X2 6.52 × 10−6 1 6.52 × 10−6 1.54 0.254 ns
X3 7.56 × 10−5 1 7.56 × 10−5 17.89 0.004 **

X1X2 3.52 × 10−6 1 3.52 × 10−6 0.83 0.391 ns
X1X3 1.31 × 10−5 1 1.31 × 10−5 3.11 0.121 ns
X2X3 4.34 × 10−9 1 4.34×10−9 0.00 0.975 ns
X1

2 5.67×10−5 1 5.67 × 10−5 13.42 0.008 **
X2

2 6.58 × 10−5 1 6.58 × 10−5 15.59 0.006 **
X3

2 5.38 × 10−5 1 5.38 × 10−5 12.75 0.009 **
Residual 2.96 × 10−5 7 4.22 × 10−6

Lack of fit 2.96 × 10−5 3 9.85 × 10−6

Pure error 0.00 4 0.00
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Table 3. Cont.

Source Sum of
Squares

Degrees of
Freedom

Mean
Square F-value p-Value Significance a

Yield of sciadopitysin (SC)
Model 4.05 × 10−2 9 4.50 × 10−3 9.60 0.004 **

X1 8.07 × 10−9 1 8.07 × 10−9 1.72 × 10−5 0.997 ns
X2 3.45 × 10−6 1 3.45 × 10−6 7.35 × 10−3 0.934 ns
X3 1.59 × 10−2 1 1.59 × 10−2 34.03 0.001 **

X1X2 1.44 × 10−3 1 1.44 × 10−3 3.08 0.123 ns
X1X3 1.19 × 10−3 1 1.19 × 10−3 2.54 0.155 ns
X2X3 8.91 × 10−4 1 8.91 × 10−4 1.90 0.210 ns
X1

2 5.11 × 10−3 1 5.11 × 10−3 10.92 0.013 *
X2

2 7.65 × 10−3 1 7.65 × 10−3 16.32 0.005 **
X3

2 6.06 × 10−3 1 6.06 × 10−3 12.94 0.009 **
Residual 3.28 × 10−3 7 4.68 × 10−4

Lack of fit 3.28 × 10−3 3 1.09 × 10−3

Pure error 0.00 4 0.00
a * Significant, p < 0.05; ** Highly significant, p < 0.01; ns, not significant, p ≥ 0.05

A 3D surface plot visualizes the correlation between responses and two independent variables,
by viewing a three-dimensional surface of the predicted responses. The effects of the extraction time,
ultrasonic power and the liquid–solid ratio on the flavonoids yield and their interactions are seen in Figure 5.
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3.3. Verification Test under Optimum Conditions

Based on Equations (2)–(5), the appropriate extraction condition (independent variables) proposed
by the Design Expert software was as follows: extraction time 20.4 min, ultrasonic power 202.5 W
and liquid–solid ratio 26.2 mL/g. From the consideration on the yield of flavonoids and operation,
extraction time, ultrasonic power and liquid–solid ratio were respectively modified as 20 min, 200 W
and 26 mL/g. Based on these conditions, the yields of QU, KA, GI and SC were respectively 0.109,
0.406, 0.031 and 0.355 mg/g obtained by UHRE. The above experimental values showed agreement
with fitting values (RSD < 1.72%) according to the predictive RSM models.

3.4. Comparison of Different Extraction Methods

3.4.1. Extraction Kinetics for Flavonoids

It can be seen from Figure 6 that the yields of flavonoids are different at different extraction times.
As can be shown from experimental data in Figure 6 that the total yield of flavonoids obtained by UAE,
HRE and UHRE was significantly dependent on extraction time. The extraction of flavonoids could be
finished by three successive steps: (i) a rapid increase in flavonoids yield, which was attributed to the
penetration of extraction solvent into the cellular interior and the dissolution of most of the flavonoids
into extraction solvent, combined with the destruction of cell walls; (ii) a slower increase in flavonoids
yield, which may be due to the exhaustion of flavonoids contained in the plant materials, reducing the
release of flavonoids into extraction solution; (iii) the yield of flavonoids did not significantly change,
which may be due to distribution of flavonoids in plant materials, and, in the extraction solution,
reached equilibrium.
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Compared with UAE and HRE, UHRE was found to reduce the time consumption. The time to
reach extraction equilibrium was 25 min for UHRE, 30 min for UAE and 90 min for HRE, respectively.
Moreover, when the extraction equilibrium is reached, UHRE had a higher total yield of flavonoids
(0.901 mg/g) than UAE (0.719 mg/g) and HRE (0.733 mg/g). The difference in yields of flavonoids
was statistically significant (p < 0.01). Higher extraction efficiency of flavonoids obtained in the UHRE
process from Mairei Yew leaves might be attributed to the combined effect of the boiling solvent and
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ultrasound. The cavitation effect is decreased when the temperature is near the solvent’s boiling
point, thus causing a reduction in the desorption of target compounds from the plant matrix [24].
Therefore, using boiling 80% methanol as solvent, it is highly probably that the efficiency of ultrasound
was dramatically reduced. However, compared with UAE and HRE, the increase in extraction
yields of flavonoids obtained by UHRE can probably mainly be related to the shaking effect due
to ultrasonic baths.

The fitting mathematical model is a useful engineering tool for the optimization, simulation,
design and control of processes and contributes to better use of energy, time and solvents.
The phenomenological, pseudo-second order and power law model listed in Table 1 have modeled the
solid–liquid extraction process for natural products from plant materials [42–44,46,47]. The extraction
kinetics of flavonoids (mg/g) from Mairei Yew for HRE, UAE and UHRE were investigated according
to three models listed in Table 1.

The kinetic curves fitted by the models for yield of flavonoids obtained by three various methods
are demonstrated in Figure 6. Figure 6 showed the kinetic curves fitted by the phenomenological
models were in accordance with the experimental data, but the curves fitted by the pseudo-second
order and power law model are not in accordance with the experimental data. The results of correlation
coefficient (R2), standard error (SE) of estimation for the different model are presented in Table 4.
Generally, phenomenological models demonstrate a good relationship with experimental data with
higher R2 and lowest SE. Those phenomenological models could be applied to describe the dynamic
process of extraction for flavonoids.

Table 4. The kinetics models and parameters for extraction of flavonoid by UAE, HRE and UHRE.

Kinetic Model
Extraction Method *

UAE HRE UHRE

Phenomenological
Equation Yt = 0.720

(
1 − e−0.130t) Yt = 0.721

(
1 − e−0.046t) Yt = 0.913

(
1 − e−0.141t)

A1 0.720 0.721 0.913
A2 0.130 0.046 0.141

Correlation coefficient (R2) 0.9948 0.9976 0.9972
Standard error (SE) 0.019 0.012 0.016
Pseudo-second order

Equation Yt =
t

6.854+1.215t Yt =
t

21.571+1.192t Yt =
t

4.932+0.964t
B1 6.854 21.571 4.932
B2 1.215 1.192 0.964

Correlation coefficient (R2) 0.9887 0.9879 0.9802
Standard error (SE) 0.027 0.027 0.042

Power law
Equation Yt = 0.314t0.224 Yt = 0.175t0.299

C1 0.314 0.175 0.426
C2 0.224 0.299 0.207

Correlation coefficient (R2) 0.9540 0.9153 0.9340
Standard error (SE) 0.055 0.072 0.077

* UAE, HRE and UHRE are ultrasonic-assisted extraction, heating reflux extraction, and ultrasound and heat–reflux
extraction, respectively.

3.4.2. Estimation of Cell Disruption by Scanning Electron Microscopy (SEM)

For evaluating the relationship between yield of flavonoids and cell disruption, SEM was applied
to observe the structure of raw and treated samples by different extraction methods (UAE, HRE and
UHRE). Different extraction methods have different influences on the tissue of Mairei Yew leaves
(Figure 7A–D). Figure 7A obviously shows that the external surface of the tissues of untreated sample
was intact. Using HRE, some of the cells were partially destroyed (Figure 7B), and more cells were
destroyed by UAE (Figure 7C); however, most cells were totally destroyed and collapsed using UHRE
(Figure 7D). This showed that UHRE destructs cell walls more efficiently, which resulted in the higher
yield of flavonoids.



Appl. Sci. 2019, 9, 795 12 of 15

Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 17 

 
Figure 7. SEM images of Mairei Yew leaves samples. (A) is raw materials; (B–D) are, respectively, 
samples after HRE, UAE and UHRE. 

4. Conclusions 

In this work, it has been experimentally verified that UHRE is an effective method on the 
extraction of four flavonoids in Mairei Yew leaves. After single factor experiments and BBD 
experiments, the optimized best condition was 20 min for extracted time, 200 W for ultrasonic power 
and 26 mL/g for a liquid–solid ratio. By UHRE, the yields of QU, KA, GI and SC were, respectively, 
0.109, 0.406, 0.031 and 0.355 mg/g, and total yield of four flavonoids was 0.901 mg/g, which were, 
respectively, 1.23-fold and 1.25-fold higher than those by using HRE and UAE. The reason may be 
that the coupling effect of ultrasound and heat–reflux increased the yield of target compounds. The 
extraction time was only 20 min by UHRE, relatively short, and the yields of four flavonoids were 
higher than those by HRE and UAE. Thus, UHRE shows an obvious advantage over HRE and UAE. 
Therefore, UHRE is an advantageous extraction method and it can be used well in the extraction of 
natural products from plants.  

Author Contributions: Methodology, C.Z.; software, X.R.; validation, formal analysis and data curation, X.R., 
H.J., J.G, W.S., Y.L., Y.T., T.W. and S.L.; writing—original draft preparation, C.Z. and X.R.; writing—review and 
editing, C.Z. and C.L.; supervision, C.L.; project administration, C.Z. 

Funding: This research was funded by the National Key Research and Development project of China 
(2017YFD0601306), the Fundamental Research Fund for Central Universities (2572017CA11), the National 
Natural Science Foundation (31870609) and the Natural Science Foundation of Heilongjiang province 
(LC2017005). 

Acknowledgments: We sincerely thank two anonymous reviewers for their constructive suggestions which 
would help us both in English and in depth to improve the quality of the paper.. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Horwitz, S.B. Mechanism of action of taxol. Trends Pharmacol. Sci. 1992, 13, 134–136. 

Figure 7. SEM images of Mairei Yew leaves samples. (A) is raw materials; (B–D) are, respectively,
samples after HRE, UAE and UHRE.

4. Conclusions

In this work, it has been experimentally verified that UHRE is an effective method on the extraction
of four flavonoids in Mairei Yew leaves. After single factor experiments and BBD experiments,
the optimized best condition was 20 min for extracted time, 200 W for ultrasonic power and 26 mL/g
for a liquid–solid ratio. By UHRE, the yields of QU, KA, GI and SC were, respectively, 0.109, 0.406,
0.031 and 0.355 mg/g, and total yield of four flavonoids was 0.901 mg/g, which were, respectively,
1.23-fold and 1.25-fold higher than those by using HRE and UAE. The reason may be that the coupling
effect of ultrasound and heat–reflux increased the yield of target compounds. The extraction time was
only 20 min by UHRE, relatively short, and the yields of four flavonoids were higher than those by
HRE and UAE. Thus, UHRE shows an obvious advantage over HRE and UAE. Therefore, UHRE is
an advantageous extraction method and it can be used well in the extraction of natural products
from plants.
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