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Abstract: We address in this paper the problem of abnormal event detection in video-surveillance.
In this context, we use only normal events as training samples. We propose to use a modified version
of pretrained 3D residual convolutional network to extract spatio-temporal features, and we develop
a robust classifier based on the selection of vectors of interest. It is able to learn the normal behavior
model and detect potentially dangerous abnormal events. This unsupervised method prevents the
marginalization of normal events that occur rarely during the training phase since it minimizes
redundancy information, and adapt to the appearance of new normal events that occur during the
testing phase. Experimental results on challenging datasets show the superiority of the proposed
method compared to the state of the art in both frame-level and pixel-level in anomaly detection task.

Keywords: abnormal event detection; deep learning; Convolutional Neural Network; unsupervised
learning; online; adaptive systems

1. Introduction

Abnormal event detection and localization is a challenging and exciting task in video monitoring.
Indeed, the security context in recent years has led to the proliferation of surveillance cameras,
which generate large amounts of data. This flow of CCTV images creates a lack of efficiency of human
operators. Moreover, studies show that they can miss up to 60% of the target events when they monitor
nine or more displays [1]. In addition, after only 20 min of focus, the attention of most human operators
decreases to well below acceptable levels [2]. This can lead to potential security breaches, especially
when monitoring crowded scene videos.

A possible solution to this problem is the development of automated video surveillance systems
that can learn the normal behavior of a scene and detect any deviant event that may pose a security risk.

Abnormal event detection, also known as anomaly detection, can be defined as a spatial temporal
recognition problem, taking into account that the event to be recognized is not present in the training
phase. In the context of video surveillance systems, anomalies are formed by rare shapes, motions or
their combinations. The main challenge in abnormal event detection is extracting robust descriptors
and defining classification algorithms adapted to detect suspicious behaviors with the minimum
values of false alarms, while ensuring a good rate of detection.
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The initial studies in abnormal event detection focused on trajectory analysis [3–5], where
a moving object is considered as abnormal if its trajectory doesn’t respect the fitted model during the
training period. The main limits of such method are the sensitivity to occlusion and the effectiveness
of detecting abnormal shapes with normal trajectories. These methods can be used in detecting
deviant trajectories in scenes containing few objects but not achieve satisfactory performance for
other applications.

Other methods such as low level local visual features [6–8] tried to overcome the limits of
trajectory analysis and construct models by using handcrafted feature extractors. Among these
methods, low local features such as histogram of oriented gradient (HOG), and histogram of optical
flow (HOF) have been used to model the background and to construct the template behavior. However,
these methods are usually specific to a given application and are not optimal for complex events.
Besides, they don’t link between local patterns, since local activity patterns of pixels is not efficient for
behavior understanding. More complex methods used the concept of Bag of Video words (BOV) by
extracting local video volumes obtained either by dense sampling or by selecting points of interest
to construct the template behavior. However, the relationship between video volumes is often not
taken into account. Derivatives of these methods [9] attempted to enhance the previous models by
using not only the local region, but also the link between these regions for the overall understanding
of the events. Usually the complexity of these methods makes them inefficient and time consuming for
detection of abnormalities in crowded scenes.

Nowadays, deep learning has aroused the interest of the scientific community and works
have been carried out in several fields including agriculture [10], biology [11] and economics [12].
More specifically, deep learning based methods have demonstrated a high capacity on image
processing [13,14], which led to the use of supervised methods for the anomaly detection.
These methods are generally based on the use of convolutional neural networks (CNNs) [15]. The main
drawback of the supervised methods is the use of both normal and abnormal examples in the training
phase which makes them not usable in real-world application for video surveillance, because it is very
difficult to identify and reproduce all the abnormal events.

Other deep learning based works [16–18] have achieved good performance on anomaly detection
datasets. These methods use unsupervised learning and their learning process do not require normal
and abnormal training examples, which makes them suitable for abnormal event detection. In this
article, we propose an unsupervised on-line adaptive method based on deep learning for the detection
and localization of abnormal events. The main contributions of this paper are as follows:

• We adapt a pretrained 3D CNN to extract robust feature maps related to shapes and motions which
allow us to detect and localize complex abnormal events in non-crowded and crowded scenes.

• We propose a new method of outliers detection based on the selection of vectors of interest to
construct a balanced distribution. This robust classifier is able to represent all normal events
(redundant and rare ones) during the training phase, detects abnormalities and adapt to the
appearance of new normal events during the testing phase.

The rest of this paper is presented as follows: In Section 2, we present a brief state of the existing
methods. In Section 3, we detail our proposed detection method. We present experimental results to
evaluate our method in Section 4. Finally, Section 5 concludes the paper.

2. Related work

In this section, a review of the current main methods is presented.
Initial studies gave attention to the use of the trajectory for anomaly detection [3–5,19–21].

Calderara in [19] represented trajectories as sequences of transitions between nodes in a graph to detect
abnormal movements. In another work, Morris [20] combined the trajectory with Gaussian mixture
and hidden Markov models to build activity models. Antonakaki [21] proposed an approximation
algorithm implementing a hidden Markov model as one-class classifier, which can decide whether
a given trajectory is normal compared to a model.
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Others works [6–8,22,23] were devoted to the extraction and analysis of low-level local features.
Ermis in [6] generated behavior clusters based on behavior profile of a given pixel to construct
probabilistic models. Reddy in [7] used optical flow to characterize the object’s motion and proposed
an adaptive codebook to obtain texture features. In the same process, Wang [8] combined a histogram of
optical flow orientation with one class support vector machine (SVM) for detecting abnormal motions.
Boiman and Irani [22] presented an approach based on spatio-temporal volumes and considered that if
the event reconstruction using only the previous observations is impossible then this event is classified
as abnormal. Roshtkhari [9] proposed a method which is the improvement of [22], by using a codebook
to group similar spatio-temporal volumes to reduce the dimension of the problem. This proposed
method allows to reduce the computational complexity, and becomes applicable to real-time video
analysis. Xiao in [23] proposed a sparse semi-non-negative matrix factorization (SSMF) to learn local
patterns, and used a histogram of non-negative coefficients (HNC) as local descriptors. Li et al. in [24]
used a dynamic texture (DTs) to design models of normalcy over both space and time. Spatial and
temporal information is modeled with a mixture of DTs (MDT).

Recently, various methods based on deep learning were applied for anomaly detection [15–17,25–27].
Zhou [15] proposed a method for detecting and locating abnormalities based on spatiotemporal
convolutional neural network. In this paper, the authors used a 3D-CNN to extract features related
to motions and shapes. Although the results presented were encouraging, the supervised nature
of this algorithm did not allow its use in real world systems monitoring. Indeed, both normal and
abnormal events were used as training examples, which is not suitable in the field of video surveillance
since it is very hard to reproduce all abnormalities. Sabokrou et al. in [26] used three initial layers of
pre-trained 2D-CNN combined with a new convolutional layer, whose kernels were learned using
sparse auto-encoder for abnormal event detection. One should notice here that the 2D convolution
does not sufficiently take into account the temporal information. Same author in [27] used local and
global descriptors generated with sparse auto-encoder to capture video properties. Hasan in [16] used
a fully convolutional auto-encoder (AE), the learned AE reconstructs normal events with low error
and give higher reconstruction error for abnormal events. For the same purpose, Chong [25] proposed
an AE with two parts, 2D convolutional layers for spatial features and use convolutional long short
term memory for temporal information. Ravanbakhsh in [17] proposed to use a generative adversarial
nets (GANs), which are trained using normal frames and their corresponding representation generated
by optical flow. In the testing phase, the real data are compared with the reconstruction generated
by GANs, the use of optical flow in the detection of abnormalities can be time consuming. Xu et al.
in [28] presented an unsupervised deep learning framework for abnormal event detection in complex
scenes. The proposed method is based on stacked denoising autoencoders (SDAE) to extract features,
and multiples one-class-SVM to predict score of abnormalities. Thus, they used a fusion strategy for
the final decision. Ravanbakhsh et al. in [29] combined a fully convolutional network (FCN) with
a binary quantization layer that was trained by an iterative quantization (ITQ) for obtaining binary bit
maps. Using this technique, the authors could get a set of binary codes for every video volume. At the
end, a histogram representing the distribution of binary codes was generated.

Methods for video features extraction were developed recently [30–32] and have achieved
promising results in action recognition. The advantage of these methods lies in their ability to learn
spatiotemporal information. Despite the fact that these methods are mostly supervised, it can be
adapted effectively for abnormal event detection task.

Our combination of pretrained 3D-CNN and the proposed classifier is an improvement of our
previous work [18] where we introduced a method for abnormalities detection based on a 2D-CNN
combined with a one-class SVM [33,34]. Although the results generated were acceptable, the motion
information is reduced by the 2D convolution. Moreover, the setting of an SVM and more specifically
the choice of the kernel is complex, it is also admitted that the efficiency of an SVM is strongly impacted
by the size of the data [35]. For these reasons, we propose in this paper a 3D-CNN combined with a new
classifier to overcome these limits: From one side, the 3D-CNN is more suitable for spatiotemporal
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abnormal event detection. From another side, the new classifier is robust to the evolution of the
training dataset size, it also takes into account the normal events that occur rarely during the training
period and can adaptively learn newly observed normal events in the testing phase. Thus, we obtain
a method directly usable for real-world applications. To sum up, Table 1 summarizes the main methods
presented in this section, their advantages and drawbacks.

Table 1. Comparison of some methods of abnormal events detection in terms of advantages
and disadvantages.

Method Advantages Disadvantages

Trajectory analysis Effective for detecting deviant
trajectories in non-crowded scenes

Occlusion-sensitive especially in
crowded scenes. Inability to detect
abnormal shapes without deviant
trajectories

Handcrafted features Effective for simple local
shape or motion

Does not link between local patterns,
not optimal for complex events

Deep learning: Supervised Effective for behavior understanding
High capacity on image processing

Need to use normal and abnormal
examples during the training phase

Deep learning:
Unsupervised

Effective for behavior understanding
High capacity on image processing
Does not require normal and abnormal
training examples

- - -

3. The Proposed Framework

We present in this section the proposed abnormal event detection method. We start by giving
a brief description of the 3D residual convolutional networks and we explain the benefits of using these
networks comparatively with 2D plain networks. After this, we give details of the two main stages
of our method; feature extraction using modified version of a pre-trained 3D residual convolutional
network [31], and the detection of outliers using the proposed classifier. Thus, this method allows
us to detect abnormal events, prevents the marginalization of rare normal events and adapt to the
appearance of new normal events during the testing phase.

3.1. 3D Residual Convolutional Networks

The 2D-CNNs perform convolution and pooling operations only spatially, while 3D-CNN is used
for spatio-temporal representations. Features from 3D convolutional networks encapsulate information
related to shapes and motions in sequence of images, which can be useful for abnormal event detection.
Besides, Tran et al. in [30] proved that their C3D features are separated remarkably compared to
2D based model, which can be desirable for videos representations. Figure 1 shows how it can be
effective to perform clustering with features generated by C3D than those generated by ImageNet [36]
on UCF101 dataset.
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Figure 1. Feature embedding visualizations of Imagenet and C3D on UCF101 dateset using t-SNE
method [37], this figure was extracted from [30].

The 3D-CNNs proposed in [30–32] proved to be highly competitive compared to different 2D
networks in various video analysis tasks, such as scene, object or action recognition.

The use of pretrained 2D convolutional network such as features extractors for abnormal event
detection was recently developed by [18,26]. However, it was proven in [30], that image-based feature
extraction is not suitable for action recognition, since the 2D convolution does not consider temporal
relationship between successive frames. For instance, in [26], a sequence of frames was used as
an input of the CNN. However, the convolution kernels in the 2D-CNN does not allow consideration
of temporal information. i.e., after the first convolutional layer, the movement information is destroyed
by the 2D convolution. That is why the use of multiple frames as an input of the 2D neural networks is
not adequate for temporal features extraction.

Furthermore, when training a network with a very large number of layers, the gradient required
to update the weight with backpropagation becomes smaller when reaching earlier layers. This is the
so-called vanishing gradient problem. As a result, as the network goes deeper, its performance gets
saturated or even starts degrading rapidly. That is why He et al. in [14] proposed a novel architecture
based on residual blocks (see Figure 2). The original output mapping F(x) is readjusted into F(x) + x.
It is thus easy to optimize the residual mapping than the first one.

This network named “ResNet” is formed of 152 layers. It has obtained the first place in the Large
Scale Visual Recognition Challenge (ILSVRC) 2015 challenge with a classification error of 3.6%.

Figure 2. Residual learning.

3.2. Anomaly Detection

The 3D CNN used in [31] is a residual network pre-trained on Sports-1M dataset containing more
than 1.1 million sports videos. This allows it to extract high performed spatio-temporal features from
video sequences compared to 2D neural networks used in previous papers [18]. In the following,
we present the proposed methodology for abnormal event detection. It is based on two main stages:
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Features extraction with modified version of pre-trained Res3D [31] and outliers detection with
our classifier.

3.2.1. Features Extraction

The proposed methodology consists of using volumes of three consecutive frames. For each frame
“Ft” we used the volume F: {Ft; Ft−1; Ft−2} as input. As applied in [18], we did not use the complete
CNN “from end to end”, but we used the four initials 3D residual blocks (16 convolutional layers) as
feature extractors. The architecture of this network is presented in Figure 3. Thus, instead of getting an
output of one feature vector, the resultant map is a matrix of 841 feature vectors of 256 dimensions.
In this matrix, each raw represents a small patch in the input frame. This is explicitly shown in Figure 4.

Figure 3. The four initial 3D residual blocks of Res3D.
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Figure 4. Global scheme of the proposed framework.

3.2.2. Classifier

CCTV videos are characterized by a redundancy of information in normal scenes. Building the
event model by using all vectors obtained for each frame during the training phase would skew
the distribution by weighting redundant elements and marginalizing rare ones that would lead to
misinterpretations and generate confusion between rare events and abnormalities in the detection
process. That is why we proposed in this paper an online selection of vectors of interest. It allows
definition of a balanced distribution able to represent all normal events, including rare ones, since the
representation of redundant and rare events reaches an equilibrium. Thus, all normal events have the
same importance during the detection process so that false alarms would be avoided.

In this way, we were able to construct a robust classifier, able to minimize redundancy, and avoid
the marginalization of rare events and reduce false alarms.

Algorithm 1 shows the construction of the balanced distribution. Thus, to select our representative
vectors, we declare “N” first vectors from the first frame as vectors of interest. Then, for each new
vector “Xi” of the processed frame, we calculate a string metric “disti” based on Mahalanobis distance
between “X(i)” and the “N” vectors of the distribution. This is represented in the following equation:

disti = (X(i)−moy) ∗Q ∗ (X(i)−moy)′ (1)

where “moy” and “Q” are the mean and the inverse of the covariance matrix of the distribution,
respectively. The Mahalanobis distance considers the correlation between data variables since it is
calculated using the inverse of the covariance matrix [38]. Using this distance, the probability that
a test point belongs to a set is characterized not by its euclidean distance but by a metric tacking into
account the distribution of the data.

In our case, if this distance exceeds a threshold “α”, the vector is selected to be a vector of
interest, then we update “moy” and “Q”. Otherwise, the vector is not considered for the detection
of abnormalities. We then continue the same process for each new arrival frame in the training
phase. We thus assess the relevance of each vector to be included in the balanced distribution. Finally,
this distribution is pruned to eliminate among the first “N” elements those that are redundant, which
ultimately generates “M” different vectors of interest that are considered as the representation of video
volumes. This method allows us to compute our algorithm in real time.

Furthermore, this method represents each redundant normal event by a single vector in order to
have an equilibrium in point of interest data. It then prevents the marginalization of normal events
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that occur rarely during the training process. Thus, every event has the same importance in abnormal
detection procedure.

For the testing phase, each patch, represented by a vector obtained by the feature extraction
mentioned above is assessed using the same principle. Indeed, we measure the similarity between the
vector representing the patch and the balanced distribution. If the measure exceeds a threshold “β”,
the vector is considered as an outlier. Thus, the considered patch is labeled as abnormal. The detailed
procedure is presented in Algorithm 1. All the thresholds (α, β and η) were selected empirically.
While ”α” and “η” were selected manually according to their effects on the size of the balanced
distribution, “β” was selected in order to obtain the best results (minimum of false alarms and
misdetections) in the monitored scenes.

CCTV also faces another challenge due to the constant evolution of the environment that can be
characterized as a dynamic background, appearance of new interactions or temporary authorization of
abnormal events. These changes can generate false alarms that disturb the interaction with the users of
the anomaly detection algorithm.

For instance, a single pathway that is changed to a normal road or the introduction (or removal)
of an element in the background. Another example can be the authorization of temporary interactions
in an environment such as maintenance works that may create false alarms due to the use of special
machines and uncommon tools.

To the best of our knowledge, this problem was skipped in previous algorithms. That is why we
proposed an adaptive method robust to any evolution of the surveilled scene.

As seen in Figure 5, this method allows to reconsider false alarms obtained during the test process,
i.e., if a patch is declared as a false alarm, the operator can declare its feature vector as a vector of
interest to be included in the balanced distribution. This will avoid its future detection as abnormal.

Figure 5. Robustness to false alarms.
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Algorithm 1: Construction of a balanced distribution and abnormal event detection.

Selection of Vectors of Interest;
F=[Fi; Fi−1; Fi−2];
X=FeatureExtraction (F);
C=X(1:N);
moy=mean(C);
Q=inv(cov(C));
for i=N:841 do

disti=(X(i)-moy)*Q*(X(i)-moy)’;
if sqrt(disti> α) then

C(size(C,1)+1)=X(i);
moy=mean(C);
Q=inv(cov(C));

end
end
for each new frame Fi do

F=[Fi; Fi−1Fi−2];
X=FeatureExtraction (F);
for i=1:841 do

disti=(X(i)-moy)*Q*(X(i)-moy)’;
if sqrt(disti> α) then

C(size(C,1)+1)=X(i);
moy=mean(C);
Q=inv(cov(C));

end
end

end
Distribution prunning;
moy=mean(C);
Q=inv(cov(C));
for i=1:size(C,1) do

disti=(C(i)-moy)*Q*(C(i)-moy)’;
if sqrt(disti< η * α ; (0<η<1)) then

C(i)=[ ];
end

end
Abnormal event detection;
for each new frame Fi do

moy=mean(C);
Q=inv(cov(C));
for i=1:841 do

disti=(C(i)-moy)*Q*(C(i)-moy)’;
if sqrt(disti> β) then

Patchi is Abnormal;
end

end
end
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Furthermore, as any other methods of abnormal event detection, misdetections could also occur
while using the proposed framework. That is why we propose as a next step its improvement into
a semi-supervised model. Indeed, when the model generates misdetection, the CCTV operator can
declare it as abnormal. i.e., the feature vector representing this event will be used to create a second
distribution representing misdetected events. Thus, one can get two distributions representing normal
and misdetected events. Consequently, to labelize a new event as normal, its feature vector should
respect two conditions: The similarity between this new feature vector and the original distribution
representing normal events should be established, and we should get a non-similarity with the new
distribution representing the misdetected events. Thus, this operation will decrease misdetections and
increase the performance of our proposed method. The implementation of this semi-supervised model
will be developed in future work.

4. Results and Comparisons

In order to implement our methodology, we used Matlab and caffe for the deep learning part [36].
We also implement our algorithm in C++ for real time detection.

We tested our methodology on UCSD Ped2 Anomaly Detection Dataset and we apply it also for
a real case of laboratory surveillance “CapSec dataset”. The local dataset “CapSec” was constructed in
our laboratory using a fixed camera. It represents daily behavior of students and researchers inside
the laboratory. The image resolution is 1280 × 720 pixels. It has training folders that contain only
normal events and testing folders which also contains anomalies like falling people and objects that
are not present in the training phase. One can see in Figure 6 some qualitative results. UCSD Ped2
“(http://www.svcl.ucsd.edu/projects/anomaly)” represents complex behaviors including pedestrians.
It contains 16 and 12 folders for training and testing phases resepctively. The training folders contain
only normal events of pedestrians. However, the test folders also contain abnormalities such as skaters,
bikes and cars. Abnormal events in this dataset vary in type, size and occurrence. It contains many
occlusions and the image resolution is 240× 360, which is low and can complicate the detection process.

While using this dataset, we evaluate two scenarios: “SC1” when we consider a balanced
distribution for every folder of the Ped2 dataset, and another scenario “SC2” when we develop
a distribution for the whole dataset. The objective of this experiment is to prove the robustness of the
proposed method when increasing the number of images during the training phase.

The first results show the effectiveness of the proposed method. The qualitative results are
presented in Figure 7 when all abnormalities are detected.

One can see in Table 2 how the introduction of vectors of interest reduces the number of feature
vector representing normal events. Consequently, while using the first scenario of the proposed method,
we apply a classifier (one classifier per folder) with less than one percent of features vectors selected
as vector of interests. In the second scenario, when we consider a unique classifier for all folders
containing 1920 training images, we get only 1569 vectors of interest. This number is relatively stable
and low even if the training images number increases. This shows how the proposed methodology is
robust when facing high number of frames. Consequently, it can be applied for real-world applications
of video surveillance.

To assess the performance of the proposed method and provide quantitative results, we used
the Equal Error Rate of Frame Level (EERFL), the Equal Error Rate of Pixel Level (EERPL) and the
Receiving Operating Characteristic (ROC). A comparison with state of the art methods is provided in
Table 3. Our method gets respectively an EERFL and EERPL of 6.25% and 9.82% for the first scenario
“SC1”, and for the second scenario “SC2” 7.45% and 9.63% respectively, which outperforms all other
state of the art methods.

Figure 8 shows the receiver operating characteristic (ROC) for the UCSD Ped2 dataset , plotted as
a function of the detection threshold for both scenarios.

http://www.svcl.ucsd.edu/projects/anomaly
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Detection of abnormal events. (a) Falling person; (b) Detection of multi-falling people;
(c) Falling person in presence of walking one; (d) Detection of an object assumed as abnormal; (e) Falling
person in presence of crouched person; (f) Falling person.

Table 2. Effect of the selection of vectors of interest on element reduction. For each folder of the dataset,
one can see the number of frames (NB-Frames), number of feature vectors (NB-FV) and number of
vector of interest obtained by our method (NB-VI).

Folder NB-Frames NB-FV NB-VI

F1 120 100920 934
F2 150 126150 923
F3 150 126150 909
F4 180 151380 1215
F5 180 151380 1127
F6 150 126150 1187
F7 150 126150 1107
F8 120 100920 981
F9 180 151380 1134
F10 180 151380 1177
F11 180 151380 1109
F12 180 151380 1108
SC2 1920 1614720 1569
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Detection of abnormal events in Ped2 Dataset. (a) Multiple bicycles detected; (b) Detection of
multiple targets (bicycle and car); (c) Detection of multiple targets (bicycle and skater); (d) Detection of
multiple targets (bicycles and skater); (e) Multiple bicycles detected; (f) Detection of multiple targets
(bicycle partially obstructed and one wheel).
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Table 3. Equal Error Rates for frame and pixel level comparisons on Ped2 Dataset. The EER values for
the different methods were extracted from the literature.

Methods EERFL EERPL

Mehran [39] 42 80
Adam [40] 42 76
Bertini [41] 30 /
Kim(MPCCA) [42] 30 71
Zhou [15] 24.40 /
Mahadevan(MDT) [43] 24 54
Hasan [16] 21.7 /
Reddy [7] 20 /
Sabokrou [27] 19 24
Li [24] 18.50 29.90
Ravanbakhsh [29] 18 /
Xu (AMDN double fusion) [28] 17 /
Sabokrou [44] 15 /
Ravanbakhsh (GAN) [17] 14 /
Boiman(IBC) [22] 13 26
Roshtkhari(STC) [9] 13 26
Chong [25] 12 /
Tan Xiao [23] 10 17
Sabokrou [26] 11 15
Sabokrou [45] 8.2 19
Sabokrou [46] 7.5 16
SC1 6.25 9.82
SC2 7.45 9.63
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Figure 8. Receiver operating characteristic (ROC) curve of the proposed method. The blue and green
curves are for the first and second scenarios, respectively. The Area Under the Curve (AUC) values for
the two scenarios (SC1 and SC2) are 86% and 84%, respectively.

Also, as discussed above about including false alarms (FA). One can see in Table 4 how the EER
is decreasing considerably when the operator declares false alarms. In Folder 4, the EER decreases by
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1.1% when the operator includes only one false alarm. Besides, in Folder 7 when the operator declares
5 false alarms, the EER decreases by 5.6%.

When dealing with the computational time, the comparison of our method with other state of the
art methods is presented in Table 5, the results are only indicative and should be treated with caution.
This is mainly due to the different hardware performances of each work. In our case, we used I7 CPU
with 32 Gb of RAM and graphic card NVIDIA Quadro 2000 M. The proposed computational time
presented in Table 5 is not optimal and does not reflect the full potential of our method. The main
objective was to minimize the error and to propose a robust method for real-world application.

Table 4. Adaptation to false alarm detection.

Folder EERFL EERPL FA EERFL EERPL

4 4.4 7.7 1 3.3 7.2
7 24.4 33.3 5 18.8 28.8

Table 5. Brief information about computational time of the proposed method (given in seconds
per frame).

Method Boiman
(IBC) [22]

Mahadevan
(MDT) [43]

Roshtkhari
(STC) [9]

Li
[24]

Xiao
[23] Ours

Ped2 83 25 0.22 1.38 0.29 0.15

5. Conclusions

In this paper, a novel online adaptive method based on combination of pretrained 3D residual
network and online classifier were developed and implemented. It is able to detect abnormal events,
prevent the marginalization of normal behavior that rarely occurs during the training phase and adapt
to the appearance of new normal events in the testing phase. In addition, our method does not require
pretreatment methods such as tracking or background subtraction. This method is based on two
main stages: Spatiotemporal feature extraction without any need of training, and the use of robust
incremental classifier that prevents the redundancy of information in CCTV. It can also either be used
online or offline.

We have tested our proposed methodology on two main datasets using crowded (Ped2) and
non-crowded scenes (CapSec).

The results from the Ped2 dataset showed high performance in detection and localization for
abnormal events based on The EERFL and EERPL. To the best of our knowledge, this method
outperforms all existing techniques present in the literature and used for Ped2.

Besides, the fastness and the simplicity of this method allow us to use it for real-world application
(case of CapSec).

The results presented in this paper showed the effectiveness of using this framework in detecting
abnormal events. This method is robust, takes into account rare normal events present in the training
phase. Besides, it can be incorporated in online CCTV. Moreover, the method can be adapted so
that human operators select false alarms to prevent its future appearance, which is suitable for
dynamic environment.

In this method, the localization of abnormal events is reflected as patches in the original image.
In some cases, these patches may overflow on normal regions. In future work, we will focus on
the detection at the pixel level to precisely localize the abnormal regions. Future studies will also
investigate the test of this method on other datasets and will improve our local dataset (CapSec)
in order to generate quantitative results and use it as a regular dataset for testing abnormal event
detection methods. Moreover, we will also compare our classifier with other classification methods
(k-nearest neighbors (k-NN) [47], and enhanced k-NN [48]).
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