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Abstract: In this paper we perform a comparative analysis of three models for a feature representation
of text documents in the context of document classification. In particular, we consider the most often
used family of bag-of-words models, the recently proposed continuous space models word2vec
and doc2vec, and the model based on the representation of text documents as language networks.
While the bag-of-word models have been extensively used for the document classification task, the
performance of the other two models for the same task have not been well understood. This is
especially true for the network-based models that have been rarely considered for the representation
of text documents for classification. In this study, we measure the performance of the document
classifiers trained using the method of random forests for features generated with the three models
and their variants. Multi-objective rankings are proposed as the framework for multi-criteria
comparative analysis of the results. Finally, the results of the empirical comparison show that
the commonly used bag-of-words model has a performance comparable to the one obtained by
the emerging continuous-space model of doc2vec. In particular, the low-dimensional variants of
doc2vec generating up to 75 features are among the top-performing document representation models.
The results finally point out that doc2vec shows a superior performance in the tasks of classifying
large documents.

Keywords: document classification; bag-of-words; word2vec; doc2vec; graph-of-words; complex
networks

1. Introduction

The growth of the use of electronic documents propelled the development of solutions aiming at
automatic organization of those documents in appropriate categories. The related task of automatic
classification of text documents become an important tool for the relevant applications of news filtering,
information retrieval, opinion mining, spam filtering and e-mail classification [1].

The classical, text-mining approach to document classification employs machine learning to
automatically infer a classification model from a given collection of text documents labeled with the
classes they belong to [2]. In order to use machine learning on text documents, one has to define a set
of features that allow representing a document as a tuple of feature values. To this end, we employ
document representation models. The early text-mining approaches to document classification have
been using the bag-of-words document representation model [3]. Following the bag-of-words model,
each feature corresponds to a dictionary word and its value is related to the frequency of the word in
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the given document. Despite its simplicity, the bag-of-words model has been widely considered as the
de-facto standard model for text classification and categorization [1,4]. Since the model leads to a large
number of features, it is typically used in combination with feature selection and other dimensionality
reduction methods [5].

More recent document representation models have been focusing on the semantic relations among
words, which have been ignored by the bag-of-words model; the latter considers similar words and
synonyms as atomic, independent features. In particular, continuous-space models for document
representation, referred to as word2vec (doc2vec), embed the words (documents) in a vector space,
where the closeness of vectors correspond to the semantic similarity of words (documents) [6,7].
To compute the embedding, continuous-space models use shallow, two-layered neural networks.
To perform document classification, they are usually combined with deep neural networks into
complex deep neural network structures. The deep learning approaches require computationally
expensive trial-and-error experiments for finding optimal network structures and learning parameter
settings for approaching the document classification and other text mining tasks, they are often
combined with (deep) neural networks that serve as classification models [8,9]. Only in rare cases,
continuous space models are considered as an alternative document representation model that is apt
for combining with other, computationally less demanding methods for machine learning [10].

Another limitation of the bag-of-words model is that it ignores the ordering of the words in a given
document. Network-based document representation models build upon on features that represent
the structural properties of the document network, which represents a document as a graph with
vertices corresponding to words and edges denoting the co-occurrence of words in sentences. Thus,
the network’s edges correspond to the ordering of the words. While the network-based model and its
variants have been applied in the context of document classification [11-16], it is rarely considered in
the comparison to other document representation models.

In this paper, we address the issue of selecting a proper document representation model for text
document classification with machine learning methods. We consider the combination of different
document representation models with a computationally efficient and robust method for machine
learning, random forest [17]. The motivation for resolving this central issue is twofold. First, to the
best of our knowledge, no other comparative study analyzes the impact of the selection of document
representation model on the performance of text document classification. While the performance of
different variants of the bag-of-words model is well studied, the systematic comparative study of the
performance of the other two document representation models is still missing. Secondly, in contrast
with deep learning approaches, we aim at using a simple and robust machine learning method that
does not require elaborate structure and parameter settings necessary for learning deep models, is
much more computationally efficient and performs well, and is in many cases superior to deep neural
networks [18].

To resolve this issue, we perform a systematic comparative analysis that involves 16 variants of the
three document representation models introduced above, seven text classification tasks stemming from
four standard text classification benchmarks [19-22] and five commonly used measures of document
classification performance: classification accuracy, precision, recall, F1-score and the area under the
receiver-operating characteristic curve.

The rest of the paper is organized as follows. In Section 2, we introduce the three document
representation models and their variants as well as provide an overview of related studies for each of
them. In addition, Section 2 introduces the random forest method for learning classification models,
methods for dimensionality reduction, and the measures of the performance of document classification.
Section 3 introduces the setup used to conduct the empirical comparison of the performance of
the document representation models for document classification. Section 4 presents and discusses
the experimental results. Finally, Section 5 summarizes the contributions of the paper and outlines
directions for further research.
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2. Background

The task of a single-label document classification can be formally defined as follows [2]: let D be
a set of documents, and C a set of class labels. Given a learning set of training pairs (d;,¢;) € D x C,
we seek to construct a classification model f : D — C such that the set of misclassified documents is
minimized as much as possible. In turn, the classification model f can be used for predicting the class
label of any given document.

In order to employ a machine learning method to the task of document classification, we have to
represent documents as fixed-length tuples or vectors of feature values [2]. To this end, we employ
document representation models. Formally, a document representation model is a function m : D —
R", where n corresponds to the number of features for representing the text documents. Model m
transforms a given document d to a n-dimensional vector of real-valued features m(d). By doing
this, the task of document classification can be formulated as a task of supervised machine learning
of classification models, where the learning data set consists of training pairs (m(d;),c;) € R" x C.
The learning method then results in a classification model g : R” — C that can be used for predicting
the class label of any given document d that is being transformed with the document representation
model into m(d) € R", before being submitted to the classification model g. We are going to review
three document representation models and the machine learning method for training classification
models used in this study in the first two subsections below.

Due to the fact that the standard document representation models with features based on
individual words in documents lead to a vast number of features n, we employ methods for
dimensionality reduction, before learning the classification model g [2]. In this paper, we apply
a principal component analysis (PCA) as a dimensionality reduction method [23] as explained further
in Section 2.3. Finally, in the last subsection, we introduce the five measures for the evaluation of the
performance of document classification.

2.1. Document Representation Models

Document representation models transform a document into numeric-valued features that can be
clustered into two categories. The features in the first category correspond to words (often referred to
as terms), while the second category includes features that correspond to documents. The bag-of-word
model only include features of the first category: the values of its features correspond to the
presence/absence or the frequency of a word /term in a given document [3]. Furthermore, the word2vec
model also includes features from the first category that correspond to the embedding of words in
semantic space [6]. In contrast, the doc2vec model is based on features that correspond to vector-space
embeddings of whole documents instead of individual words [7]. Finally, the network-based model
includes features from both groups: features quantifying the properties of the individual network
nodes belong to the first category, while the features quantifying the properties of the entire network
belong to the second category. In the continuation of this section, we are going to provide a detailed
introduction of the three document representation models compared in this study.

2.1.1. Bag-of-Words Model

The bag-of-words (BOW) model represents each document as an unordered set (bag) of features
that correspond to the terms in a vocabulary for a given document collection. The vocabulary can
include words, a sequence of words (token n-grams) or sequences of letters of length n (character
n-grams) [16,24,25]. Each vocabulary term is represented with one numerical value in a feature vector
of a document. The feature value can be calculated in different ways. The simplest is to observe the
occurrence of a term in a document, leading to a Boolean feature value. More commonly used feature
values measure the frequency of a term in a given document. Another commonly used measure is
“term frequency, inverse document frequency” (TFIDF), where the term frequency (TF) is multiplied
by the reciprocal frequency of the term in the entire document collection (idf). In this way, TFIDF
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reduces the importance of the terms that appear in many documents and increases the importance of
rare terms.

Traditionally, the BOW model is used as the state-of-the-art document representation model
in many natural language processing applications. Its success emerges from the simplicity of
implementation and the fact that it often leads to high accuracy document representation. Still, it is
well known that BOW is characterized by many drawbacks such as high dimensionality, sparsity, and
the inability to capture semantics or simple dependencies between words, such as word ordering in the
document [4,5]. Therefore new representation models in the forms of distributed word embeddings
(word2vec and doc2vec) and graph-of-words (GOW) have been proposed and tested to challenge the
open issues in document classification.

2.1.2. Continuous-Space Models

Continuous-space word representations (word2vec) capture syntactic and semantic regularities
in language from observing the patterns of words co-occurrence in the same context of neighboring
words [26]. More specifically, word2vec employs neural networks to model the relation between a
given word and its context of neighboring words in the given collection of documents. The continuous
bag-of-word model (CBOW) predicts the context (neighboring words) for a given word, while the
continuous skip-gram model predicts a word given the context. Both lead to a vector-space embedding
(representation) of individual words. The neural network prediction model uses a hierarchical softmax
function whose structure is a binary Huffman tree and is trained using stochastic gradient descent and
back propagation algorithms. To improve the computational efficiency of model training, negative
sampling is used to reduce the number of distributed context vectors considered. This type of model is
also referred to as a neural language model [27]. Recently, word2vec has been shown to be successful in
many natural language processing tasks ranging from sentiment analysis [8,28-30], topic modeling [31],
through document classification [32,33] and name entity recognition [34] to machine translation [35,36].

High dimensional vectors also proved to be efficient on larger linguistic units, such as pieces of
text of variable lengths (sentences, paragraphs or documents) resulting in paragraph2vec and doc2vec
models [7,37]. The doc2vec models are able to predict word occurrence in the context of paragraphs or
documents. Hence, doc2vec has been shown to be efficient in sentiment analysis [7,38,39], information
retrieval [7], document classification [9,10], summarization [40] and question answering [41]. In our
study, we use the variants of the word2vec and doc2vec models that correspond to different sizes of
the feature vectors extracted from the continuous space transformation.

Recent studies of the continuous space models for document classification have been primarily
focused on the exploration of one isolated aspect of the system, usually comparing different classifiers
and contrasting different representation models of documents against bag-of-words as a baseline
model and word2vec (doc2vec as well, although rarely) as the suggested improvement. For example,
Djuric et al. [38] compare the TF and TFIDF variants of the bag-of-words model with a doc2vec model
in the task of hate-speech detection. They show that doc2vec model outperforms both bag-of-words
variants in terms of the area under the receiver-operating characteristic curve obtained with a classifier
based on linear regression. Similarly, Sanguansat [39] shows that the doc2vec model outperforms TF
and TFIDF variants of the bag-of-words model in the sentiment analysis tasks in Thai and English
languages, regardless of the used classifier (logistic regression, naive Bayes or support vector machines).
Jiang et al. [42] show the combination of the bag-of-words and the continuous space models lead to a
marginal performance improvement over the alternatives in the sentiment analysis task. Kim et al. [10]
show that multi-co-training of TFIDF, latent Dirichlet allocation and doc2vec achieves more robust
results in document classification tasks especially with very low dimensions of features’ vectors. Ren
and Deng [43] propose the fusing of different streams of features in a multi-stream neural model, while
Zheng et al. [44] introduce the self-interaction attention mechanism for aggregating the integration
strategies into a hierarchical structure for the document classification.



Appl. Sci. 2019, 9, 743 5o0f 27

2.1.3. Network-Based Models

The recent decade has witnessed the rise of interest in the modeling and analyzing of human
language with complex networks [45,46]. Following this paradigm, linguistic units (words, sentences
or documents) can be represented as vertices, while their relations (co-occurrence, syntax dependencies,
semantic relations) as edges in a graph [46] forming a complex language network. Often, the terms
of graphs and networks are interchanged depending on the field (mathematics, computer science or
physics); the authors also interchangeably refer to nodes or vertices and to links or edges. A language
(linguistic) network is formalized by a pair of sets (V, E) where V is the set of nodes representing
the linguistic units and E the set of links representing the interactions between them. The network
formalization captures the structural (topological) properties of a text, which is quantified through the
computation of various network properties at a different scale. On the micro scale of individual nodes
we observe the role of individual nodes in the network topology, on the mezzo scale of subnetworks
we examine the structure of communities of network nodes, and on the macro scale, the properties
summarize the structural characteristics of the entire network. For the network-based models, we
employ a variety of network properties to all three levels simultaneously. We also aggregate the
properties on the micro (node or word) level into document-level (macro) features using three different
aggregation methods of average, histogram and quantiles.

When the linguistic units in the language network correspond to words, we refer to them as a
graph-of-words (GOW) model for document representation. There are several advantages of using
GOW, grounded in the graph and complex networks theory. Firstly, the model is known to be robust
to input noise. Additionally, GOW significantly reduces the dimensionality of the representation
space, when properties on the mezzo and macro levels are being considered. Note however, that this
comes at the cost of the high computation complexity of the procedures for calculating the properties.
The GOW model, in its diverse variants has been applied to many natural language processing
tasks, including text summarization [47], keyword extraction [48,49], text genre detection [50,51] and
document classification [11-16].

Note that the GOW model does not come with a standardized language network representation
or a set of features (network properties). The diversity of the network based models is related to the
variety of networks, ranging from directed and undirected through to unweighted and weighted and
bipartite graphs. Moreover, it seems that there is no unique strategy in utilizing micro, mezzo and
macro level structural properties, which contribute even more to the diversification of the reported
models. Similarly, Malliaros and Skianis [15] substitute TF with micro measures of node centrality
(degree, in- and out-degree, closeness) is obtained from the language network. Jiang et al. [52] model
documents as graphs and use weighted frequencies to extract frequent subgraphs on the mezzo level,
the counts of which are used as features. Rousseau et al. [14] also exploit frequent subgraphs extracted
from the networks as features. In addition, they examine the main-core of the language network as a
technique for the reduction of the dimensionality of feature vectors.

Hassan et al. [11] use an algorithm for a random walk through the language network to measure
term properties that replace the TF metric of the bag-of-words model, which leads to a significant
improvement of the performance in document classification tasks regardless of the classifier. They
perform an analysis on the two benchmarks also used in our study. Blanco and Lioma [12] propose a
representation of documents with page ranks of nodes in a network constructed from text. Additionally,
they employ macro and mezzo level measures of average page length and clustering coefficients.
Besides co-occurrences they also incorporate grammatical relations (part-of-speech tags) as directed or
undirected network links.

Rossi et al. [13] and in [53] represent documents and classes as bipartite networks, and induce the
weights on the links using the least mean square method. Induced weights are used as class models
for the classification of unseen documents. Similarly, Papadakis et al. [16] employ per-class networks
constructed from character or word n-grams in a document. Classification is based on the network
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similarity measures quantified as a Jaccard overlap of links or weighted overlap between the network
of the new document and class baseline network.

2.2. Random Forest

Random forest is a machine learning method for the automatic inference of classification
(or regression) models from training data [17]. The second part of its name is related to the fact
that the inferred model is an ensemble of decision trees. The randomization (first part of the method’s
name) comes from two sources. First, each decision tree in the ensemble is trained on a random
selection of training data; in particular, random samples with replacement are taken from the training
data set. Second, at each step the tree induction algorithm selects the best possible split of the current
data set. The split is selected from a random sample of m features, following an idea that was borrowed
from another method for learning ensembles, random subspaces [54].

Learning an ensemble of models is a standard machine learning technique for reducing the
variance of learning methods, which often leads to the reduction of the predictive error and overfitting
of the model to training data. Random forest represents one of the most powerful and robust ensemble
methods in machine learning; it is reported to perform well in a variety of contexts, domains, learning
tasks and data sets [10,55-57].

Another advantage of random forest and the reason why we opted for it in our work is its
robustness to the learning method’s parameter settings. The performance of random forests is sensitive
to the value of a single parameter m, i.e., the size of the random sample of features considered at each
step of the tree induction algorithm (see above). This is in contrast with other contemporary machine
learning methods, especially deep neural networks, the performance of which is very sensitive to the
selection of neural network structure (number of the layers and neurons in each layer), activation
functions, and settings of the parameters of the learning method [58]. The proper setting of these
parameters requires computationally expensive trial-and-error experiments with learning different
models, each being learned following a computationally expensive learning algorithm. On the other
hand, in comparison with deep neural networks, learning random forest is computationally much
more efficient [18].

2.3. Dimensionality Reduction

The major characteristic of the document representation models that include features
corresponding to words/terms is the high dimensionality of the feature space: the size of the
vocabulary can be tens or hundreds of thousands of terms for an average-sized document collection.
In such situations, to reduce the vocabulary size, the documents are first preprocessed by removing
non-informative terms (stop words). Also, document frequency thresholding [5] and dimensionality
reduction methods are used to further reduce the number of features obtained with the document
representation models relying on features stemming from words.

Document frequency thresholding [5] observes the number of documents in which a term occurs,
i.e., the document frequency of a term. In turn, it removes terms with document frequency below some
predetermined threshold. The method is based on the assumption that rare terms are not informative
for document classification and are often an artefact of noise (misspelling) in the text data.

Dimensionality reduction is also used to cope with the vast number of features produced by
document representation models [2]. Howland et al. [23] propose the use of principal component
analysis (PCA) and the variants thereof for document classification. PCA methods transform the set of
numerical features in the original training data space into a set of orthogonal, linearly uncorrelated
features, referred to as principal components. The latter are computed in such a manner that the first
principal component explains as much variance in the training data set as possible, the second explains
as much of the remaining variance as possible, etc. When using PCA as a dimensionality reduction
method, one will opt for the first p principal components of the training data, reducing the original
dimensionality of the feature space to p. There are different heuristics for selecting the value of p.
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We have used a commonly used heuristic that selects the value of p in such a way that the first p
principal components explain 80% of the variance of the training data set [59].

2.4. Performance of Document Classification

The commonly used measure of classification performance is a classification accuracy, i.e., the ratio
of data correctly classified by a given model. Note however, that in document classification, we often
encounter tasks where the distribution of class labels is highly imbalanced. In such cases, accuracy
does not provide sufficient insight into classification performance and therefore, alternative measures
of classification performance are being employed [60]. In our comparative study, we employ four
performance measures, introduced below.

The alternative measures observe the number of correctly classified and misclassified examples for
each class label c. There are two types of correctly classified examples: true positives (TP), i.e., correctly
classified examples from class ¢, and true negatives (TN), i.e., correctly classified examples that are
labeled with a class label other than c. Similarly, we observe two types of misclassified examples: false
positives (FP), i.e., examples labeled with a class label other than c and misclassified into class ¢, and
false negatives (FN), i.e., examples from class ¢ and misclassified into a class other than c. Given these
four numbers, we can calculate precision, recall and F1-score for a given class label c as [60]:

ralle = (0 ) @
» TP,
= 2
precision (TPC T FPC) ( )
51 1l
FI-SCOT’@C _ precision X recatlc (3)

(precision , + recall.)

Furthermore, the area under the receiver-operating curve (AUROC) [61] is another commonly
used measure of the performance of document classification models. The receiver-operating curve
explores the trade-off between the true-positive rate, i.e., TP./(TP. + FN.), and false-positive rate,
i.e.,, FP./ (TN, + FP.), when changing the value of the decision boundary. The latter is the probability
threshold that decides what what the minimal value of the estimated probability is for an example to
belong to class ¢ for which the classifier decides to predict class c. In turn, the area under the curve
measures the potential of a given classification model to discriminate class ¢ from the other classes.

Finally, in cases where the classification task involves more than two class labels, we aggregate
the per-class measures into a single performance measure using the macro-average scheme [62]:

1
macro-average = +— Z measure, 4)
|C| ceC

where C is the set of class labels in the data set of interest, while measure is any of precison, recall,
F1-score or AUROC.

3. Materials and Methods

In this section, we present details of the setup for the empirical comparison of the different
document representation models for document classification. First, we describe the data sets used
in the experiments and the data preprocessing steps. Furthermore, we elaborate upon the used
implementations and peculiar values of parameters of the document representation and classification
models. Finally, we introduce the methods employed for comparative analysis.
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3.1. Text Data and Preprocessing

Table 1 provides an overview of the properties of the four document corpora used in the
experiments. They represent a standard set of benchmarks for various natural language processing
and text mining tasks and have been used in numerous studies [10,11,14-16,32,43,53,63].

Table 1. Properties of the four document classification benchmarks measured on preprocessed
documents, that is after the tokenization, removal of stop words and stemming. Document length
(minimum, maximum, and average) is measured in number of word stems.

Property/Data Set Brown Reuters8 WebKB  20News
# of documents 500 9460 8274 18,468
# of different word stems 32,174 37,074 103,847 173,296
# of words (document length) 541,073 851,635 1,894,406 3,114,002
minimum document length 188 6 1 10
maximum document length 957 484 9294 8407
average document length 593 58 119 111

# of class labels 2,4,10,15 8 7 20
labels type Genre/Topic Topic Topic Topic
labels hierarchy Yes No No No

The Brown corpus consists of 500 documents of over 2000 tokens each, which are written in
a wide range of styles and a variety of prose [19]. There are 15 document classes structured in a
taxonomy consisting of four levels with two, four, 10, and 15 class labels, respectively. Therefore, in the
experiments, we considered four different document classification tasks related to the Brown corpus,
referred to as Brown 7, where n represents the number of class labels (two, four, 10 or 15). We used the
version of the Brown corpus included in the Python natural language toolkit [64].

Reuters8 is a subset of the Reuters-21578 collection of news articles that includes the articles from
the eight most frequent classes (acq, crude, earn, grain, interest, money-fx, ship, trade) [22].

WebKB is a corpus of Web pages collected from computer science departments of four universities
in January 1997. The class labels are faculty, staff, department, course, project, student and other.
The Web pages are included in the corpus as HTML documents, so we have employed the Python
library Beautiful Soup to extract the text from the HTML pages.

Twenty Newsgroups or 20News corpus [20] is a set of almost 19 thousand newsgroup posts
on twenty topics. In the experiments, we consider each topic to represent a document class label.
The corpus was taken from the Python scikit-learn library for machine learning [65].

Before performing natural language processing, as well as document classification, we had to
pre-process the documents. The preprocessing typically includes document tokenization, the removal
of stop words and normalization. During tokenization, the document is broken down into lexical
tokens. Here, we opted for words.

The second phase included removing stop words, i.e., the process of removing frequently used
words that were the most common, short function words without strong semantic properties that were
needed for the syntax of language (as, e.g., pronouns, prepositions, conjunctions, abbreviations and
interjections). The list of English stop words was taken from the Python Natural Language Toolkit
(NLTK).

In the last pre-processing phase, we performed the reduction of different inflectional word forms
into a single base word form. More specifically, stemming is a simple heuristic process of shortening
the different word forms to a common root referred to as a stem. To this end, we employed the
implementation of Porter stemming heuristics [66] from NLTK.
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3.2. Document Representation Models and Dimensionality Reduction

In the experiments, we considered 16 variants of the three document representation models
introduced in Section 2.1, clustered in the following four groups:

e  two variants of the BOW model, one considering features based on term frequency (bow-TF) and
the other on term frequency, inverse document frequency (bow-TFIDF);

e four variants of the word2vec model with embedding dimensionality of 25, 50, 75 and 100
(word2vec-n, where n denotes the embedding dimensionality);

e seven variants of the doc2vec model with embedding dimensionality of 25, 50, 75, 100, 200, 500
and 1000 (doc2vec-n); and

e three variants of the GOW model, each considering a different method for aggregating the values
of the micro-level network properties.

Table 2 shows the number of features for the 16 variants of the document representation models.
The models word2vec, doc2vec and GOW retained the same number of features across the four
benchmarks. For both variants of the BOW model, the number of features after the dimensionality
reduction using PCA (see Section 2.3) varied across the benchmarks, e.g., the dimensionality of the
20News feature space was about ten times higher than the one in Brown. The variants of the GOW
model were always constructed from the same set of network measures. The dimensionality of the
feature space in the word2vec and doc2vec models equaled the dimensionality of the embedding
vector space.

Table 2. Feature-space dimensionality for the 16 variants of the three document representation models
and the four benchmark data sets.

Features/Data Set Brown Reuters8 WebKB 20News

bow-TF+PCA 267 487 996 1960
bow-TFIDF+PCA 310 1184 2074 3565

word2vec-25-100  25-100 25-100 25-100 25-100
doc2vec-25-1000  25-1000  25-1000  25-1000 25-1000

gow-avg 19 19 19 19
gow-qrt 68 68 68 68
gow-hist 128 128 128 128

3.2.1. Bag-of-Words Model

Bag-of-words features were calculated with the scikit-learn library in Python [65] using the
TFIDFVectorizer function. For a bag-of-words representation of a given document d, we used two
weighting schemas; TF and TFIDF [24]:

e  TF: the value TF; ; of the feature for the term t in document d equals the number of occurrences of
tin d;

e TFIDF: the value of the feature for the term t in document d equals TFIDF;; = TF;; x idf,.
The term idf, is an inverse document frequency defined as idf, = log(1 +n)/(1 +df,) 4+ 1, where
df, is the number of documents in the data set that contain t, and n denotes the number of
all documents.

When constructing the features, we employed document frequency thresholding (see Section 2.3)
to remove terms with a document frequency less than five [67]. We also applied the principal
component analysis (PCA, see Section 2.3) on the obtained feature vectors as implemented in the
scikit-learn library. Recall that the final dimensionality of features’ vectors was reported in TF+PCA
and TFIDF+PCA rows in Table 2.



Appl. Sci. 2019, 9, 743 10 of 27

3.2.2. Continuous-Space Models

For the continuous space document representation models we utilized the word2vec and doc2vec
methods as implemented in the gensim library [68]. The implementation of word2vec at input took a
list of documents, each of them represented as a list of words, to train a neural network model, which
can be used to calculate a vector representation for each word. We used the following parameter
settings. The parameter min_count set a lower bound of a word frequency; since we preprocessed
the data set, we set this threshold to 1. The parameter size denotes the dimensionality of the feature
vectors, to this end, we selected four values of 25, 50, 75 and 100 (hence, four variants of the model).
To obtain the representation of the whole document, we calculated the average of feature vectors for
the words occurring in the document [42]. For the other parameters, we retained the default settings.

The implementation of doc2vec at input took a list of documents, their unique identifiers, and
a list of words in each document. The trained neural network can be used to calculate a vector
representation for a given document. Since the doc2vec implementation extended the word2vec class,
we applied the same settings of the shared parameters. Following the recommendation of the gensim
library manual [68], we set the number of iterations over the training documents to 20, where in each
iteration a random sequence of training documents was fed into the neural network. Again, we varied
the dimensionality of the resulting embedding vectors in the interval between 25 to 1000, leading to
seven variants of the doc2vec model.

3.2.3. Network-Based Models

Lastly, we constructed language networks with nodes representing words and links connecting
adjacent words within the same sentence. The links were directed and weighted, where the weight
of a link between two nodes represents the overall co-occurrence frequency of the corresponding
words, while the directions represent the ordering of linguistic units in a co-occurrence pair [46].
Although language networks are very often constructed from raw (not preprocessed text), here network
construction methods were applied after tokenization, the removal of stop words and stemming, in
order to assure consistency with the setup for the construction of previous data representation models.
Network construction and analysis was implemented using the Python NetworkX software package
developed for the creation, manipulation, and study of the structure, dynamics, and functions of
complex networks [69].

The following macro-level properties of the language network were selected as features: the
number of links, the number of nodes, the average degree, the average shortest path and the global and
local efficiency. Next, we calculated local measures on the micro level of individual nodes: in-degree
and out-degree, in-strength and out-strength, in-selectivity and out-selectivity, inverse participation
ratio, betweenness, closeness, and page rank. Finally, two mezzo-level properties of transitivity and
clustering coefficient were also used as features. The definitions and explanations of all the used
network properties are in Appendix A.

Since the micro- and mezzo-level properties are measured for individual nodes, we used three
different aggregation methods to construct features’ vectors for the whole document. First, we took the
average value of the property measured at individual nodes. Second, we took the minimal, maximal
value, and the three quartiles of the distribution of the values of the network property. Third, we put
the values in a histogram with ten equidistant intervals, and we measured the frequency of values in
each interval. The three aggregation methods lead to three variants of the network-based document
representation model: gow-avg, gow-qrt and gow-hist.

3.3. Learning and Evaluating Classification Models

To obtain an unbiased, out-of-sample estimate of the classification performance, we applied a
single split of the training data set into the train and test data using createDataPartition from the
caret package in R [70]. Two of the experimental data sets (20News, Reuters8) already clustered their
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documents into training and test sets, while for the other two, we took a random, stratified, 80%
samples of the documents without repetition as a training set and the remaining 20% of documents as
a test set as presented in Table 3. Note that the samples were stratified with respect to the distribution
of the class labels.

Table 3. The number of train and test documents for each benchmark; note that, 20News and Reuters8
are already split into two sets of training and test documents, for the other two, we used stratified
random sampling to split the corpora into training and test data sets.

Number of Number of

Train Documents Test Documents Total
Brown 401 (80%) 99 (20%) 500
Reuters8 6800 (72%) 2660 (28%) 9460
WebKB 6623 (80%) 1651 (20%) 8274
20News 11,314 (60%) 7532 (40%) 18,846

Recall from Section 2.2 that one of the reasons for selecting the random forest classifier is
its robustness to the different parameter settings, where only the size of the random sample of
features considered for selecting an optimal split in each iteration of the tree building procedure has
a considerable impact on the classification performance [71]. The value of the mtry parameter was
tuned on the training set only using the tuneRF function from the R package RandomForest [72] also
providing the implementation of the random forest classifier, which is used in the experiments.

3.4. Ranking Classification Models

The comparative analysis and ranking of different model variants with regard to a single
performance measure, such as accuracy and macro-averaged AUROC, precision, recall and F1-score is
trivial: the larger the performance metrics, the better the classification model is.

We assess the statistical significance of the differences between the performance of variants
using the framework for comparison of classification methods over multiple data sets proposed by
Demsar [73]. Following that framework, the comparison of methods is performed in two steps. In the
first step, the Friedman test, a non-parametric alternative to the repeated measure ANOVA (analysis
of variance), was used to validate the null hypothesis that the methods perform equally well. When
the null hypothesis was rejected, the Nemenyi post-hoc test was used to calculate the critical distance
(CD). The average ranks of two methods (averaged over the data sets) significantly differed if their
difference was at least CD. The results of the comparison are visualized using an average-rank diagram
(see Figure 2). The horizontal axis of the diagram corresponds to the rank score, and the top-ranked
method is on the rightmost position on the axis. The groups of methods with average ranks that were
not significantly different are connected with thick lines below the axis; the line above the axis depicts
the critical distance. For calculating the critical distance, we used the significance level of 0.05.

On the other hand, when we ranked models with regard to a per-class performance measure (recall,
precision, Fl-score or AUROC), we had to compare their performance along multiple dimensions
corresponding to class labels. To obtain a joint ranking with respect to the performance measured on
all class labels, we employed the non-dominated sorting algorithm used in multi-objective decision
theory [74]. We first embedded the model variants into a |C|-dimensional space (recall that |C| denotes
the number of class labels), where each dimension corresponds to a ranking of the variants with respect
to one of the class labels. Each variant can then be depicted as a single point in that space, where each
coordinate value was the rank of the method according to its performance on the particular class label.
Figure 1 depicts the projection of the four-dimensional space for the Brown4 data set and AUROC in
two dimensions, obtained by using multidimensional scaling [75]. The red, green, and blue labels in
the graph correspond to the 16 variants of the document representation models.
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Figure 1. The four-dimensional space of the per-class area under the receiver-operating curve (AUROC)
performance of the 16 variants of the document representation models measured for each of the four
class labels of the Brown4 data set (projected into two dimensions). The two-dimensional projection of
the four-dimensional space was obtained using multidimensional scaling (MDS).

To identify the top-ranked variants, we searched for a set of non-dominated points in the
|C|-dimensional space, i.e., we identified the Pareto front of the non-dominated points in the space.
The points in the Pareto front corresponded to the methods that are the best performers on at least one
class label. After we assigned the top rank to these variants, we removed the corresponding points
from the multi-dimensional space and iteratively continued to identify Pareto fronts in the reduced sets
of points until all the methods were ranked. The lines in Figure 1 depict the three Pareto fronts in the
two-dimensional projection of the original three-dimensional space. The two variants of doc2vec-50
and doc2vec-75 in the first (red) Pareto-front are top-ranked (obtaining the rank of (1 +2)/2 = 1.5, see
the Brown4 column in Table 5), followed by five variants in the second (green; the assigned rank of
(3+4+5+6+7)/5=>5) and the remaining nine in the third (blue) Pareto front.

4. Results

In this section, we report upon the results of the document classification experiments with the
16 variants of the three document representation models, the seven data sets stemming from the four
standard benchmark data sets and the five measures of performance of document classification.

In the first three subsections, we compare the model variants with respect to the three performance
measure of AUROC, accuracy and Fl-score. For the per-class measures of AUROC and F1-score we
analyze both the rankings obtained with the multi-criteria and the macro-averaged AUROC. Note
that the rankings with respect to the remaining two performance measures of precision and recall are
reported in Appendix B. Finally, Supplementary Materials reports upon all the obtained results and
absolute (not ranked) performance measures per task, class label and document representation model.
The last subsection in this section provides brief summary of the experimental results.
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Note that, in addition to the analysis of the overall rankings, we are going to analyze the rankings
of model variants in groups of tasks, clustered according to three criteria of average document size,
vocabulary size and number of class labels. The average document size was considered to be long for
all four Brown tasks, medium for 20News and WebKD, and short for Reuters8. The vocabulary size
was small for Brown and Reuters8 (cca. 30 K) and large for 20News and WebKD (more than 100 K).
Finally, we considered three groups of tasks with small (2-4 for Brown2 and Brown4), moderate (7-10
for Brown10, WebKD and Reuters8) and large (15-20 for Brown15 and 20News) number of class labels.

4.1. AUROC Performance and Rankings

Table 4 summarizes the macro-averaged AUROC performance of the document representation
models. The results, especially the distribution of the top-ranked models in the table, suggest that
classification models based on the GOW model were inferior to the ones built upon BOW and
continuous-space models. Furthermore, the results provide a hint towards top-performing models
within individual groups; in the bag-of-words group of models, the TFIDF variant showed superior
performance; word2vec-50 and doc2vec-25 were top-ranked in the two groups of continuous-space
models, while gow-avg was the top-ranked graph-of-words model.

Table 4. Macro-averaged area under the receiver-operating curve (AUROC) of the 16 variants of the
document representation models on the seven classification tasks. The top-performing models for each
task are shown in bold.

Brown2 Brown4 Brownl0 Brownl5 Reuters8 WebKB 20News

bow-TF 0.99 0.94 091 0.88 0.99 091 0.93
bow-TFIDF 0.99 0.92 0.89 0.90 0.99 091 0.97
word2vec-25 0.99 0.87 0.82 0.79 0.98 0.91 0.94
word2vec-50 0.99 0.89 0.83 0.81 0.98 0.92 0.95
word2vec-75 0.99 0.88 0.82 0.80 0.99 0.92 0.95
word2vec-100 0.99 0.89 0.82 0.82 0.99 0.92 0.95
doc2vec-25 0.99 0.94 0.92 0.89 0.99 0.90 0.96
doc2vec-50 1.00 0.95 0.92 0.91 0.98 0.88 0.96
doc2vec-75 1.00 0.95 091 0.87 0.98 0.88 0.95
doc2vec-100 0.99 0.93 091 0.88 0.96 0.85 0.95
doc2vec-200 0.99 0.93 0.90 0.86 0.96 0.84 0.92
doc2vec-500 0.98 091 0.84 0.84 0.96 0.82 091
doc2vec-1000 0.99 0.90 0.85 0.83 0.97 0.84 0.92
gow-avg 0.98 0.90 0.76 0.80 0.78 0.70 0.61
gow-qrt 0.96 0.87 0.78 0.81 0.79 0.70 0.62
gow-hist 0.95 0.88 0.76 0.81 0.79 0.71 0.62

Furthermore, Figure 2 presents the average ranks of the four top-ranked models in each group.
The average-rank diagram shows that bow-TFIDF and the doc2vec-25 model variants lead to a
comparable performance (average ranks of 1.57 and 1.71, respectively), which was quite different
from the overall performance of the other two models. The critical distance (CD) analysis, depicted in
the diagram, also shows that the differences between the bag-of-words and continuous-space model
variants were not statistically significant; the graph-based model was the only model with a statistically
significant inferior performance. Note that we have repeated this analysis for the ranking according
to the other performance measures considered in the paper (accuracy, Fl1-score, precision and recall).
The average rank diagrams in all four cases were almost identical to the one reported in Figure 2, hence
we omit them.
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Figure 2. Average ranks of the four top-performing variants of the document representation models in
each of the four groups with respect to the macro-averaged AUROC.

Table 5 summarizes the multi-objective rankings of the 16 document representation models
according to the AUROC performance measure. The average ranks suggest that doc2vec had a
performance superior to all the other representation model variants. Again, this was only true for
the variants of doc2vec corresponding to low-dimensional feature vectors (50 and 75). The other
models were ranked as follows: BOW variants closely followed the top-ranked doc2vec variants,
word2vec variants followed them, while GOW variants were the worst performers. Just as in the case
of macro-averaged AUROC, gov-avg was the top-ranked variant of the GOW representation model.
The overall results of the multi-objective ranking closely resembled the results obtained using the
macro-averaged AUROC.

Table 5. Multi-objective ranking of the 16 variants of the three document representation models by the
document classification task with respect to AUROC. The last column reports the average rankings
over the seven tasks. The top-ranked models in each column are shown in bold.

Brown2 Brown4 Brownl0 Brownl5 Reuters8 WebKB 20News Avg. Rank

bow-TF 8 5 3.5 9 4 5 11.5 6.57
bow-TFIDF 5 12 11.5 9 1 5 1 6.36
word2vec-25 12 12 11.5 9 8 5 8 9.36
word2vec-50 7 12 11.5 9 4 5 4 7.50
word2vec-75 6 12 11.5 9 4 5 4 7.36
word2vec-100 10.5 12 11.5 9 4 5 4 8.00
doc2vec-25 4 5 3.5 9 4 5 4 4.93
doc2vec-50 1 1.5 3.5 1 8 5 4 3.43
doc2vec-75 2 1.5 3.5 9 4 5 8 4.71
doc2vec-100 9 5 3.5 9 115 10.5 8 8.07
doc2vec-200 4 5 3.5 9 11.5 12.5 115 8.14
doc2vec-500 14 12 11.5 9 11.5 12.5 11.5 11.71
doc2vec-1000 10.5 12 11.5 9 8 10.5 11.5 10.43
gow-avg 13 5 11.5 9 16 15 15 12.07
gow-qrt 15 12 11.5 9 14.5 15 15 13.14
gow-hist 16 12 11.5 9 14.5 15 15 13.29

Figure 3 depicts the comparison of the four top-ranked variants in each of the four groups of
models according to the multi-objective AUROC ranking. It reconfirms previous observations about
the superior performance of the (blue colored) doc2vec document representation model, both in
terms of ranks on individual data sets and averaged ranks. Note also that the average rankings
were consistent with the rankings on the majority of the document classification tasks. Two notable
exceptions were Reuters8 and 20News, where the TFIDF variant of the BOW model outperformed
the equally ranked doc2vec and word2vec models. Two other exceptions included WebKD, where
BOW, word2vec and the low-dimensional variants of doc2vec were top-ranked, and Brown10, where
bow-TF was among the top-ranked models. Note that three out of four exceptions corresponded to the
tasks with a moderate number of class labels. Other data set properties did not seem to be related to
the AUROC performance.
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Figure 3. Radar-chart comparison of the multi-objective rankings by task (left) and their averages
(right) for the four top-performing variants of the document representation models in each of the four
groups with respect to AUROC.

In sum, according to AUROC, the doc2vec variants with low-dimensional embedding vectors
(<75) outperformed other document representation models. For tasks with a moderate number of
class labels, one can also consider the bag-of-word model, although the decision for BOW calls for the
careful selection of one of its two variants.

4.2. Accuracy Rankings

Table 6 summarizes the rankings of the document representation models according to accuracy.
The average ranks according to accuracy suggest that bow-TF is the top-ranking model followed by
doc2vec-25 and bow-TFIDEF. The variants of doc2vec corresponding to low-dimensional embedding
dimensionality (<75) outperform all the word2vec variants, while the GOW model variants (together
with high-dimensional variants of doc2vec) are the worse performers. Note again that gov-avg is the
top-ranked GOW model variant, which is consistent with the results obtained on AUROC.

For the classification tasks including longer documents, BOW and doc2vec lead to the maximal
accuracy; for medium sized documents, the best accuracy is obtained using BOW and word2vec
variants, while for the tasks including short documents BOW variants are clearly outperforming all the
other representation models. The same descendant ordering of ranked representation models BOW,
doc2vec, word2vec, GOW is preserved regardless of the size of vocabulary or the number of class
labels. The only slight deviation (in which word2vec and doc2vec exchange the ranking positions) is
noticed for the large-vocabulary data sets and the moderate number of class labels.

In summary, following the graphical representation of the accuracy rankings in Figure 4, when
interested in classification accuracy, the two variants of the BOW model were the most advisable
choices regardless of the vocabulary size or the number of class labels; for tasks involving long
documents, doc2vec could also be a recommended option.
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Table 6. Ranking of the 16 variants of the three document representation models by the document
classification task with respect to classification accuracy. The last column reports the average rankings
over the seven tasks. The top-ranked models in each column are shown in bold.

Brown2 Brown4 Brownl0 Brownl5 Reuters8 WebKB 20News Avg. Rank

bow-TF 1 2 1 3 2 6 1 2.29
bow-TFIDF 5 6.5 5 6 1 5 6 493
word2vec-25 8.5 10 11 9.5 6 4 13 8.86
word2vec-50 2 8 8.5 7.5 5 2 10 6.14
word2vec-75 5 15 10 12 3 1 9 7.86
word2vec-100 5 10 12.5 9.5 4 3 8 7.43
doc2vec-25 3 6.5 2.5 5 7 7 3 4.86
doc2vec-50 115 3 25 3 8 8 2 5.43
doc2vec-75 8.5 1 4 1 9 9 4 5.21
doc2vec-100 13 4 6 3 10 10 5 7.29
doc2vec-200 14.5 5 7 75 12 11 7 9.14
doc2vec-500 16 10 8.5 13 13 15 12 12.50
doc2vec-1000 14.5 16 14 14 11 16 11 13.79

gow-avg 8.5 12.5 12.5 11 16 14 16 12.93

gow-qrt 11.5 14 15 15.5 15 13 14 14.00

gOW-hiSt 8.5 12.5 16 15.5 14 12 15 13.36
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gow-avg

bow-tf word2vec-50 doc2vec-25 gow-avg
Figure 4. Radar-chart comparison of the rankings by task (left) and their averages (right) for the four

top-performing variants of the document representation models in each of the four groups with respect
to classification accuracy.

4.3. F1-Score Rankings

Table 7 summarizes the rankings of the document representation models according to the F1-score.
The average ranks suggest that bow-TF and doc2vec-25 variants outperformed the other representation
models. The TFIDF variant of BOW and word2vec exhibited lower ranks, while the high-dimensional
variants of doc2vec and all GOW-model variants were (again) the worst performers. This time,
gow-host was the top-ranked variant among the GOW models.



Appl. Sci. 2019, 9, 743

17 of 27

The graphical representation of the top-ranked variants in each group in Figure 5 reveals that for
longer documents, the top-performing doc2vec and BOW variants exhibited comparable rankings.
For medium and small sized documents, the TFIDF variant of BOW (and word2vec in the case of
WebKB) had a slight edge over doc2vec, although the differences were negligible. Furthermore, the
same descendant ordering of ranked representation models BOW and doc2vec on top, word2vec in the
middle, and GOW at the bottom, was preserved regardless of the size of the vocabulary or the number
of class labels. Note that, for the small number of class labels, the GOW variants” performance became
comparable to some of the lower-ranked variants of doc2vec and word2vec.

Table 7. Multi-objective ranking of the 16 variants of the three document representation models by

document classification task with respect to the Fl-score. The last column reports the average rankings

over the seven tasks. The top-ranked models in each column are shown in bold.

Brown2 Brown4 Brownl0 Brownl5 Reuters8 WebKB 20News Avg. Rank
bow-TF 1 2 2.5 4 4 4 9.5 3.86
bow-TFIDF 5 13.5 6.5 11.5 1 4 1 6.07
word2vec-25 8.5 7 12.5 11.5 75 4 9.5 8.64
word2vec-50 2 7 12.5 4 4 4 9.5 6.14
word2vec-75 5 13.5 12.5 11.5 4 4 9.5 8.57
word2vec-100 5 7 12.5 11.5 4 4 9.5 7.64
doc2vec-25 3 7 2.5 4 4 4 3.5 4.00
doc2vec-50 11.5 2 2.5 4 7.5 8 3.5 5.57
doc2vec-75 8.5 2 2.5 1 9 9.5 3.5 5.14
doc2vec-100 13 7 6.5 4 10 9.5 3.5 7.64
doc2vec-200 14.5 7 6.5 11.5 14 12 9.5 10.71
doc2vec-500 16 13.5 6.5 11.5 14 15 9.5 12.29
doc2vec-1000 14.5 13.5 12.5 11.5 11 15 9.5 12.50
gow-avg 8.5 13.5 12.5 11.5 14 12 15 12.43
gow-qrt 11.5 13.5 12.5 11.5 14 15 15 13.29
gow-hist 8.5 7 12.5 11.5 14 12 15 11.50
Brown2 o)
Brown4 News
irown10 . Web
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Brownl5 Reuters ® word2vec-50
o doc2v§c-25 S]
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Figure 5. Radar-chart comparison of the multi-objective rankings by task (left) and their averages

(right) for the four top-performing variants of the document representation models in each of the four

groups with respect to F1-score.
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In summary, according to the Fl-score, doc2vec variants with low-dimensional embedding
spaces and bow-TF outperformed other document representation models. For data sets involving
small-sized documents, one should select the TFIDF variant of the BOW model, while for the others,
low-dimensional variants of doc2vec are to be preferred. The precision and recall rankings, reported in
Tables Al and A2, mostly confirmed the regularities observed here, providing a single novel insight;
the word2vec model leads to high-precision classification models.

4.4. Discussion

Taken together, the presented results identify two top-performing document representation
models; the traditionally and commonly used bag-of-words, and the more recent doc2vec model.
The findings are consistent regardless of the performance evaluation metrics. The standard variant
of the bag-of-words model often used in the text mining studies [2,62] is bow-TFIDF. However, our
results show that the TF variant is often better or comparable to bow-TFIDF. The only performance
metrics where the latter outperforms TF is the recall. When it comes to the variants of doc2vec, we
have an important result, not reported in related studies. Namely, the low-dimensional variants of
doc2vec are better performers than the high-dimensional ones. In our results, the phase switch is
observed at 75 features. While this might be an artifact of the data sets and tasks selected in this study,
it is a general pattern that consistently appears among all of them.

The word2vec model is mostly ranked in the middle of the list. The top-ranked variants of
word2vec correspond to the feature vector dimensionality of 50 and 75, the other two settings of 25
and 100 underperform in almost all the experiments. Early on in the experiments, we noticed that
the higher-dimensional variants (>100) of word2vec (just as the ones for doc2vec) have a deteriorated
performance. Note that the lower performance of the word2vec document representation model
(when compared to doc2vec) might be due to the averaging method used [42]. On the other hand, (an
extension of) doc2vec has already been shown to perform well in the document classification task [9].

The network-based model is systematically underperforming regardless of the selected task or
evaluation measure. Still, some additional remarks should be noted. The number of features used
in all three network-based model variants with averaging, quartiles and histograms are 19, 68 and
128, respectively, which is lower than in other models (see Table 2 for details). Although GOW is
lagging behind in all the rankings, in some (rare) occasions, it can still be the representation of choice,
especially if we look for a low-dimensional document representation model robust to noise. Namely,
note that the network-based model requires no extensive text pre-processing, which can be useful when
aiming at efficient implementations of document classification procedures, especially for low-resources
languages, which lack elaborate text preprocessing tools.

Finally, the analysis of the results with respect to the criteria of the document, vocabulary and class
label set size does not reveal clear results with several notable exceptions, addressed next. Regarding
the document size, bag-of-words is the preferred model for smaller documents regardless of the
evaluation metrics, while for larger documents doc2vec has a slight advantage. Additionally, when it
comes to choosing between word2vec and doc2vec, the latter seems to be consistently the better choice,
except when observing accuracy on data sets with larger vocabularies and tasks with a moderate
number of class labels.

5. Conclusions

In this study, we conduct a comparative analysis of the performance of document representation
models when coupled with classification models learned with the computationally efficient method of
random forest. In particular, we consider the most frequently used family of bag-of-words models,
more recently proposed continuous space models word2vec and doc2vec, and the model based on the
representation of text documents as language networks (graph-of-words). While the bag-of-words
models have been extensively used for the document classification task, the performance of the other
two models in the same task, especially the network-based model, have not been well understood.
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In this study, we measure the performance of the document classifiers trained using the random
forest method on features generated from the three representation models and their derivatives.
The document representation models are tested on four benchmarks and seven tasks enabling insights
into the performance of document classification for different document and vocabulary sizes and a
different number of class labels. The comparative analysis is conducted using the standard frameworks
of average-rank diagrams and multi-objective optimization for various performance measures.

To conclude, the results promote the use of both standard bag-of-words and more recent
doc2vec document representation models on new document classification tasks. Moreover, we
suggest comparing their performance with multiple evaluation metrics simultaneously. In general,
bag-of-words is more demanding for implementation and requires the representation vectors of
higher dimensionality, which are consequently reduced with some dimensionality reduction technique
(a principle component analysis in this study), which are computationally expensive. The reduced
dimensionality of the features’ vectors space is still higher than the one in doc2vec, which deteriorates
the efficiency of the classifier during construction as well as during the classification stage. On the
other hand, doc2vec is in general faster, generates lower-dimensional feature vectors (up to 75), while
achieving the performance comparable to that of the bag-of-words model. Additionally, doc2vec
enables the fast training of the classification model and requires no further dimensionality reduction.
Taking into account all the desirable characteristics of doc2vec, one would prefer to use it for the
document classification task. Still, some drawbacks should be considered as well. Feature vectors in
doc2vec carry no meaning unless projected to a low-dimensional embedding space. Thus, the doc2vec
model is lacking understandability, which in turn complicates the eventual manual inspection or the
revision or fine tuning of the classification model.

This study sheds some light onto possible document representation models, providing an objective
and systematic evaluation and comparison in the carefully designed experimental environment.
The study confirms many benefits of the state-of-the-art approaches and clarifies the behavior of
newly proposed models. Although we aimed at the complete study of the open issues of document
representation models for the document classification task we have to set some limitations. In order to
keep the experimental setup as steady as possible, we limited our focus to well-known data sets, at
the price of the relatively small document collections. Being aware of it, in the next step we plan to
extend this comparison to large document collections which better mimic the real-life magnitude of
the problem. Likewise, in future we are planing to experiment with different dimensionality reduction
techniques. Next, we are planing to use PCA and other dimensionality reduction techniques instead
of aggregations in the graph-of-words model and to experiment with different classification models.
Principally, our future research plans include studying the potential of meta-level combinations of the
features obtained with different document representation models.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2076-3417/9/4/743/s1.
Detailed results for each class of the four data sets and document representation models with different
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Abbreviations

The following abbreviations (in alphabetical order) are used in this manuscript:

AUROC  Area under the receiver-operating characteristic curve
BOW Bag of words

CBOW  Continuous bag of words

GOW Graph of words

NLTK Natural language toolkit

PCA Principal component analysis
TF Term frequency
TFIDF Term frequency, inverse document frequency

Appendix A. Complex Network Measures

In this section, we define all the network measures used for the construction of the features in the
document representation model based on language networks. A language network is a pair of sets
(V,E), where V is the set of nodes (vertices) representing the linguistic units and E is the set of edges
(links) links representing the interactions between linguistic units.

The average shortest path is defined as

1
LZiN(N—l);dU (A1)

where d;; is a shortest path between nodes i and j, and N is the number of nodes.
An efficiency measure was first defined in [76,77] as a property quantifying the efficiency of
information exchange over the network

1 1
—_ —. (A2)
N(N—-1) i;é%(} djj

Eglob (G) =
Local efficiency is defined as the average efficiency of the local subgraphs:

Ejoc = % Z Eglob(Gi)/ i¢G; (A3)

ieG

where G; is the subgraph of the neighbors of i.
Next we calculate local measures: in-degree and out-degree of node i, denoted by kﬁ”/ ol which are
the number of its ingoing and outgoing nearest neighbours, in-strength and out-strength s;:”/ Ul of the
node i which are the sum of its ingoing and outgoing edge weights, average strength or selectivity as:

y Sin/out
in/out __ °i
€ o kin/out” (A4)
1
Inverse participation ratio
N al:'r'l /out
in/out _ Y
Yi - Z Sin/ouif (AS)
J=1 7
where s//°" indicate the sum of the weights of the edges incident upon node i and a::';/ ol is weight of

the edge between node i and j [78].

Transitivity is defined as
_ #triangles

= #triads (A6)

where triads are two edges with a shared node.



Appl. Sci. 2019, 9, 743 21 of 27

The clustering coefficient is a measure which defines the presence of loops of the order three and
is defined as:

C=— (A7)
ki(ki —1)
where e;; represents the number of pairs of neighbours of i that are connected.
Betweeness centrality (cp) and closeness centrality (cc) [79] are
e8(v) = ale), (A8)
sEVALEV Ust

cc(v) ! (A9)

C = v 3./

Yievdg(v,t)

where 05 = 035 denotes the number of shortest paths from s € V to t € V, and oy (v) denotes the
number of shortest paths from s to ¢ that some v € V lies on, and d (s, t) is the distance between nodes
sand t.

Page rank [80] of the node is based on the eigenvector centrality measure and implements the
concept of 'voting’. The Page rank score of a node v is initialized to a default value and computed
iteratively until convergence using the following equation:

Cpa Runk(u)
CPageRank(v) =(1-d)+d 2 — (A10)

u€N;, (v) [ Nout (11)|

where d is the dumping factor set between 0 and 1 (usually 0.85).
Appendix B. Rankings According to Precision and Recall

Appendix B.1. Precision Rankings

Table Al and Figure A1 summarize the rankings of the document representation models according
to the precision performance measure.

Table A1l. Multi-objective ranking of the 16 variants of the three document representation models by
document classification task with respect to precision. The last column reports the average rankings
over the seven tasks. The top-ranked models in each column are shown in bold.

Brown2 Brown4 Brownl0 Brownl5 Reuters8 WebKB 20News Avg. Rank

bow-TF 1.5 2 3.5 10 4.5 4.5 1.5 3.93
bow-TFIDF 6.5 12.5 3.5 10 1 4.5 1.5 5.64
word2vec-25 10.5 12.5 11.5 10 4.5 4.5 8 8.79
word2vec-50 1.5 6.5 11.5 2 45 4.5 8 5.50
word2vec-75 6.5 12.5 3.5 2 45 4.5 8 5.93
word2vec-100 6.5 6.5 11.5 10 4.5 4.5 8 7.36
doc2vec-25 3.5 4 3.5 10 4.5 4.5 8 5.43
doc2vec-50 6.5 2 11.5 2 8.5 4.5 8 6.14
doc2vec-75 3.5 2 3.5 10 8.5 12.5 8 6.86
doc2vec-100 14.5 6.5 11.5 10 10.5 12.5 8 10.50
doc2vec-200 10.5 6.5 11.5 10 14 12.5 8 10.43
doc2vec-500 14.5 12.5 3.5 10 14 12.5 8 10.71
doc2vec-1000 10.5 12.5 11.5 10 10.5 12.5 8 10.79
gow-avg 14.5 12.5 11.5 10 14 12.5 15 12.86
gow-qrt 14.5 12.5 11.5 10 14 12.5 15 12.86
gow-hist 10.5 12.5 11.5 10 14 12.5 15 12.29




Appl. Sci. 2019, 9, 743 22 of 27

Brown2 n o
—
Brown4 News
o
—

4

c

c

[

(o))

I

[

>

i ©

irown10 " . Web
\ ]
® bow-tf
Brownl5 Reuters ® word2vec-50
® doc2vec-25 o -
gow-hist

bow-tf word2vec-50 doc2vec-25 gow-hist

Figure A1. Radar-chart comparison of the multi-objective rankings by task (left) and their averages
(right) for the four top-performing variants of the document representation models in each of the four
groups with respect to precision.

Appendix B.2. Recall Rankings

Table A2 and Figure A2 summarize the rankings of the document representation models according
to the recall performance measure.

Table A2. Multi-objective ranking of the 16 variants of the three document representation models by
document classification task with respect to recall. The last column reports the average rankings over
the seven tasks. The top-ranked models in each column are shown in bold.

Brown2 Brown4 Brownl0 Brownl5 Reuters8 WebKB 20News Avg. Rank

bow-TF 1.5 6.5 7 35 5.5 3 8 5.00
bow-TFIDF 6.5 25 3 3.5 5.5 3 1.5 3.64
word2vec-25 10.5 13 12.5 11 5.5 11 8 10.21
word2vec-50 1.5 25 12.5 11 5.5 11 8 7.43
word2vec-75 6.5 13 12.5 11 5.5 11 8 9.64
word2vec-100 6.5 6.5 12.5 11 5.5 11 8 8.71
doc2vec-25 3.5 13 3 3.5 5.5 11 8 6.79
doc2vec-50 6.5 6.5 3 11 5.5 3 8 6.21
doc2vec-75 35 6.5 3 1 5.5 3 8 4.36
doc2vec-100 14.5 6.5 3 3.5 5.5 3 1.5 5.36
doc2vec-200 10.5 1 12.5 11 13.5 11 8 9.64
doc2vec-500 14.5 6.5 7 11 13.5 11 8 10.21
doc2vec-1000 10.5 13 12.5 11 13.5 11 8 11.36
gow-avg 14.5 13 7 11 13.5 11 15 12.14
gow-qrt 14.5 13 12.5 11 13.5 11 15 12.93

gow-hist 10.5 13 12.5 11 13.5 11 15 12.36
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Figure A2. Radar-chart comparison of the multi-objective rankings by task (left) and their averages

(right) for the four top-performing variants of the document representation models in each of the four
groups with respect to recall.
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