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Abstract: Several phenomena are represented by directional—angular or periodic—data; from time
references on the calendar to geographical coordinates. These values are usually represented as real
values restricted to a given range (e.g., [0, 2π)), hiding the real nature of this information. In order to
handle these variables properly in supervised classification tasks, alternatives to the naive Bayes classifier
and logistic regression were proposed in the past. In this work, we propose directional-aware support
vector machines. We address several realizations of the proposed models, studying their kernelized
counterparts and their expressiveness. Finally, we validate the performance of the proposed Support
Vector Machines (SVMs) against the directional naive Bayes and directional logistic regression with real
data, obtaining competitive results.
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1. Introduction

Several phenomena and concepts in real-life applications are represented by angular data or, as they
are referred to in the literature, directional data. Examples of data that may be regarded as directional
include temporal periods (e.g., time of day, week, month, year, etc.), compass directions, dihedral angles in
molecules, orientations, rotations, and so on. The application fields include the study of wind direction as
analyzed by meteorologists and magnetic fields in rocks studied by geologists.

The fact that zero degrees and 360 degrees are identical angles, so that for example 180 degrees is
not a sensible mean of two degrees and 358 degrees, provides one illustration that special methods are
required for the analysis of directional data.

Directional data have been traditionally modeled with a wrapped probability density function,
like a wrapped normal distribution, wrapped Cauchy distribution, or von Mises circular distribution.
Measures of location and spread, like mean and variance, have been conveniently adapted to circular data.

The design of pattern recognition systems fed with directional data has either relied completely on
these probabilistic models or just ignored the circular nature of the data.

In this work, we formulate for the first time a non-probabilistic model for directional data classification.
We adopt the max-margin principle and the hinge loss, yielding a variant of the support vector
machine model.

The theoretical properties of the model analyzed in the paper, together with the robust behavior
shown experimentally, reveal the potential of the proposed method.

Appl. Sci. 2019, 9, 725; doi:10.3390/app9040725 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-5246-0402
https://orcid.org/0000-0002-6838-9484
https://orcid.org/0000-0002-3760-2473
http://dx.doi.org/10.3390/app9040725
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/9/4/725?type=check_update&version=2


Appl. Sci. 2019, 9, 725 2 of 19

2. State-of-the-Art

Classical methods for method design include probabilistic and non-probabilistic approaches.
Probabilistic approaches come in two flavors, generative modeling of the joint distribution p(x, y) and
discriminant modeling of the conditional probabilities of the classes given the input. Non-probabilistic
approaches directly model the boundaries of the input space or, equivalently, model the partition of the
input space in decision regions.

Directional data classifiers have been typically approached [1–3] with generative models based on the
von Mises distribution. The von Mises probability density function for the angle x ∈ [0, 2π) is given by:

f (x|µ, κ) =
eκ cos(x−µ)

2π I0(κ)
, (1)

where I0 is the modified Bessel function of order zero, κ > 0 is the concentration parameter, and µ the
mean angle.

Analyzing the posterior probability of the classes,

p(y = 1|x) = p(x|y = 1)p(y = 1)
p(x|y = 1)p(y = 1) + p(x|y = 0)p(y = 0)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

,
(2)

under the von Mises model for the likelihood, it is trivial to conclude that:

p(y = 1|x) = 1
1 + ew0+w1 sin(x+θ)

, (3)

where w0, w1, and θ are functions of the mean and concentrations parameters. Recently [4], a directional logistic
regression has been proposed that fits Model Equation (3) directly from data. In there, the multidimensional
setting was naturally extended to:

p(y = 1|x) = 1

1 + ew0+∑D
i=1 wi sin(xi+θi)

, (4)

where xi ∈ [0, 2π) and is the ith element in vector x.
Noting that:

wi sin(xi + θi) = wi1 sin(xi) + wi2 cos(xi), (5)

where wi1 and wi2 are obtained from wi and θi, the directional logistic regression model is favorably
written as:

p(y = 1|x) = 1

1 + ew0+∑D
i=1 wi1 sin(xi)+wi2 cos(xi)

, (6)

enabling the learning task to be solved with conventional logistic regression, by first applying a feature
transformation, where each input feature xi yields two features, cos(xi) and sin(xi).
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3. Support Vector Machine

For an intended output y ∈ {−1, 1} and a classifier score f (x|w), the hinge loss of the prediction
f (x|w) is defined as L(w|x, y) = max(1− f (x|w) · y, 0), where x is the input and w is the vector of
parameters of the model. The Support Vector Machine (SVM) model solves the problem:

arg min
w

N

∑
n=1
L(w|xn, yn) + λ||w||2, (7)

where λ ≥ 0 is a regularization parameter. In standard RD spaces, the model f (x|w) is set to the affine
form, f (x|w) = w0 + ∑D

i=1 wixi, and the previous equation can be equivalently written as:

arg min
w

N

∑
n=1

max

(
1− yn

(
w0 +

D

∑
i=1

wixn,i

)
, 0

)
+ λ

D

∑
i=1

w2
i . (8)

In the trivial unidimensional space, the model boils down to f (x1|w0, w1) = w0 + w1x1, and the
partition of the input space is defined by a single threshold; see Figure 1a.

f (x|w0, w1) = w0 + w1x

−w0/w1

x

(a) (b)

f (x|w0, w1, θ)

x

(c)

Figure 1. Toy examples of Support Vector Machine (SVM) in R and in the unit circle. (a) Standard linear
model. (b) Piecewise linear model in the unit circle. (c) Unfolding the piecewise linear model in the
unit circle.

In the following, to avoid unnecessarily cluttering the presentation, we will stay in the unidimensional
space, returning only in the end to the multi-dimensional problem. We will also assume the period 2π for
the directional data.

4. Symmetric Directional SVM

For directional data, the model f (x1|w0, w1) has to be adapted, as it should be periodic, continuous,
and naturally take positive and negative values in the circular domain (so it can aim to label positive
and negative examples correctly). Arguably, the most natural extension of the linear model in R is the
piecewise linear model in [0, 2π); see Figure 1b,c. Note that, now, the partition of the input space requires
two thresholds.

Motivated by this observation, we explore models of the form:

f (x|w0, w1, θ) = w0 + w1g(x + θ), (9)

where we start by investigating the following specific realizations for g(x):
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1. g(x) = gt(x), where gt(x) is the triangle wave with unitary amplitude, period 2π, and maxima at
x = 2kπ, k ∈ Z. This function is piecewise linear, and so, it is close to the linear version in the
standard domain.

2. g(x) = gs(x), where gs(x) = cos(x). This option can be seen as a rough approximation to the intuitive
choice gt(x), but as we will see, analytically more tractable.

4.1. Expressiveness of f (x|w0, w1, θ)

While in the standard domain, the linear model is able to express (learn) an arbitrary threshold in the
input domain, in the directional domain, we need the ability to express any two thresholds. It is easy to
conclude that, when instantiated with gt or gs, the model is able to express two thresholds in the circular
domain, whatever their positions are, as formally stated and proven in Proposition 1.

Proposition 1. Let g : R 7→ [−1, 1] be an even periodic function with period 2π. For any distinct x1 and x2 in
[0, 2π), there exists a θ in [0, 2π) such that f (x) = w0 + w1g(x + θ) is zero at x = x1 and x = x2.

Proof. Set xc = 0.5(x1 + x2) and δ = 0.5(x2 − x1). Note that x1 = xc − δ, x2 = xc + δ and −π ≤ δ ≤ π.
Now, setting θ = 2π − xc, w0 = −g(δ), and w1 = 1 yields a model f (x) = w0 + w1g(x + θ) with the
desired zeros.

For the gs option, using Equation (5), f (x|w0, w1, θ) can be equivalently written as f (x|w0, w1, θ) =

w0 + w11gs(x) + w12g⊥s (x), where g⊥s (x) = gs(x− π/2) = sin(x). Therefore, we consider the following
equivalent model:

f (x|w0, w11, w12) = w0 + w11gs(x) + w12g⊥s (x). (10)

Similar to the result obtained with the directional logistic regression, the optimization problem
in Equation (7) can be efficiently solved by first transforming each directional feature x into two new
features, gs(x) and g⊥s (x), and then relying on efficient methods for the conventional primal SVM, such as
Pegasos [5].

Unfortunately, the analogous equivalence does not hold for the triangle wave gt. For gt, f (x|w0, w1, θ)

cannot be written as w0 + w11gt(x) + w12g⊥t (x), where g⊥t (x) = gt(x − π/2). Still, we could be led
to assume the decomposition Equation (10) as a good approximation, when instantiated with gt and
use it in practice, with the benefit of using standard SVM toolboxes in pre-processed data. However,
the expressiveness of this model is quite limited. For instance, the model w0 + w11gt(x) + w12g⊥t (x1) is
unable to learn two thresholds in [0, π/2]. Since this model is linear in this interval, the result follows.

As such, for gt, we solve the learning task defined by Equation (7) using sub-gradient methods.

5. Kernelized Symmetric Directional SVM

By the representer theorem, the optimal f (x) in Equation (8) has the form:

f (x) = w0 +
N

∑
n=1

αnk(x, xn), (11)

where k is a positive-definite real-valued kernel and αn ∈ R. Benefiting from the decomposition of each
directional feature in two, this formulation is directly applicable to the primal, fixed margin, directional
SVM, when using gs. As such, all the conventional kernels can be applied in this extended space.

When the model is instantiated with gs, x is mapped in a two-dimensional feature vector, φ(x) =
(cos(x), sin(x))ᵀ, and the inner product between φ(x) and φ(z) becomes 〈φ(x), φ(z)〉 = cos(x) cos(z) +
sin(x) sin(z) = cos(x− z). As such, the feature transformation can be avoided by setting as the kernel the
cosine of the angular difference, k(x, z) = cos(x− z).
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As seen before, in the case of gt, a similar conclusion does not hold. However, the result for gs

suggests also investigating the interest of using the function gt(x− z) as a kernel. We start by presenting
Theorem 1, where we show that a broad family of functions, which includes both gs and gt, may be used
to construct formally-valid kernels.

Theorem 1. Let h : R 7→ R be a periodic function with period T and absolutely integrable over one period.
Define g : R 7→ R as the autocorrelation of h, i.e.:

g(x) = [h ? h] (x) =
∫ T

0
h(t)h(x + t) dt. (12)

Then, k(x, z) = g(x− z) is a kernel function, i.e., there exists a mapping φ from R to a feature space X such
that 〈φ(x), φ(z)〉 = g(x− z).

Proof. See Appendix A.1.

Remark 1. The triangle wave gt is the autocorrelation, as defined in this paper, of a square wave with amplitude
1/
√

2π and period 2π.
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(a) The SVM with the triangle wave
in the primal form cannot learn
more than two thresholds, therefore
some training points in this toy
dataset are misclassified.

(b) The SVM with the triangle
wave kernel can learn an arbitrary
number of thresholds, classifying
every training point in this toy
dataset correctly.

Figure 2. Example illustrating the benefits of the triangle wave kernel.
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we establish a result that determines the VC dimension of the kernelized SVMs we are considering.121

Theorem 2. Let k(x, z) = φ(x)ᵀφ(z) = g(x− z) be a kernel function where g is defined as in Theorem 1.
Furthermore, suppose that g has zero mean value and its Fourier series has exactly N non-zero coefficients. Then,
the VC dimension of the classifier

l(x|w0, wd) = sign( f (x|w0, wd)) = sign(w0 + wᵀ
d φ(x)) (13)

equals 2N + 1.122

Proof. See Appendix A.2.123

The Fourier series of the triangle wave gt has an infinite number of non-zero coefficients and124

therefore the classifier instanced with the triangle wave kernel k(x, z) = gt(x − z) has infinite VC125

dimension. On the other hand, the VC dimension of the classifier instanced with the cosine kernel126

k(x, z) = cos(x− z) equals 3. Consequently, the SVM with the triangle wave kernel is able to express127

an arbitrary number of thresholds in the circular domain, unlike the SVM with the cosine kernel or128
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(a) (b)

Figure 2. Example illustrating the benefits of the triangle wave kernel. (a) The SVM with the triangle wave
in the primal form cannot learn more than two thresholds; therefore, some training points in this toy dataset
are misclassified. (b) The SVM with the triangle wave kernel can learn an arbitrary number of thresholds,
classifying every training point in this toy dataset correctly.

Having proven the validity of gt as a kernel, we now focus on investigating the expressiveness of the
resulting SVM. The note made in Section 4.1 supports that the sum of triangle functions centered in fixed
positions is not expressive enough since it cannot place the decision boundaries in arbitrary positions.
However, the kernelized version in Equation (11) can still be appealing, since now, the models are centered
in the training observations, and, as such, adapted in number and phase to the training data. For the
purpose of this analysis, the notion of the Vapnik–Chervonenkis (VC) dimension [6], given in Definition 1,
will be useful.

Definition 1. A parametric binary classifier l(x|w), with parameters w, is said to shatter a dataset x = (x1, ..., xN)

if, for any label assignment y = (y1, ..., yN), there exist parameters w such that l(x|w) classifies correctly every
data point in x. The VC dimension of l(x|w) is the size N of the largest dataset that is shattered by such a classifier.
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Thus, the VC dimension of a classifier provides a measure of its expressive power. In Theorem 2,
we establish a result that determines the VC dimension of the kernelized SVMs we are considering.

Theorem 2. Let k(x, z) = φ(x)ᵀφ(z) = g(x − z) be a kernel function where g is defined as in Theorem 1.
Furthermore, suppose that g has zero mean value and its Fourier series has exactly N non-zero coefficients. Then,
the VC dimension of the classifier:

l(x|w0, wd) = sign( f (x|w0, wd)) = sign(w0 + wᵀ
d φ(x)) (13)

equals 2N + 1.

Proof. See Appendix A.2.

The Fourier series of the triangle wave gt has an infinite number of non-zero coefficients, and therefore,
the classifier instanced with the triangle wave kernel k(x, z) = gt(x− z) has infinite VC dimension. On the
other hand, the VC dimension of the classifier instanced with the cosine kernel k(x, z) = cos(x− z) equals
three. Consequently, the SVM with the triangle wave kernel is able to express an arbitrary number of
thresholds in the circular domain, unlike the SVM with the cosine kernel or with the triangle wave in
the primal form, which, as proven before, can only express two thresholds in [0, 2π). Figure 2 illustrates
these differences.

However, depending on the relative position of the data points, even the SVM with the triangle wave
kernel may fail to assign the correct label to all of them. In order to overcome this limitation, composite
kernels, constructed from this baseline, can be explored. Typical cases include the polynomial directional
kernel, k(x, z) = (g(x− z) + 1)d, where d is the polynomial degree and the directional RBF kernel,
k(x, z) = exp (κg(x− z)) (while the standard RBF kernel relies on the Gaussian expression, the directional
RBF kernel relies on the expression of the von Mises distribution).

Figure 3a shows a simple training set that is correctly learned both with the primal and kernel triangle
wave formulations. On the other hand, it should be clear that the setting in Figure 3b cannot be correctly
learned by these same models. In this case, setting the SVM with the kernel k(x, z) = (gt(x− z) + 1)2

achieves the correct labeling.
It is important to note that standard, off-the-shelf, toolboxes can be used to solve the kernelized

directional SVM directly. One just needs to properly define the kernel as discussed before.

x

(a)

x

(b)

Figure 3. Example illustrating the benefits of composite kernels. (a) Toy example correctly solved by the
primal and the kernel formulation (using the directional kernel gt). (b) Toy example not solved correctly by
the primal, nor the kernel with gt. Solved correctly with polynomial directional kernel of degree two.
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6. Asymmetric Directional SVM

In Figure 4, we portray a toy dataset together with the model that optimizes Equation (7) using gt in
the model f (x). As observed, the margin is determined by the “worst case” transition between positive
and negative examples. It is reasonable to assume that a model placing the second threshold centered in
the gap between positive and negative examples would generalize better. Shashua and Levin [7] faced a
problem with similar characteristics when addressing ordinal data classification in RD. Similar to them,
we propose to maximize the sum of the margins around the two threshold points. Towards that goal,
we only need to generalize the model to allow independent slopes in the two parts of the triangle wave,
setting f (x|w0, w1, θ, ζ) = w0 + w1gasy(x + θ, ζ), where:

gasy(x, ζ) =


1− x−2kπ

π(1−ζ)
, 2kπ ≤ x ≤ 2π(1− ζ) + 2kπ

1 + x−2kπ
πζ , −2πζ + 2kπ ≤ x ≤ 2kπ

,

ζ ∈ (0, 1), k ∈ Z.

(14)

Here, ζ controls the asymmetry of the wave: if ζ → 0, the wave has infinite ascending slope; if ζ → 1,
the wave has infinite descending slope, and for ζ = 0.5, it coincides with the symmetric case, gt. The wave
is depicted in Figure 5 for some values of ζ.

It should be clear that the model instanced with gasy retains the same expressiveness as before,
being able to express two thresholds (and not more than two) in any position in [0, 2π).

As before with gt, it is not possible to solve the optimization problem as a conventional setting,
and we again directly optimize the goal function using sub-gradient methods.
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7. Kernelized Asymmetric Directional SVM

Before, motivated by the behavior with gs and the representer theorem, we explored models of
the form f (x) = w0 + ∑N

n=1 αngt(x − xn). Using the decomposition depicted in Figure 6, gt(x) =

gt1(x) + gt2(x), we can rewrite the model as w0 + ∑N
n=1 αn (gt1(x− xn) + gt2(x− xn)). We can now gain

independence in the two slopes of the model by extending it to w0 + ∑N
n=1 αn1 gt1(x− xn) + αn2 gt2(x− xn),

where αn1 and αn2 are two independent parameters to be optimized from the training set.
Since gt2(x) = gt1(−x), the model equals:

f (x) = w0 +
N

∑
n=1

αn1 gt1(x− xn) + αn2 gt1(xn − x). (15)
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Figure 6. Decomposition of the triangle wave.
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8. The Multi-Dimensional Setting

The extension of the ideas presented before to the multi-dimensional setting is easy. For this purpose,
assume our data consist of both directional and non-directional components. This allows each data example

to be represented as a vector x =
(

x(d)
ᵀ

x(l)
ᵀ)ᵀ

, where x(d) ∈ RD represents the directional components

and x(l) ∈ RL represents the non-directional ones. Suppose we wish to represent the ith directional
component x(d)i in a feature space X(d)

i , through a mapping φ
(d)
i : R 7→ X(d)

i , and the non-directional ones
in a feature space X(l), through a mapping φ(l) : RL 7→ X(l). Then, our model f (x|w) becomes:

f (x|w) = w0 +
D

∑
i=1

w(d)
i

ᵀ
φ
(d)
i

(
x(d)i

)
+ w(l)ᵀφ(l)

(
x(l)
)

= w0 + w̄ᵀ


φ
(d)
1

(
x(d)1

)
...

φ
(d)
D

(
x(d)D

)
φ(l)

(
x(l)
)

 ,

(16)

where w̄ =

(
w(d)

1

ᵀ
, · · · , w(d)

D

ᵀ
, w(l)ᵀ

)ᵀ
. Therefore, in the standard setting where the feature spaces are

fixed and possibly infinite dimensional, but the respective inner products have a closed form, we may
use the kernel trick to solve the optimization problem. Such kernel is an inner product in the joint feature
space X(d)

1 × · · · ×X(d)
D ×X(l) and equals the sum of the individual kernels:

k(x, z) =
D

∑
i=1

k(d)i

(
x(d)i , z(d)i

)
+ k(l)

(
x(l), z(l)

)
, (17)

where k(d)i (·, ·) = 〈φ(d)
i (·), φ

(d)
i (·)〉 and k(l)(·, ·) = 〈φ(l)(·), φ(l)(·)〉.

If the feature mappings φ
(d)
i are finite dimensional functions that depend also on parameters to

be optimized, like, for instance, in the case of φ
(d)
i

(
x(d)i

)
= gt

(
x(d)i + θi

)
, the kernel itself becomes

dependent on such parameters. In this setting, we opted to plug Equation (16) directly into Equation (7),
solving the problem directly in its primal form using gradient-based optimization.

For simplicity, we set φ(l) to the identity in our experiments, inducing the usage of the linear kernel
for all the non-directional components.

9. Experiments

In this section, we detail the experimental evaluation of the proposed directional support vector
machines against two state-of-the-art directional classifiers: the von Mises naive Bayes [8] and the
directional logistic regression [4]. Following [4], the κ parameter of the von Mises distribution was
approximated by 100 iterations (a much larger number of iterations than required to have good convergence
values) of Newton’s method proposed by Sra [9].

The SVM regularization constant C = λ−1 was chosen using a stratified 3-fold cross-validation
strategy. The range of explored values was 10−3, . . . , 103. The concentration parameter κ of the directional
RBF kernel was also selected through 3-fold cross-validation in the range 10−3, . . . , 101. The primal
directional SVM with fixed margin was randomly initialized and optimized using Adam [10] for
500 iterations. On the other hand, we initialized the asymmetric primal SVM with the fixed margin margin
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parameters after 400 iterations. Then, all the parameters were fine-tuned for an additional 100 iterations.
Using pre-trained parameters for the SVM with an asymmetric margin facilitates convergence given the
coupled effect of the θ and ζ parameters. The kernelized directional version with cosine and triangular
kernels was optimized using the standard libsvm [11], which implements an SMO-type algorithm proposed
in [12]. For the asymmetric kernel, we used the aforementioned fine-tuning approach in order to fine-tune
the α coefficients obtained by the standard toolkit.

We validated the advantages of the proposed approach using 12 publicly-available datasets:
Arrhythmia [13], Behavior [14], Characters [15], Colposcopy, Continents, eBay [16], MAGIC [17],
Megaspores [18], OnlineNews [19], Temperature1, Temperature2, and Wall [20]. Relevant properties about
these datasets (e.g., number of directional and non-directional features, number of classes, dimensionality)
are presented in Appendix B. Experiments in previous works [4,8] have shown that directional classifiers
outperform traditional ones in these datasets, proving that directionality is an important attribute to
exploit. Further details about the datasets, including their acquisition and preprocessing, were presented
in [4]. Additionally, in order to facilitate the convergence of the SVM-based models, all the non-directional
features were scaled to the range 0–1.

Multiclass instances were handled using a one-versus-one approach for all the binary models
(i.e., logistic regression and support vector machines). All the experiments detailed below were executed
with a 3-fold stratified cross-validation technique (i.e., by preserving the percentage of samples for
each class), selecting the best model in terms of accuracy, and the results of 30 different runs were
averaged. Specifically, for each model and dataset, we have evaluated the accuracy and the macro
F1-score, which corresponds to the unweighted mean value of the individual F1-scores of each class.
Results of these experiments are summarized in Tables 1 and 2, exhibiting average accuracy and macro
F1-score, respectively, for 30 independent runs. The best results for each dataset are marked in bold.
For reproducibility purposes, the source code and the training-testing partitions are made available
(https://github.com/dpernes/dirsvm). The results achieved by the von-Mises naive Bayes (vMNB) and
directional Logistic Regression (dLR) align with the results reported in the literature [4].

https://github.com/dpernes/dirsvm
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Table 1. Average accuracy and standard deviation per model on 30 runs for 12 datasets, which are presented in increasing order of their respective cardinality.
The evaluated models are: Naive Bayes with von Mises distribution (vMNB), directional Logistic Regression (dLR), Multilayer Perceptron (MLP), SVM with directional
RBF kernel (dRBF-SVM), SVM with cosine kernel (cos-SVM), primal SVM with triangle wave (t-SVM), SVM with Triangle wave kernel (T-SVM), primal SVM with
asymmetric triangle wave (a-SVM), and SVM with Asymmetric triangle wave kernel (A-SVM). Best results are given in bold.

Dataset vMNB dLR dRBF-SVM cos-SVM t-SVM T-SVM a-SVM A-SVM

Colposcopy 69.56± 11.1 80.56± 9.0 83.52± 8.9 81.67± 7.7 83.00± 9.6 83.48± 8.5 85.41± 8.5 82.67± 9.6
Behavior [14] 46.22± 11.1 82.09± 6.0 80.45± 4.2 80.58± 3.5 82.99± 5.5 81.58± 4.0 81.97± 5.3 80.96± 3.8
Arrhythmia [13] 67.59± 4.7 79.06± 6.2 78.51± 4.7 78.59± 5.2 78.51± 6.0 76.49± 6.1 78.82± 5.7 76.41± 5.9
eBay [16] 83.95± 5.9 85.47± 4.9 86.00± 5.1 83.94± 4.6 83.36± 6.2 82.02± 5.7 83.55± 6.4 81.21± 5.3
Megaspores [18] 76.77± 3.4 76.94± 4.2 76.15± 4.4 75.59± 4.7 76.18± 4.1 75.24± 4.2 76.28± 3.7 75.69± 3.7
Characters [15] 71.50± 3.7 96.20± 1.6 97.83± 1.5 96.40± 1.5 97.10± 1.6 98.30± 1.4 96.50± 2.1 98.07± 1.3
OnlineNews [19] 55.33± 3.3 56.89± 5.3 55.06± 5.1 49.50± 5.3 54.60± 5.1 50.40± 5.1 55.19± 4.5 50.06± 4.9
Continents 94.82± 1.6 95.46± 1.3 95.86± 1.3 96.03± 1.3 94.81± 1.4 96.85± 1.0 93.51± 1.6 97.18± 1.0
Wall [20] 51.26± 2.1 68.36± 1.8 80.58± 1.9 68.45± 2.5 64.14± 1.8 82.23± 1.5 66.14± 2.1 82.97± 1.6
Temperature1 65.24± 1.3 69.40± 1.3 65.41± 5.2 65.53± 4.0 67.23± 2.4 69.33± 1.2 65.73± 1.2 68.05± 2.1
Temperature2 67.08± 2.8 71.62± 1.3 73.69± 2.1 70.27± 7.7 67.95± 3.0 76.55± 1.0 76.51± 1.2 79.83± 1.3
MAGIC [17] 73.00± 0.6 80.78± 0.7 81.75± 1.3 79.66± 0.9 78.77± 0.7 80.27± 0.8 78.74± 0.7 80.26± 0.8

Table 2. Average macro F1-score and standard deviation in the same setting as described in Table 1. Best results are given in bold.

Dataset vMNB dLR dRBF-SVM cos-SVM t-SVM T-SVM a-SVM A-SVM

Colposcopy 68.96± 11.1 79.61± 10.0 83.32± 8.9 81.21± 7.8 82.86± 9.6 83.32± 8.6 85.17± 8.6 82.33± 9.8
Behavior [14] 22.13± 6.2 51.29± 16.9 42.17± 9.5 43.17± 8.7 53.29± 16.1 45.04± 9.7 50.63± 14.3 43.38± 10.7
Arrhythmia [13] 62.40± 6.3 77.80± 6.6 77.10± 5.3 77.12± 5.7 77.14± 6.5 75.21± 6.5 77.38± 6.2 75.02± 6.3
eBay [16] 83.64± 6.0 85.13± 5.1 85.77± 5.1 83.64± 4.8 83.05± 6.5 81.92± 5.8 83.26± 6.6 81.07± 5.3
Megaspores [18] 74.29± 4.0 72.75± 5.4 71.02± 5.9 69.94± 8.1 71.93± 5.4 69.31± 5.9 71.63± 5.0 71.50± 4.8
Characters [15] 71.73± 4.1 96.13± 1.7 97.82± 1.5 96.33± 1.5 97.09± 1.6 98.29± 1.4 96.50± 2.1 98.05± 1.3
OnlineNews [19] 45.27± 4.9 55.36± 5.4 51.89± 6.0 47.94± 5.8 52.74± 5.7 48.86± 5.6 53.50± 5.1 48.30± 5.7
Continents 93.02± 2.8 94.57± 1.8 95.40± 1.6 95.76± 1.5 91.81± 5.4 96.99± 1.1 88.73± 3.8 97.34± 0.9
Wall [20] 55.31± 2.2 71.66± 2.1 83.57± 1.7 72.16± 2.2 64.12± 2.2 84.60± 1.5 68.06± 3.3 85.14± 1.7
Temperature1 59.13± 1.3 48.85± 0.9 46.02± 3.6 46.21± 2.8 47.27± 1.9 48.83± 0.8 46.18± 0.9 47.93± 1.6
Temperature2 59.39± 5.0 49.64± 1.0 52.27± 3.3 51.81± 3.5 55.94± 4.0 53.91± 0.7 54.53± 3.1 74.21± 2.0
MAGIC [17] 65.79± 0.7 78.28± 0.8 78.75± 1.5 77.13± 1.4 75.37± 0.9 77.37± 0.9 75.26± 0.8 77.43± 0.9
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Hereafter, we will denote by non-Kernelized directional SVMs (nK-dSVM) the subset of proposed
SVM variations with VC dimension equivalent to the one induced by the directional logistic regression;
namely, the primal fixed-margin directional SVM with triangle (symmetric and asymmetric) and cosine
waves. The remaining models (i.e., directional RBF, symmetric, and asymmetric kernels) will be referred
to as Kernelized directional SVMs (K-dSVM).

Although some datasets used here are considerably imbalanced, accuracy and macro F1-score values
were fairly consistent with each other, in the sense that the best model in terms of accuracy was the top-1
model in terms of macro F1-score in 10 of 12 datasets and was among the top-2 models in all datasets.
While the dLR achieved a competitive general performance, it was surpassed by at least one of the proposed
SVM alternatives in most cases. nK-dSVM performed better than dLR on small datasets, given the margin
regularization imposed by the SVM loss function. For larger datasets, dLR performed better since the
generalization induced by the nK-dSVM margin became less relevant. However, for large datasets,
K-dSVM surpassed dLR and their non-kernelized counterparts in most cases. In general, dSVM with
asymmetric margins (kernelized and non-kernelized) attained the best results, obtaining the best average
performance on half of the datasets.

As shown in Section 5, kernels involving the triangle wave correspond to inner products
in an infinite-dimensional feature space. The same is also true for the directional RBF kernel.
Non-kernelized methods, on the other hand, are constructed by explicitly defining the feature
transformation, having a necessarily finite VC dimension. Therefore, the former produce models with
higher capacity, which may lead to overfitting in small datasets, but better accuracy for large ones. This is
confirmed by our experiments: the non-kernelized models achieved the best results in small datasets,
while kernelized models built on top of the triangle wave and directional RBF kernel attained the best
results in large datasets. The performance gains of kernelized models on the larger datasets were small,
however, which may be explained by the unimodal distribution of the angular variables. On datasets with
a multi-modal distribution of the directional variables, it is expected to observe higher gains by K-dSVM.

Towards Deep Directional Classifiers

Deep neural networks have achieved remarkable results in multiple machine learning problems and,
particularly, in supervised classification. SVMs, on the one hand, typically decouple the data representation
problem from the learning problem, by first projecting the data into a prespecified feature space and then
learning a hyperplane that separates the two classes. Deep networks, on the other hand, jointly learn the
data representation and the decision function, exhibiting superior performance mostly when trained on
large datasets. In the context of directional data, we argue that significant performance improvements
might be attained by combining the angular awareness of directional feature transformations or kernels
with the representation learning provided by deep neural networks.

In order to evaluate the potential of deep classifiers for directional data, we present two further
experiments in this section. Specifically, we have trained two Multilayer Perceptrons (MLPs), which were
essentially identical, except for one important difference: one of them (denoted by rMLP) was trained on
top of raw angle values (normalized to lie in a single period); the other one (denoted by dMLP) was trained
on top of the feature transformation φ(x) = (cos(x), sin(x))ᵀ, which defines the cosine kernel, applied to
all angular components. The latter was a first attempt towards deep directional classifiers, while the former
was completely unaware of the directionality of the data. Each hidden layer in the MLPs had the following
structure: fully-connected transformation (dense layer) with 256 output neurons + batch normalization [21]
+ ReLU + dropout [22]. The output layer is a standard fully-connected transformation followed by a
sigmoid, in the case of binary classification, or a softmax, when there are more than two classes. The models
were trained to minimize the usual cross-entropy loss with `2 regularization. The total number of layers
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was chosen between 4 and 5 using 3-fold cross-validation, together with the remaining hyperparameters
(dropout rate, `2 regularization weight, and learning rate). Training was performed for 200 epochs or until
the loss plateaued. The training protocol, including the evaluated datasets, the number of runs for each
dataset, and the evaluated metrics, was exactly the same as in the previous set of experiments.

Results are in Table 3a,b, where we show again the values of our most accurate SVM (denoted by
best-SVM) in each dataset for easier comparison. Like before, we observed high consistency between the
accuracy and macro F1-score values. As expected, rMLP had the worst overall performance, and this effect
was mostly apparent in small datasets where the number of directional features was in the same order of
magnitude as the number of non-directional ones, like Colposcopy and eBay (see Appendix B). In larger
datasets and in those where the number of non-directional features was much larger than the number of
directional ones (e.g., Behavior, OnlineNews), rMLP achieved more competitive results. The exception
was the MAGIC dataset, where the single directional feature seemed to have a high discriminative
power, and so, rMLP achieved the lowest performance among the three models. Contrary to what we
just observed for rMLP, the gains of dMLP were highly encouraging. This model, built on top of a
directional feature transformation, generally outperformed best-SVM in larger datasets and achieved
competitive results even in smaller ones. This observation reinforces the role of directionality in these
datasets and, more importantly, motivates the importance of further research to merge directional feature
transformations and/or kernels with deep neural networks, which we plan to develop as future work.

Table 3. Average performance and standard deviation per model on 30 runs for 12 datasets, which are
presented in increasing order of their respective cardinality. The evaluated models are: directional SVM
with highest average accuracy (best-SVM), MLP trained on top of raw angle values (rMLP), and MLP
trained on top of the feature transformation φ(x) = (cos(x), sin(x))ᵀ (dMLP). Best results are given in bold.

(a) Accuracy

Dataset best-SVM rMLP dMLP

Colposcopy 85.41± 8.5 51.67± 18.1 81.26± 9.9
Behavior [14] 82.99± 3.8 81.85± 5.1 83.50± 5.3
Arrhythmia [13] 78.59± 5.2 70.17± 9.6 71.45± 5.1
eBay [16] 86.00± 5.1 73.38± 21.7 84.86± 5.3
Megaspores [18] 76.28± 3.7 76.01± 4.0 73.78± 4.4
Characters [15] 98.30± 1.4 83.63± 7.2 92.07± 2.7
OnlineNews [19] 50.06± 4.9 52.09± 4.1 52.33± 4.2
Continents 97.18± 1.0 95.57± 1.6 96.56± 1.7
Wall [20] 82.97± 1.6 86.23± 1.2 87.03± 1.7
Temperature1 69.33± 1.2 70.02± 2.6 70.03± 2.0
Temperature2 79.83± 1.3 81.06± 2.5 75.63± 4.6
MAGIC [17] 81.75± 1.3 73.20± 18.5 87.23± 1.3

(b) Macro F1-score

Dataset best-SVM rMLP dMLP

Colposcopy 85.17± 8.6 46.36± 20.2 80.86± 10.2
Behavior [14] 53.29± 16.1 42.30± 13.6 58.03± 15.3
Arrhythmia [13] 77.12± 5.7 68.87± 10.0 69.76± 5.5
eBay [16] 85.77± 5.1 72.30± 23.2 84.47± 5.4
Megaspores [18] 71.63± 5.0 70.45± 5.7 68.61± 5.4
Characters [15] 98.29± 1.4 82.56± 8.0 91.83± 2.9
OnlineNews [19] 48.30± 5.7 49.00± 5.0 49.77± 5.8
Continents 97.34± 0.9 94.81± 2.3 96.30± 2.4
Wall [20] 85.14± 1.7 86.53± 1.3 88.11± 1.8
Temperature1 48.83± 0.8 56.61± 7.4 60.91± 5.2
Temperature2 74.21± 2.0 74.83± 4.8 67.68± 5.0
MAGIC [17] 78.75± 1.5 69.16± 21.3 85.47± 1.3
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10. Conclusions

Several concepts in real-life applications are represented by directional variables; from periodic
time representation on calendars to compass directions. Traditional classifiers, which are unaware of the
angular nature of these variables, might not properly model the data. Thereby, the study of directional
classifiers is relevant for the machine learning community. Previous attempts to address classification
tasks with directional variables focused on generative models [8] and discriminative linear models (logistic
regression) [4].

In this work, we proposed several instantiations of directional-aware support vector machines. First,
we modified the SVM decision function by considering parametric periodic mappings of the directional
variables using cosine and triangle waves. Then, we proposed an extension of the model with triangular waves
in order to allow asymmetric margins on the circle. The kernelized versions of these models were proposed
as well. Furthermore, we analyzed and demonstrated the expressiveness of each proposed alternative.

In the experimental assessment, the relevance of the proposed models was evaluated, being able to
achieve competitive results in most datasets. As expected, when compared to other shallow directional
classifiers, kernelized models built on top of the triangle wave attained the best results in larger datasets,
due to their large expressive power, which we have proven theoretically. One extra experiment combining
a directional feature transformation and a deep neural network showed very promising results and clearly
motivates further research.

Since the additional parameters involved in our asymmetric SVMs (in both kernelized and
non-kernelized versions) have a periodic impact on the decision boundary or are constrained to a specific
domain, using gradient-based optimization techniques may result in sub-optimal models. While this
problem was circumvented by using fine-tuning from simpler models, there is research room for the
design and exploration of optimization techniques specific for these models. Furthermore, deep multiple
kernel learning [23] is an unexplored research line in directional data settings that may lead to a unified
framework combining directional kernel machines and deep neural networks.
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The following abbreviations are used in this manuscript:

dLR directional Logistic Regression
MLP Multilayer Perceptron
SVM Support Vector Machine
vMNB von-Mises Naive Bayes
dSVM directional SVM
K-dSVM Kernelized directional SVM
nK-dSVM non-Kernelized directional SVM
cos-SVM SVM with cosine kernel
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dRBF-SVM SVM with directional RBF kernel
a-SVM primal SVM with asymmetric triangle wave
A-SVM SVM with Asymmetric triangle wave kernel
t-SVM primal SVM with triangle wave
T-SVM SVM with Triangle wave kernel

Appendix A. Kernelized Symmetric Directional SVM

Appendix A.1. Kernel Validity: Proof of Theorem 1

From the definition of g, we may verify that it is an even function:

g(−x) =
∫ T

0
h(t)h(t− x) dt =

∫ T−x

−x
h(x + τ)h(τ) dτ = g(x). (A1)

Because g is also periodic with period T, it may be expressed in a Fourier series of the form:

g(x) =
∞

∑
n=0

an cos
(

2nπx
T

)
. (A2)

Thus,

g(x− z) =
∞

∑
n=0

an cos
(

2nπ(x− z)
T

)
=

∞

∑
n=0

an cos
(

2nπx
T

)
cos

(
2nπz

T

)
+

+
∞

∑
n=0

an sin
(

2nπx
T

)
sin
(

2nπz
T

)
= φ(x)ᵀφ(z),

(A3)

where:

φ(·) =
(√

a0,
√

a1 cos
(

2π·
T

)
,
√

a1 sin
(

2π·
T

)
, ...,

√
an cos

(
2nπ·

T

)
,
√

an sin
(

2nπ·
T

)
, ...
)ᵀ (A4)

Therefore, if φ(x) and φ(z) are real vectors, the product φ(x)ᵀφ(z) is an inner product, and so,
g(x− z) is a kernel function. Clearly, φ(x) and φ(z) are real vectors if and only if an ≥ 0, ∀ n, which can
be proven to be true, concluding the proof:

a0 =
2
T

∫ T

0
g(x) dx

=
2
T

∫ T

0

∫ T

0
h(t)h(t + x) dt dx

=
2
T

∫ T

0
h(t)

∫ t+T

t
h(τ) dτ dt

=
2
T

(∫ T

0
h(t) dt

)2

≥ 0,

(A5)
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and, for n ≥ 1,

an =
2
T

∫ T

0
g(x) cos

(
2nπx

T

)
dx

=
2
T

∫ T

0

∫ T

0
h(t)h(t + x) cos

(
2nπx

T

)
dt dx

=
2
T

∫ T

0

∫ T

0
h(t)h(t + x) cos

(
2nπ(t + x)

T

)
cos

(
2nπt

T

)
dt dx

+
2
T

∫ T

0

∫ T

0
h(t)h(t + x) sin

(
2nπ(t + x)

T

)
sin
(

2nπt
T

)
dt dx

=
2
T

∫ T

0
h(t) cos

(
2nπt

T

) ∫ t+T

t
h(τ) cos

(
2nπτ

T

)
dτ dt

+
2
T

∫ T

0
h(t) sin

(
2nπt

T

) ∫ t+T

t
h(τ) sin

(
2nπτ

T

)
dτ dt

=
2
T

(∫ T

0
h(t) cos

(
2nπt

T

)
dt
)2

+
2
T

(∫ T

0
h(t) sin

(
2nπt

T

)
dt
)2
≥ 0.

(A6)

Appendix A.2. VC Dimension: Proof of Theorem 2

Before going into the details of the proof of Theorem 2, we need the result presented in Lemma A1.

Lemma A1. Let F = {φ1, · · · , φN} be a set of square integrable and non-zero functions φi : I ⊆ R 7→ R, where I
is an interval, that satisfy: ∫

I
φi(x)2 6= 0, ∀i,

∫
I

φi(x)φj(x) = 0, ∀i 6= j. (A7)

There exists a vector x = (x1, ..., xN)
ᵀ ∈ IN such that the matrix:

Φ(x) =

φ1(x1) ... φN(x1)
...

. . .
...

φ1(xN) ... φN(xN)

 (A8)

has full rank.

Proof. We shall prove by contradiction that such x actually exists. Suppose that Φ(x) is rank deficient for
all x. Then, there exists a function v : IN 7→ RN such that:

Φ(x)v(x) = 0 and v(x) 6= 0, ∀ x. (A9)

Due to the orthogonality of the functions in F, no non-trivial linear combination of them vanishes
identically in I, and consequently, v may not be a constant function. However, if v is not constant,
there exist distinct vectors x(1), ..., x(k) with dimension N such that no non-zero vector belongs to the null
spaces of all the matrices Φ

(
x(1)

)
, ..., Φ

(
x(k)

)
. This means that the space generated by the rows of these

matrices stacked altogether has dimension N, so we may choose N linearly-independent rows from this
stacked matrix. Since each row is defined by a single element in one of the vectors x(1), ..., x(k), choosing N
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linearly-independent rows corresponds to finding a dataset x∗ with size N such that Φ(x∗) has full rank,
contradicting the initial hypothesis.

Now, we may proceed to the proof of Theorem 2. Let VC(l) denote the VC dimension of the class of
classifiers l. Firstly, we are going to prove that VC(l) ≤ 2N + 1. If we proceed as in the proof of Theorem 1,
φ may be defined as a feature space over R2N , by suppressing all components whose coefficients are zero.
Therefore, f becomes a hyperplane in R2N , and so, it cannot shatter more than 2N + 1 data points.

Now, it suffices to prove that VC(l) ≥ 2N + 1. Let us denote the period of g by T and consider a
dataset with N̄ = 2N examples, namely x = (x1, ..., xN̄)

ᵀ, where 0 ≤ xi < T, ∀i. Like before, we obtain φ

as in the proof of Theorem 1, and we build the N̄ × N̄ matrix Φ, defined as:

Φ(x) =

φ(x1)
ᵀ

...
φ(xN̄)

ᵀ

 . (A10)

By further defining f (x|w0, wd) = ( f (x1|w0, wd), ..., f (xN̄ |w0, wd))
ᵀ, the following equality is

straightforward to check:
f (x|w0, wd) = w0 ⊕Φ(x)wd, (A11)

where ⊕ denotes the operation of summing the scalar on the left-hand side to every element of the vector
on the right-hand side. Let us denote the ground truth label of each xi as yi ∈ {−1, 1}. Because the
elements of φ(x) form a set of orthogonal functions, we know from Lemma A1 that there exists a dataset x
such that Φ(x) has full rank. Thus, from now on, assume this condition holds. This assumption ensures
that, for all possible combinations of yi values, there exists a wd ∈ RN̄ that satisfies:

Φ(x)wd =

 y1
...

yN̄

 . (A12)

Clearly, using this wd, the classifier labels all N̄ data points correctly provided that |w0| < 1. Now,
suppose we have one more data point xN̄+1 ∈ [0, T), with ground truth label yN̄+1 ∈ {−1, 1}. Assume,
furthermore, that xN̄+1 is such that |wᵀ

d φ(xN̄+1)| < 1. The existence of such xN̄+1 is guaranteed, since the
elements of φ are continuous functions with zero mean value. By setting w0 = yN̄+1δ −wᵀ

d φ(xN̄+1),
for any arbitrary 0 < δ < 1− |wᵀ

d φ(xN̄+1)|, the classifier labels all N̄ + 1 data points correctly. Thus,
VC(l) ≥ N̄ + 1 = 2N + 1.

Appendix B. Summary of the Datasets

We give a summary of the main characteristics of the datasets used in this work, including number
of features per type (i.e., Directional (Dir), Linear (Lin), Discrete (Disc)) and the number of samples per
dataset (#).
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Table A1. Number of variables, number of classes and cardinality of each dataset. Variables are divided
into the respective types: directional (Dir), linear (Lin) and discrete (Disc).

Dataset
Number of Variables Class

#
Dir Lin Disc Values

Colposcopy 3 6 0 3 150
Behavior [14] 140 426 20 4 261
Arrhythmia [13] 4 191 66 2 430
eBay [16] 1 2 0 11 528
Megaspores [18] 1 0 0 2 960
Characters [15] 5 31 0 10 1000
OnlineNews [19] 1 12 0 2 1000
Continents 2 0 0 5 3481
Wall [20] 6 6 0 4 5456
Temperature1 2 1 0 3 8764
Temperature2 5 1 0 3 8764
MAGIC [17] 1 10 0 2 19,020
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