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Abstract: Novel nanomaterials, including metallic nanoparticles obtained via green synthesis (gNPs),
have a great potential for application in biotechnology, industry and medicine. The special role of
gNPs is related to antibacterial agents, fluorescent markers and carriers for drug delivery. However,
application of gNPs for construction of amperometric biosensors (ABSs) is not well documented.
The aim of the current research was to study potential advantages of using gNPs in biosensorics.
The extracellular metabolites of the yeast Ogataea polymorpha were used as reducing agents for
obtaining gNPs from the corresponding inorganic ions. Several gNPs were synthesized, characterized
and tested as enzyme carriers on the surface of graphite electrodes (GEs). The most effective were
Pd-based gNPs (gPdNPs), and these were studied further and applied for construction of laccase- and
alcohol oxidase (AO)-based ABSs. AO/GE, AO-gPdNPs/GE, laccase/GE and laccase-gPdNPs/GE
were obtained, and their analytical characteristics were studied. Both gPdNPs-modified ABSs were
found to have broader linear ranges and higher storage stabilities than control electrodes, although
they are less sensitive toward corresponding substrates. We thus conclude that gPdNPs may be
promising for construction of ABSs for enzymes with very high affinities to their substrates.

Keywords: green synthesis; metallic nanoparticles; extracellular metabolites; yeast Ogataea polymorpha;
laccase; alcohol oxidase; amperometric biosensors

1. Introduction

Green synthesis of metallic nanoparticles (NPs) offers better manipulation, stabilization and
control over crystal growth due to slower kinetics. Furthermore, green synthesis processes are
rapid, eco-friendly and cost-effective [1–3]. Metallic NPs consisting of one metal, metal oxides or a
composite of several metals play a significant role in nanotechnology due to their potential utilization
in industry and medicine [3–7]. NPs of noble metals possess low cytotoxicity, enable easy modification
of their surfaces, have straightforward synthesis processes and excellent biocompatibility [8–10].
Such advantages make metallic NPs obtained by green synthesis (gNPs) prospective for applications
in biological analysis, drug delivery and imaging, environmental monitoring, industrial catalysis and
electronic devices [11–19]. A special role of these gNPs is related to antimicrobial and antibiofilm
agents [19–25].
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Many plants [11,12,21,24–26], algae [4], microorganisms [1,3,7–10,14,18,23,27–30], as well as
redox-imbalanced mammalian cells and systems [31] are known to produce nanostructured mineral
crystals and metallic NPs with properties similar to chemically-synthesized materials. Biological
agents, including polysaccharides, polypeptides, DNA, enzymes secreted by cells [24,32–41] and
purified enzymes [42,43] are able to reduce noble metal ions to gain metallic NPs. Besides the practical
aim of gNPs production, investigations on the green synthesis processes will be useful for elucidating
the mechanisms of cells’ responses to stress caused by metal ions.

In many studies, the size and morphology of gNPs are considered as their basic parameters.
Scanning electron microscopy (SEM) can afford information on the size, distribution and shape of
the gNPs. However, the drying and contrasting processes alter the characteristics of the tested NPs
and lead to imaging faults or artifacts [32]. Transmission electron microscopy (TEM) is a high-tech
approach in the characterization of gNPs, and is more powerful and competitive than SEM. It can be
used to determine the particle size, dispersion and aggregation in aqueous environment with a high
spatial resolution that can reveal details of crystal structure. Since many gNPs are irregular in shape
and exhibit a tendency to form large particles, it is difficult to conclude definitely whether their final
form was caused by polydispersity or agglomeration. The most suitable method for characterization of
gNPs is a dynamic light scattering (DLS) technique, which can provide data on sphere hydrodynamic
diameters of homogeneous NPs in an aqueous phase [44]. However, this method cannot provide
information on particles with a heterogeneous size distribution. Therefore, the diversity and ambiguity
of gNPs are the reason why it is necessary to use multiple techniques, for instance a combination of
TEM and DLS, for valid characterization of gNPs [32,44].

The exact mechanism of gNP synthesis using biological agents has not been elucidated to date.
However, it has been suggested that various biomolecules are involved in this process [24,38–48].
Capping and stabilizing agents (polysaccharides, polypeptides and other bioorganic compounds)
prevent the gNPs from further growth and agglomeration in resulted colloidal solution [45–51].
Extracellular synthesis of gNPs usually occurs when microbial cells secrete reductive enzymes on the
surface of cell wall or outside the cell [43,45–48]. This process mediated through different enzymes,
including hydrogenases [40], nitrate reductase [48], phenol-oxidizing enzymes (laccases, tyrosinases,
and Mn-peroxidases) [43], as well as adhesins [49], has been described. In addition to the reducing
extracellular metabolites, the cell wall of microorganisms seems to play an important role in the
intracellular synthesis of NPs [8,27,44–47]. It interacts electrostatically with metal ions and traps them
in the process. The reducing agents and enzymes reduce the metal ions. Finally, formation of gNPs
takes place.

We discovered the phenomenon of extracellular bioreduction of Cr(VI) through Cr(V) to Cr(III)
by some yeasts, including baker’s yeast as well as non-conventional yeasts (Candida guilliermondii,
Ogataea polymorpha, etc.) [52–55]. The soluble stable green biocomplexes (gCr2O3NPs) generated
outside the yeast cells were isolated. Methods for isolating the generated gCr2O3NPs were developed,
namely freezing-thawing, precipitation with acetone, column chromatography, electrophoresis in
native PAG, filtration, dialysis and others [55]. Yeast extracellular metabolites were shown to be
responsible for Cr(VI) reduction [54,55].

In our previous study, we reported on green synthesis of AuNPs by the yeast Ogataea polymorpha [56].
BioAuNPs of different sizes (20–40 nm) and shapes, from triangular nanoprisms to nearly spherical
and hexagonal ones, were obtained using both the yeast culture and extracellular metabolites of the
culture liquid after removal of the cells. The optimal conditions (inorganic ion concentrations and
incubation times) required for extracellular synthesis of AuNPs were chosen. The size, structure and
fluorescence of the NPs were characterized using scanning, atomic force, transmission and fluorescence
microscopy [56].

The aim of the current research was to obtain various NPs via green synthesis using the yeast
O. polymorpha, to characterize these gNPs and to study their possible application in biosensorics on
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models of amperometric bioelectrodes based on laccase and alcohol oxidase for assays of phenolic
compounds and alcohols, respectively.

2. Materials and Methods

2.1. Reagents

Chloroauric acid (HAuCl4), silver nitrate (AgNO3), cobalt (II) sulfate (CoSO4), manganese(II)
chloride (MnCl2), potassium chromate (K2CrO4), palladium (II) chloride (PdCl2), chloroplatinic
acid (H2PtCl6), neodymium(III) sulfate (Nd2(SO4)3), sodium ethylenediaminetetraacetate (EDTA),
2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS), methanol, and all other
reagents and solvents used in this work were purchased from Sigma-Aldrich (Steinheim, Germany).
All reagents were analytical grade and were used without further purification. Purified medium-size
fragments of chitosan from crab shell were obtained as described earlier [57]. All solutions were
prepared with ultra-pure water prepared with Milli-Q (Millipore, Molsheim, Germany).

2.2. Enzymes

The following enzymes were used in the current research: laccase, EC 1.10.3.2) from
Trametes versicolor (Sigma-Aldrich, Steinheim, Germany), horseradish peroxidase (HRP, EC 1.11.1.7)
from Armoracia rusticana (Aster, Lviv, Ukraine), and AO (EC 1.1.3.13) from Ogataea (Hansenula)
polymorpha C-105 (gcr1 catX) purified by us as described earlier [58].

In order to prepare fresh solutions of enzymes, commercial laccase (10 U·mg−1) was dissolved in
20 mM Na-acetate buffer, pH 4.5, up to 200 U·mL−1; commercial HRP (600 U·mg−1) was dissolved
in 20 mM phosphate buffer (PB), pH 7.0, up to 400 U·mL−1; AO (20 U·mg−1) was precipitated by
centrifugation (10,000 rpm, 10 min, +4 ◦C) from a 70% ammonium sulfate suspension in 50 mM PB,
pH 7.5, and dissolved in PB up to 50 U·mL−1.

2.3. Green Synthesis of Nanoparticles

The recombinant yeast strain O. polymorpha NCYC495-pGAP1-HsARG1 (leu2car1 Sc:LEU2) [59]
was used as a tool for the green synthesis of gNPs. The cells were cultivated in Erlenmeyer flasks
under aeration in a circular shaker (200 rpm) at 30 ◦C, for 48 h as described earlier [56]. The cells
were centrifuged at 10,000× g for 5 min, and the supernatant, i.e., the culture liquid, was used for
synthesis of gNPs. For this purpose, the culture liquid was incubated with 0.5 mM solution of the
corresponding inorganic salt/acid (see Section 2.1) for up to 5 days at 37 ◦C. Each experiment was
performed in triplicate.

gNP formation was monitored daily, both visually and with UV-visible absorption spectroscopy
(Shimadzu UV1650 PC spectrophotometer, Japan). The generated gNPs were also tested using FM
and SEM. The resultant gNPs were collected either by centrifugation (using the Eppendorf 5424R
centrifuge at 20,000× g for 1 h) followed by homogenization of aggregated gNPs in water, or by the
freezing-thawing method [55]. The sample was frozen at −20 ◦C in a narrow upright capillary-like
vessel. gNPs were concentrated to the top and to the bottom of the ice-whisker and the fractions of
concentrated gNPs were gathered after slow defrosting, and kept at −20 ◦C until used.

2.4. Characterization of the Synthesized NPs

Optical UV-visible spectra for characterizing the process of gNP formation from inorganic ions
were obtained using a UV1650 PC spectrophotometer (Shimadzu, Kyoto, Japan).

A scanning electron microscope (SEM-microanalyser REMMA-102-02, Sumy, Ukraine) was used
for morphological analyses of the samples. The special cover film on the samples with a Butvar
solution B-98 (Sigma, St. Louis, MO, USA) in 1.5% chloroform was formed using an ultrasound
method. The distance from the last lens of the microscope to the sample (WD) ranged from 17.1 mm to
21.7 mm; the accelerator voltage was in the range of 20 to 40 eV; zooms were from 2500 to 10,000.
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An inverted fluorescence microscope (FM, Axio Lab. A1., Carl Zeiss, Esslingen, Germany) with
excitation by a mercury vapor arc lamp (X-Cite series 120Q) was used for sample imaging. The filters
set was composed of fluorescein isothiocyanate (green) and 4′,6-diamidino-2-phenylindole (blue).
In order to prepare the tested sample, a 10 µL aliquot of a water-diluted probe was placed on a glass
slide and covered with a cover slip (12 mm diameter).

The Infrared spectra of gPdNPs were acquired by a Nexus 470 Thermo-Nicolet FTIR spectrometer
(Thermo Fisher Scientific, Dardilly, France) using a single bounce attenuated total reflectance accessory
(Spectra-Tech Thunderdome, Thermo Fisher Scientific) with a germanium crystal. Background was
systematically recorded before the data acquisition of each sample (spectra from 4000 to 690 cm−1,
256 scans, and resolution 4 cm−1). Spectra were obtained after depositing a drop on the crystal and
after evaporation of water.

A semi-quantitative express method was used for studying the effect of the synthesized gNPs
on alcohol oxidase activity. 10 µL aqueous NP solutions were dropped into the cells of a 96-well
microplate and supplemented with 10 µL chitosan solution (1 mg mL−1) in PB. After 15 min incubation
for solid film formation, 15 µL AO solution (0.5 U mL−1) in PB were dropped into the cells containing
gNPs immobilized in chitosan films. 200 µL o-dianizidine-based substrate for assay of AO activity
were added to each cell, and after 2 min incubation at room temperature, the supernatants were
transferred into glass tubes. The cells were washed twice with 200 µL PB, and the supernatants were
combined with the initial supernatants in glass tubes. 300 µL of concentrated HCl were then added
to each tube. As a control, AO solution was put into cells supplemented with chitosan, but without
gNPs. AO activity was determined spectrophotometrically [60] and calculated as % relative to the
control sample.

2.5. Biosensor Evaluation

2.5.1. Apparatus

The amperometric biosensors (ABSs) were evaluated using constant-potential amperometry in
a three-electrode configuration with an Ag/AgCl/KCl (3M) reference electrode, a Pt-wire counter
electrode and a working graphite electrode (GE). Graphite rods (type RW001, 3.05 mm diameter) from
Ringsdorff Werke (Bonn, Germany), sealed in glass tubes by means of epoxy glue and used as working
electrodes, were polished with emery paper for decreasing their size. Amperometric measurements
were carried out using a potentiostat CHI 1200A (IJ Cambria Scientific, Burry Port, UK) connected to a
personal computer and performed in a batch mode under continuous stirring in an electrochemical
cell with a 20 mL volume at 25 ◦C.

2.5.2. Immobilization of the Enzymes onto Electrodes

In order to construct the enzyme-based amperometric biosensors, GEs were previously modified
by dropping 5 µL gPdNPs (or not modified for control electrodes). After formation of solid films,
aliquots of a freshly prepared enzyme solution (see Section 2.2) were dropped. A GE with an
enzyme only, but without gPdNPs, was used as a control. For construction of the laccase-based
ABS, 5 µL laccase solution was dropped onto the surfaces of bulk GEs and gPdNPs-modified GEs.
For construction of the AO-based ABS, 5 µL HRP solution was dropped onto the surface of both GEs
(control and modified). After formation of solid films, 7 µL of AO solution were dropped on the
electrodes. After drying for 10 min at room temperature, the layers of enzymes on the electrodes were
covered with supporting polymers.

Several fixing methods were tested, including a dialysis membrane, solutions of Nafion, chitosan
and polyethyleneimine. The main principle for choosing the most effective covering film was
the maximal amperometric output of the bioelectrode on the correspondent substrate and the
stability of the bio-recognition layer on the surface of the GE with the enzyme. Experimentally,
the best composition was selected: 10 µL of the mixture, which contains 1% chitosan and 0.5%
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polyethyleneimine solutions (1:1, v/v), were dropped on the surfaces of laccase- and AO-based
electrodes. The prepared bio-functionalized electrodes were rinsed with corresponding buffers (see
Section 2.2) and kept in these buffers with 0.1 mM EDTA at +4 ◦C until used. The electrodes were
washed with corresponding buffer solutions before and after each measurement in order to stabilize
the basic signal.

2.6. Statistical Analysis

Statistical analysis of the measurement results and the correlations between the values of the
results obtained by different analytical methods was performed using Origin 8.0 and Microsoft Excel.

3. Results and Discussion

3.1. Characterization of the Green-Synthesized Nanoparticles

Several mono- and bi-metallic gNPs were obtained as a result of the reduction of inorganic
salts/acids (see Section 2.1) by the yeast culture liquid (see Section 2.3). Incubation of the reaction
mixture (RM) was carried out under the conditions we selected for obtaining gAuNPs [56]. The kinetics
of the formation of different gNPs in RM were studied for 5 days visually as well as by UV-Vis.
The colors of the different RMs changed after 2 days incubation at 37 ◦C. Incubation with yeast
extracellular metabolites caused the yellow-colored solutions of 0.5 mM HAuCl4, K2CrO4, PdCl2 and
H2PtCl6 to change to dark red for gAuNPs, light green for gCr2O3NPs, dark green for gPdNPs, and
colorless for gPtNPs. The UV-Vis optical spectra of the produced gNPs are presented in Figure 1.
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Figure 1. UV-Vis absorption spectra of gNPs synthesized using the culture liquid of a 3-day
yeast culture.

The characteristic peaks of the obtained gNPs are identical to the peaks of the plasmon resonance
of the described inorganic NPs obtained by chemical synthesis. For example, the spectrum of gPdNPs
has a peak at 390 nm (Figure 1), which is specific for PdNPs [18,61]. A peak of gAuNPs in the range
525–590 nm is specific for chemically-synthesized AuNPs of different sizes, according to data reported
in the literature [8,12,13,19,38,42,43,48] as well as our results [56,62]. The color, size and shape of
AuNPs and gAuNPs are dependent on the NPs’ synthesis conditions: culture liquid of a 1-day culture
incubated for 3 days with HAuCl4 produces a dark blue solution of small gAuNPs with a peak at
525 nm. Under the same conditions, a 3-day culture generates a brown-red solution of gAuNPs with a
peak at 550 nm that corresponds to larger AuNPs. The pellet after centrifugation of the last solution
looks like a film of pure Au. It was demonstrated that using 1 L of waste (culture liquid of a 3-day
yeast culture) produces approximately 1 mg gAuNPs [56].

Some of the obtained gNPs, namely gAuNPs and gPdNPs, exhibited low toxicity to yeast cells
and did not significantly inhibit laccase and AO when added in moderate concentrations. These gNPs,
as prospective carriers for enzyme immobilization, were characterized by scanning electron microscopy
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coupled with X-ray microanalysis (SEM-XRM). Figure 2 demonstrates the overall morphology of the
formed particles (triangular, tetrahedral and monodispersed). The XRM data proved the formation of
Au0-containing (Figure 2a) and Pd0-containing (Figure 2b) products. An AFM study showed that the
triangular gAuNPs had an average thickness of 10 µm [56].

Appl. Sci. 2019, 9 FOR PEER REVIEW  6 

proved the formation of Au0-containing (Figure 2a) and Pd0-containing (Figure 2b) products. An 
AFM study showed that the triangular gAuNPs had an average thickness of 10 µm [56].  

 

(a) 

 
(b) 

Figure 2. Characteristics of gNPs synthesized using the culture liquid of 3-day yeast culture: SEM 
images with X-ray spectral characteristics of (a) gAuNPs and (b) gPdNPs. 

GPdNPs were chosen for construction of amperometric biosensors (ABSs) and for further 
characterization (Figures 3 and SI.1, Supplementary information). The fluorescence images 
demonstrate that the obtained NPs shine brightly at two filters and emit blue (Figure 3a) and green 
(Figure 3b) light. Infrared spectroscopy of the gPdNPs (Figure SI.1) demonstrated that they contained 
organic compounds (Figure 3c). The large bands centered at 3369, 1645 cm−1 (amide C=O stretching 
vibration) and 1560 cm−1 (amide C-N stretching and N-H bending vibrations) suggest the presence of 
amide groups. The 3369 and 1059 cm−1 bands were assigned to O-H stretching and C-O stretching 
modes of the hydroxyl function. Proof for the presence of methyl (-CH3) and methylene (-CH2-) 
groups was obtained by absorption peaks at 2963 and 2930 cm−1. 

Figure 2. Characteristics of gNPs synthesized using the culture liquid of 3-day yeast culture:
SEM images with X-ray spectral characteristics of (a) gAuNPs and (b) gPdNPs.

GPdNPs were chosen for construction of amperometric biosensors (ABSs) and for further
characterization (Figure 3 and Figure SI.1, Supplementary information). The fluorescence images
demonstrate that the obtained NPs shine brightly at two filters and emit blue (Figure 3a) and green
(Figure 3b) light. Infrared spectroscopy of the gPdNPs (Figure SI.1) demonstrated that they contained
organic compounds (Figure 3c). The large bands centered at 3369, 1645 cm−1 (amide C=O stretching
vibration) and 1560 cm−1 (amide C-N stretching and N-H bending vibrations) suggest the presence of
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amide groups. The 3369 and 1059 cm−1 bands were assigned to O-H stretching and C-O stretching
modes of the hydroxyl function. Proof for the presence of methyl (-CH3) and methylene (-CH2-) groups
was obtained by absorption peaks at 2963 and 2930 cm−1.
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Figure 3. Characteristics of gPdNPs synthesized using the culture liquid of a 3-day yeast culture:
(a) and (b) fluorescence images and (c) FTIR spectra.

The FTIR results proved that the gNPs are products of an interaction of metallic NPs generated in
the RM with organic molecules from the culture liquid which contains metabolites of living cells.

3.2. Biosensor Evaluation

3.2.1. Laccase-Based Amperometric Biosensors

The laboratory prototypes of laccase-based ABSs were developed as described in Section 2.3,
including a control electrode (laccase/GE) and a modified one with green-synthesized Pd
(laccase-gPdNPs/GE). Both ABSs were tested using two laccase substrates: bisphenol A (BP) and ABTS.

Figure 4 shows electrochemical characteristics of the laccase-based ABSs, namely chronoamperograms
(Figure 4a) and calibration curves (Figure 4a,b) of the responses to increasing concentrations
of BP, for both bioelectrodes—control (laccase/GE) and modified with green-synthesized Pd
(laccase-gPdNPs/GE). According to the graphs presented in Figure 4b, maximal current responses
on BP at substrate saturation (Imax) and the apparent Michaelis–Menten constant (KM

app) to BP as
a laccase substrate were estimated for both ABSs. As shown in the calibration curves (Figure 4b),
the control ABS has a higher Imax and a 2.5-fold lower KM

app compared to the modified bioelectrode
(laccase-gPdNPs/GE).

Following the obtained chronoamperograms for the ABSs, the calibration curves for BP
determination were plotted as illustrated in Figure 4c. The linear ranges for BP determination and
sensitivities were calculated for both bioelectrodes. Analytical characteristics of the developed ABSs
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are summarized in Table 1. As shown, the linear range for BP determination is 1.4-fold larger for
laccase-gPdNPs/GE than for laccase-GE. The sensitivity of the ABS was calculated, taking the slope (B)
of the calibration curve and the surface area of the electrode used (7.3 mm2) into account. As shown in
the Table 1, laccase-gPdNPs/GE is 1.7-fold less sensitive to BP than the control ABS.
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The developed laccase-based ABSs were tested with another laccase substrate, ABTS, as a non-phenolic
redox mediator. Figure 5 presents electrochemical characteristics, namely chronoamperograms of the
responses to increasing concentrations of ABTS (Figure 5a) and calibration curves (Figure 5b,c) for
the developed laccase-based ABSs. Imax and KM

app to ABTS were estimated for both ABSs (Figure 5b).
As shown in the calibration curves (Figure 5b), the control ABS has a 1.3-fold higher Imax and a 1.2-fold
lower KM

app compared to laccase-gPdNPs/GE. It is known from the literature that the KM of ABTS
for free laccase from Trametes versicolor in solution is 0.29 mM. With the ABS, the KM

app for ABTS was
similar (Table 1).
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Table 1. Analytical characteristics of the developed laccase-based amperometric biosensors.

Bioelectrode Substrate KM
app, mM Imax, µA Linear Range, up

to mM
Sensitivity,

A·M−1·m−2 LOD 1, mM

Laccase/GE BP 0.73 ± 0.05 1.85 ± 0.04 0.35 232 0.050
Laccase-gPdNPs/GE BP 1.80 ± 0.16 1.86 ± 0.05 0.50 137 0.145

Laccase/GE ABTS 0.28 ± 0.03 19.16 ± 0.91 0.20 5780 0.008
Laccase-gPdNPs/GE ABTS 0.32 ± 0.02 14.29 ± 0.28 0.25 3620 0.014

1 LOD—limit of detection.
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Figure 5. Chronoamperograms (a), dependence of the amperometric response on increasing
concentrations of ABTS (b) and calibration curves (c) for laccase-based GE electrodes: control (1)
and modified with gPdNPs (2). Conditions: working potential −100 mV vs Ag/AgCl (reference
electrode), 50 mM acetate buffer, pH 4.5.

Following the chronoamperograms, calibration curves for ABTS determination of the developed
ABSs were plotted as illustrated in Figure 5c. The linear ranges for ABTS determination and sensitivities
of both bioelectrodes were calculated. Analytical characteristics of the developed ABSs are summarized
in Table 1. Laccase-gPdNPs/GE has a 1.5-fold smaller sensitivity, but a 1.2-fold broader linear range
compared to control laccase-GE. Therefore, the tendency of laccase-based-ABSs is as follows: electrode
modification with gPdNPs results in lower sensitivity and higher LP for different substrates.
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Numerous biosensors based on laccase from T. versicolor have been constructed [63–70]. Different
methods of enzyme immobilization on multi-walled carbon nanotube electrodes were tested [63,64].
All tested bioelectrodes were rather sensitive to ABTS, had a limited linear range (up to 0.060 mM)
and a low Imax (up to 11 µA). Laccase from T. pubescens immobilized on an electrode [66] had a 2-fold
higher sensitivity and a similar KM

app value, but a 2.5-fold lower top of the linear range compared with
the currently proposed laccase-gPdNPs/GE (Table 1).

KM
app values of laccase from T. versicolor immobilized on control or modified graphite electrodes

are comparable to the KM of laccases from other fungi [67]. It should be noted that laccase can
communicate with the electrode through direct electron transfer, mediated by enzyme substrates.
The similarity of the KM obtained for different substrates with free laccases in solutions and
immobilized on the electrode surface confirms that the physical binding of the enzyme on electrodes
does not have a fundamental effect on the native structure of the enzyme.

3.2.2. AO-Based ABSs

AO is an oxidoreductase with a wide substrate specificity. The enzyme has the highest affinity
to methanol (100%) and is less sensitive to ethanol (50%), propanol (15%), formaldehyde (12%) and
butanol (6%) [71]. We have previously reported the development of bi-enzyme AO/HRP-based ABSs
sensitive to primary alcohols [71–75]. AO preparations were isolated from the selected mutant strain
O. polymorpha C-105 [75] or mutated AO with a decreased affinity toward substrates [73]. In the current
research, we tested the characteristics of bioelectrodes based on yeast AO and green-synthesized Pd
(AO/HRP-gPdNPs/GE) compared to a control electrode without using NPs—(AO/HRP-GE). Both
ABSs were tested on methanol.

Analytes that are structurally similar to methanol, namely ethanol and formaldehyde, also give
significant amperometric signals. Figure SI.2 (Supplementary Information) presents the results of the
selectivity test for AO/HRP-gPdNPs/GE. It can be seen that the intensity of the amperometric signal
of ethanol is 40% and the signal of formaldehyde is ca. 15% of the methanol signal. This result is not
surprising, in light of the above-mentioned ability of AO to oxidize these analytes. The results of the
stability test for the AO-based bioelectrodes (Figure SI.3, Supplementary information) demonstrate that
AO/HRP-gPdNPs/GE immersed in 50 mM phosphate buffer, pH 7.5, for 3 days had a higher storage
stability than the unmodified graphite electrode with immobilized alcohol oxidase and horseradish
peroxidase (AO/HRP/GE).

Figure 6 presents electrochemical characteristics of AO/HRP-based ABSs, namely calibration
curves (Figure 6a,b) of responses to increasing methanol concentrations. According to Figure 6a and
Table 2, the control AO-based ABS has 2.9-fold higher Imax, 1.4-fold higher KM

app and 3.7-fold higher
sensitivity to methanol compared to the modified bioelectrode. It is worth mentioning that both
KM

app values are higher compared to the KM of mM in solution (0.58 mM) [58]. The advantages of
the constructed AO/HRP-gPdNPs/GE are as follows: a 1.6-fold broader linear range of methanol
determination and higher stability than the control ABS. When compared to AO/HRP-EDP/GE [71],
AO/HRP-gPdNPs/GE demonstrates a similar linear range, a lower Imax (25-fold) and lower sensitivity
(4.7-fold), but a higher KM

app (1.3-fold).
Therefore, in our research we proved the possibility of using gNPs as enzyme carriers for

construction of ABSs. It was shown that gNPS-based bioelectrodes, although less sensitive, have
a broader linear range and prolonged storage stability compared to control ABSs. The achieved
characteristics of these ABSs are desirable for enzymes with analytical importance that have a very
high affinity for their substrates, for example laccase and AO. In this case, lower sensitivity is not a
critical parameter for the ABSs. Use of gNPs-modified bioelectrodes enables simplifying and increasing
the precision of the analytical procedure by avoiding additional dilutions of tested samples.
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Table 2. Analytical characteristics of the developed methanol-sensitive amperometric biosensors.

Bioelectrode KM
app, mM Imax, µA Linear Range,

up to mM
Sensitivity,

A·M−1·m−2 LOD 2, mM

AO/HRP/GE 0.88 ± 0.05 0.45 ± 0.03 0.5 52 0.005
AO/HRP-gPdNPs/GE 0.64 ± 0.02 0.16 ± 0.01 0.8 14 0.011

AO/HRP-EDP 1/GE [71] 0.48 4 1 66 ND 3

1 EDP—Electrodeposition paint; 2 LOD—limit of detection; 3 ND—ot determined.

4. Conclusions

In our research, we demonstrated the possibility of developing reagent-less enzyme-based
amperometric biosensors using gNPs. Extracellular metabolites of the thermotolerant yeast
Ogataea polymorpha were shown to be a promising cost-effective tool for obtaining gNPs of noble
and transition metals. Several gNPs were synthesized and characterized. Yeast AO and fungal
laccase were immobilized on the surfaces of graphite electrodes, modified by the most effective
enzyme carrier, gPdNPs. Analytical characteristics of the developed bioelectrodes were studied and
compared. It was shown that bioelectrodes modified with gPdNPs have lower sensitivities to their
substrates, but broader linear ranges of their detection and higher storage stabilities, than unmodified
control electrodes. Such bioelectrode characteristics are desirable for enzymes which have a very high
sensitivity for their substrates, because before testing, the corresponding samples must be very dilute,
which is a problem during on-line control of real samples.

The advantage of the “green” approach is rapid growth of the yeast cells with a high-yield of
pure gNPs surrounded by organic compounds that provides the anti-aggregative effect on metallic
gNPs. Use of waste yeast cultivation liquid may afford an essential economic effect of green synthesis
of NPs, which can be useful as carriers of enzymes and cells in biosensors and biofuel cells.
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Abbreviations

NPs Nanoparticles
gNPs Nanoparticles obtained via green synthesis
gPdNPs Pd-based gNPs
gCr2O3NPs Cr2O3-based gNPs
AO Alcohol oxidase
HRP Horseradish peroxidase
ABS Amperometric biosensor
GE Graphite electrode
ABTS 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt
PB Phosphate buffer
SEM Scanning electron microscope
SEM-XRM Scanning electron microscopy coupled with X-ray microanalysis
FM Fluorescence microscope
RM Reaction mixture
FTIR Fourier transform infrared spectroscopy
BP Bisphenol A
KM

app Michaelis–Menten constant
Imax Maximal current response on tested analyte at substrate saturation
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