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Abstract: In this study, using electrolytic reducing ionic water (S-100®), a novel surface treatment
method safely and easily modifying the surface properties was evaluated in vitro and in vivo.
Ti-6Al-4V disks were washed and the disks were kept standing on a clean bench for one and four
weeks for aging. These disks were immersed in S-100® (S-100 group), immersed in ultra-pure water
(Control group), or irradiated with ultraviolet light (UV group), and surface analysis, cell experiment,
and animal experiment were performed using these disks. The titanium surface became hydrophilic
in the S-100 group and the amount of protein adsorption and cell adhesion rate were improved
in vitro. In vivo, new bone formation was noted around the disk. These findings suggested that
surface treatment with S-100® adds bioactivity to the biologically aged titanium surface. We are
planning to further investigate it and accumulate evidence for clinical application.
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1. Introduction

Dental implants are now widely used as a prosthodontic treatment for missing teeth, and products
with various surface properties are commercially available. Titanium implants developed early had
machined mirror polished surfaces, but it has been clarified that blasted and acid-treated moderately
rough surfaces increase protein adsorption and cell adhesion, being advantageous for osseointegration,
and these became the current mainstream [1,2].

However, it has recently been reported that biological aging, representing decreases in
hydrophilicity and protein adsorption due to adherence of carbon and nitrogen in the air to the titanium
implant surface with time, influences osseointegration [3]. This is caused by a decrease in hydrophilicity
and changes in the surface electrical potential due to reduced surface energy by adherence with
carbohydrates in the air to the titanium surface. It has been reported that as the surface becomes
hydrophobic, adsorption of blood adhesion protein, such as fibronectin, significantly decreases
compared with adsorption to the hydrophilic surface [4], and this is considered to influence the
bone–implant contact ratio (BIC) at an early stage of the implant placement [5–7]. This hydrophilicity
of the titanium surface is evaluated based on the contact angle, and a surface with a contact angle
smaller than 60◦ and 5◦ or smaller are regarded as hydrophilic and superhydrophilic, respectively [3].
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It has also been reported that the speed of change to hydrophobic increases as the surface roughness
increases [4]. Furthermore, electrical polarity decreases on hydrophobic metal surfaces, to which
positively charged ions, such as Ca2+, and negatively charged cells do not readily adhere [1,8,9].

Against this biological aging of the titanium surface, various countermeasures have recently
been taken. The photofunctionalization technique, modifying the titanium surface to make it
superhydrophilic by ultraviolet (UV) irradiation [3], and a method to prevent exposure to the air
by enclosing implants in saline at the time of factory shipment [10] have been investigated, developed,
and clinically used. In photofunctionalization, carbohydrates adhered to the titanium surface are
degraded by reactive oxygen generated by UV irradiation and the surface property is changed to
superhydrophilic. As a result, elevation of the maximum value of BIC to nearly 100% from the normal
value, 45% ± 16% or 50%–75%, has been reported [1,5].

On the other hand, we have developed and reported an original technique in which aged Ti-6Al-4V
disks were immersed in 3% H2O2 and treated with hydrothermal oxidation at 121◦C /0.2 MPa
for 20 min using an autoclave to form a new titanium oxide layer with an about 90 nm thickness,
changing the titanium surface to hydrophilic [11]. Using this method, a hydrophilic titanium surface
was acquired and protein adsorption and cell adhesion increased. However, this method had the
disadvantage that it changes the original titanium surface microstructure.

In this study, to safely and easily improve biological aging, we focused on electrolytic reducing
ionic water (S-100®) [12]. S-100® is special functional water containing abundant OH− ions and it
removes/cleans off adhering substances by inducing an electrical repulsion force between the adhering
substance and matrix. Therefore, in this study, we investigated whether surface treatment by S-100®

can easily remove pollutants such as carbon, which cause biological aging without changing the
surface structure of titanium.

2. Materials and Methods

2.1. Titanium Disk Treatment

For the titanium disk (Ti disk), mirror-polished Ti-6Al-4V disks with a 9.5 mm diameter and
1.0 mm thickness (Osaka Yakken, Osaka, Japan) were used. For pre-treatment, Ti disks were immersed
in ethanol, acetone, and double distilled water (DDW) and cleaned by ultrasonication for 10 min.
We defined the disk immediately after pre-treatment as “fresh”. Then, the disks were kept standing on
a clean bench for 1 and 4 weeks, followed by immersion for 3 min in S-100® (A. I. System Products,
Aichi, Japan) or DDW or irradiated with UV light using a 15 W germicidal lamp (λ = 253.7 nm, National,
Osaka, Japan) for 48 h on the clean bench designated as Control, S-100, and UV groups, respectively.

2.2. Trace Element Analysis

As the chemical composition of fresh and four-week aged Ti disk in the Control and S-100 groups,
trace elements were measured by wide (1300.00–0.00 eV, 20.000 s) and narrow (C1s: 298.00–278.00 eV,
N1s: 411.00–391.00 eV, O1s: 543.00–523.00 eV, Ti2p: 469.00–449.00 eV, 20.000 s) scanning of X-ray
photoelectron spectroscopy (XPS) (PHI-X Tool, ULVAC-PHI, Kanagawa, Japan) (n = 4).

2.3. Evaluation of Hydrophilicity

First, 0.5 µL of DDW was dripped on the fresh and one-week or four-week aged Ti disk surface.
Then, the contact angle was measured using a contact angle gauge (LSE-ME3, Nick, Saitama, Japan) to
evaluate hydrophilicity (n = 5).

2.4. Protein Adsorption Test

On the fresh and four-week aged Ti disk surfaces of the Control, S-100, and UV groups, 200 µL of
1.0 mg/mL bovine serum fibronectin was dripped and protein adsorption was measured after 24 h
using a protein assay kit (Bio-Rad protein assay kit, Bio-Rad Laboratories, Hercules, CA, USA).
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2.5. Cell Culture

An osteoblast-like cell line, MC3T3E-1 (Riken cell bank, Tsukuba, Japan), was cultured in
α-MEM (Nakarai, Kyoto, Japan) containing 10% fetal bovine serum (Biowest, Nuaillé, France) and 1%
penicillin-streptomycin (Life Technologies, Tokyo, Japan) at 37 ◦C in 5% CO2. The culture medium
was exchanged every 3 days.

2.6. Cell Adhesion Test

On the fresh and four-week aged Ti disks of the Control, S-100, and UV groups placed in a
24 well plate, 500 µL of MC3T3-E1 cells was seeded (4.0 × 104 cells/well). After incubation for
24 h, the cells were stained with rhodamine–phalloidin (Wako Pure Chemical, Osaka, Japan) and
4’,6-diamidino-2-phenylindole (DAPI, Nakarai, Kyoto, Japan) and observed under a confocal laser
microscope (LSM700, ZEISS, Tokyo, Japan). The area adhered to by stained cells was quantitated using
image analysis software (ImageJ, NIH, Bethesda, ML, USA).

2.7. Cell Proliferation Test

Cells were seeded on the fresh Ti disk surface under the same conditions as those of the cell
adhesion test and cell proliferation was measured after incubation for 24 and 72 h. CellTiter96®

(Promega KK, Madison, WI, USA) was added to the 24 well plates, the plates were incubated at
37◦C for 15 min to develop color, and the absorbance was measured at 490 nm wavelength using a
microplate reader (Bio-Rad Model 680, Bio-Rad Laboratories, Hercules, CA, USA).

2.8. Animal Experiment

All animal experiments were performed in accordance with the Guidelines for the Care and
Use of Laboratory Animals under the approval of the Animal Care Committee of the School of Life
Dentistry, Nippon Dental University (approval numbers 17–16). The combination of three anesthetics
(butorphanol tartrate, medetomidine hydrochloride, and midazolam) was intramuscularly injected
into the thigh of six New Zealand white rabbits for general anesthesia. After disinfecting the bilateral
thighs with povidone iodine, local anesthesia with 2% Xylocaine was administered. A skin incision was
made using a #15 scalpel, the muscle layer was dissected, and the periosteum was incised to expose the
femur. A groove with a 10.0 mm length, 1.0 mm width, and 10.0 mm depth was prepared in the femur
using an ultrasonic bone cutting machine (PIEZOSURGERY, Carasco, Italy) (Figure 1a). A four-week
aged Ti disk immersed in saline or S-100® for 3 min was placed in the groove (Figure 1b). The wound
was closed by suturing the periosteum with 5-0 VICRIL® and skin with 5-0 nylon. At 4 weeks after
placement, the rabbits were euthanized by overdosing pentobarbital sodium through the auricular
vein and the femur was excised. After micro computed tomography (CT) non-decalcified samples were
prepared from the excised femur and subjected to Villanueva bone staining. BIC within a 5-mm range
from the center to the bone marrow side of the disk was determined (Figure 2). BIC was calculated by
dividing the length of direct contact between the bone and disk by the disk circumference using ImageJ.

(BIC = Length of bone contact to the Ti disc surface/Length of the Ti disc surface)
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Figure 2. Schema of bone–implant contact (BIC) measurement range. (a) Length of the Ti disk surface
(black dotted line), (b) length of bone contact to the Ti disk surface (red arrow), and (c) new bone (blue
line area).

2.9. Statistical Analysis

The in vitro results were analyzed using one way layout analysis of variance followed by Tukey’s
test. The in vivo results were analyzed using the t-test.

3. Results

3.1. Trace Element Analysis

In wide measurement, C, O, and Ti were detected in both Control and S-100 groups. C decreased
and O increased in the S-100 group (Figure 3a). In narrow measurement, C decreased and O increased
in the C1s, O1s, N1s, and Ti2p measurement items in the S-100 group (Figure 3b).

3.2. Changes in Contact Angle Measurement

DDW dripped on the Ti disk was dome-shaped in the Control group, but it spread widely over
the Ti disk surface in the S-100 and UV groups, showing favorable wettability (Figure 4). The contact
angle increased with time in all groups and a significant difference was noted between the fresh
and one-week aged disks and between the fresh and four-week aged disks in the Control group.
In addition, the value was significantly smaller in the S-100 and UV groups than in the Control group
at all measurement time-points. On comparison between the S-100 and UV groups, the value was
significantly smaller in the UV group at fresh and 1 week, but no significant difference was noted at
4 weeks (Figure 5).
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3.3. Protein Adsorption

The value was significantly higher in the UV group than in the Control group at fresh, but
no significant difference was noted between the UV and S-100 groups. At 4 weeks, the value was
significantly higher in the S-100 and UV groups than in the Control group (Figure 6).
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3.4. Cell Adhesion

MC3T3-E1 cells extending cell processes on all over the Ti disk was noted in the S-100 group
(Figure 7). The cell attachment area was significantly larger in the UV group than in the Control and
S-100 groups at fresh, whereas it was significantly larger in the S-100 and UV groups than in the
Control group at 4 weeks (Figure 8).
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Figure 7. Cell adhesion (x10), 4’,6-diamidino-2-phenylindole (DAPI) rhodamine staining.
(a) Control/fresh, (b) S-100/fresh, (c) UV/fresh, (d) Control/4 weeks, (e) S-100/4 weeks, (f) UV/4
weeks. 1: DAPI, 2: rhodamine–phalloidin, 3: DAPI + rhodamine–phalloidin (scale bar = 100 µm).
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3.5. Cell Proliferation

At 24 h, the proliferation ability was significantly higher in the S-100 and UV groups than in the
Control group. At 72 h, the ability was significantly higher in the UV group than in the Control and
S-100 groups (Figure 9).
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3.6. Animal Experiment

On micro CT, active new bone formation was noted around the Ti disk on the bone marrow side
in the S-100 group compared with that in the Control group (Figure 10). On Villanueva bone staining,
many osteoid fragments stained red purple were noted on the bone marrow side of the disk in the
S-100 group compared with that in the Control group (Figure 11). In addition, the BIC value was
significantly higher in the S-100 group than in the Control group (Figure 12).
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4. Discussion

It is considered that the implant surface properties affect behaviors of cells and proteins necessary
to acquire osseointegration, and biological aging of titanium has been clarified to decrease protein
adsorption and cell adhesion to the Ti surface [1,4,13]. On this basis, surface modification, such as
photofunctionalization, is performed and the implant surface made hydrophobic by biological aging is
cleaned and returned to hydrophilic [5]. Recently, commercial implants have been given an original
surface morphology of each company, and in some products, fixture is stored in saline to block
exposure to the air to prevent biological aging [10]. Although this photofunctionalization may be
effective to prevent biological aging of titanium, there are several problems, such as the fact that the
UV is expensive dedicated equipment and long operation times are necessary.

Thus, we designed and evaluated a new treatment method capable of modifying the surface
easily within a short time using no special equipment even in a general dental clinic. S-100® used
in this study is special functional water containing abundant OH− ions [12], which detach/clean off
adhering substances by inducing an electrical repulsion force between the adhering substances and
matrix. We considered that the surface can be cleaned and modified utilizing this action.

Regarding the aging of titanium, it has been clarified that trace elements in the air, such as carbon,
adhere to the titanium surface and decrease the surface polarity, and the surface becomes hydrophobic
as the surface energy decreases [3,9]. The percentage of carbon differed between the Control and
S-100 groups on trace element analysis, suggesting that acquisition of hydrophilicity by treatment with
S-100® was associated with removal of carbon and the increase in oxygen was the result of exposure of
the titanium oxide layer of the titanium surface by removal of carbon.

The titanium implant surface is hydrophilic and having polarity immediately after processing
and adhesion protein can bind to it directly or via Ca2+ [3,13], but polarity is lost as carbohydrates in
the air adhere to the titanium surface and the contact angle increases to 60◦ or greater, with which the
surface becomes hydrophobic and protein adsorption decreases. When photofunctionalization was
applied to the surface, the contact angle decreased to below 5◦, being superhydrophilic [3]. In our
study, the results of contact angle measurement performed as evaluation of hydrophilicity clarified
that S-100 treatment decreased the contact angle and the surface was changed from hydrophobic
to hydrophilic. However, the S-100 treatment could not improve superhydrophilicity such as the
UV treatment. This may have been because of the fact that introduction of the hydroxyl groups
to the titanium surface by the photocatalytic effect was combined in the principle of acquisition of
superhydrophilicity by photofunctionalization, in addition to degradation of carbohydrates by reactive
oxygen [14,15]. However, in our preliminary experiment in which the sandblasted surface was treated
with S-100®, the contact angle decreased to below 5◦, acquiring superhydrophilicity.

On the protein adsorption test, a significant difference was noted between fresh and 4 weeks
in the Control group, clarifying that protein adsorption decreased as a result of aging-associated
hydrophobicity of the surface at 4 weeks compared with that at fresh. In addition, no significant
difference was noted between the Control and S-100 groups at fresh, but the surface changed to
hydrophobic in the Control group at 4 weeks after progression of aging and the amount of protein
adsorption was higher in the S-100 and UV groups with a hydrophilic surface. It was also suggested
that because the hydroxyl group mediates protein binding in adsorption to the titanium surface [16],
while hydrophilicity was acquired through removal of carbohydrates in the S-100 group, in the UV
group, photofunctionalization not only degraded carbohydrates, but also introduced the hydroxyl
group into the surface, resulting in a higher amount of adsorption than that in the S-100 group.

On the cell adhesion test, the cell attachment area was significantly larger in the UV group than
in the Control and S-100 groups at fresh and in the S-100 and UV groups than in the Control group
at 4 weeks. It has been reported that cell adhesion decreases on the surface with aging-associated
hydrophobicity and influences the subsequent cell response and contributes to proliferation and
differentiation of osteoblasts [16,17]. In our study, carbon adhered to and decreased the surface energy
in the Control group and changes in the surface electrical potential made cells unable to readily adhere
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to the titanium surface, whereas many cells adhered in the S-100 and UV groups, which may have
been because of an increase in the surface energy due to removal of carbon and changes in the surface
electrical potential. On rhodamine–phalloidin staining, the cellular skeleton was thin and a space was
present between cells in the Control group, whereas the cellular skeleton was thick and cells densely
proliferated in the S-100 group and cells were more densely present in the UV group.

On the cell proliferation test, the value was significantly higher in the S-100 and UV groups than
in the Control group at 24 h and significantly higher in the UV group than in the Control and S-100
groups at 72 h. On the basis of the fact that surface hydrophilicity contributes to early cell adhesion [17],
the value may have been high in the S-100 and UV groups to which hydrophilicity was added at 24 h,
and the value was higher in the UV group with superhydrophilicity at 72 h.

On the animal experiment, BIC was significantly higher in the S-100 group than in the Control
group. It has been reported that hydrophilicity of the titanium surface is involved in adsorption of
various proteins and cytokines influencing osseointegration and cell adhesion, decreasing BIC [18–21],
which may have been associated with the higher BIC value in the hydrophilic S-100 group than that in
the hydrophobic Control group. Active new bone formation was observed around the Ti disk in the
S-100 group compared with that in the Control group. To acquire sufficient osseointegration of implant
surface, appropriate bone quality, fixture microstructure, and bone bioactivity are important [22–25].
In this study, mirror-polished titanium discs were placed in insufficient areas of cancellous bone. Thus,
the BIC of the S-100 treatment was twice as high as the control—its value was about 40%. However,
if micro rough surface titanium disks were used, the BIC will be further increased.

In addition, it have been reported that UV treated titanium surface showed significantly higher
BIC in vivo study [3,21]. In this in vitro study, UV treatment showed significantly higher bioactivity
than the S-100 treatment. Even though UV treated disks were used for in vivo study, the BIC of UV
treated disk was considered to be significantly higher than the S-100 treatment. Furthermore, given
the reduction in the number of animals, UV treated titanium disks were not used in this in vivo study.

For implant surface treatment, installment of special equipment in a disinfection room of the
dental clinic is necessary [26]. The results of the in vitro tests clarified that surface activity almost
equivalent to that acquired by photofunctionalization was acquired by short-time S-100 treatment.
In addition, the in vivo test shows that biological aging improves and promotes new bone formation.
These results suggest that this treatment method functionalizes the Ti surface at chair-side easily at a
low cost with space-saving. We are planning to perform mechanical and histological investigations
in vivo to accumulate evidence aiming at clinical application.

5. Conclusions

A new titanium surface modification method using special electrolytic reducing ionic water
containing abundant OH− ions was investigated and its usefulness as a low-cost simple surface
treatment method was indicated. It was suggested that application of this treatment immediately
before the use of implant placement promotes osseointegration at an early stage, shortening the
healing period.
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