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Abstract: The study of thin-bed seismic phenomena is important in crustal, exploration and
engineering seismology. Presently, seismic reflectivity theories based on single-interface assumption
are widely used though they are only suitable for thick deposits. Thin-bed reflectivity theories
are established on complex propagator matrices and are difficult to be applied to reveal thin-bed
properties directly. Therefore, an approximation of thin-bed PP-wave reflection coefficients (RPP) is
derived in this paper. First, the relationship between thin-bed RPP and incidence angles is analyzed
through series expansion method. For PP-wave, its reflection coefficients are even power series
functions of sine incidence angles. Then, for small incidence, RPP of the thin bed is further simplified
into a second-order series approximation with respect to the sine incidence angles. Simulations and
accuracy analyses of the approximate formula show that approximation errors are smaller than 5% as
the incidence angles smaller than 20 degrees. Based on this approximate formula, an approach is given
for estimating thin-bed properties including P-wave impedance ratios and thickness. The estimation
approach is applied in properties estimation of a thin bed model. Perfect performances of the model
example show the future potentiality of the approximate formula in thin-bed Amplitude-Versus-Offset
(AVO) analysis and inversion.

Keywords: thin bed; PP-wave reflection coefficients; approximate formula; series expansion method

1. Introduction

Seismic wave propagation in thin-bed models has been a hot topic of interest to crustal, exploration
and engineering seismologists for many years [1–3]. In geodynamics study, stable deposited basins
of the upper crust are thin-bed models under low-frequency seismic detection [1]. In fossil energy
exploration, large or relatively simple structural reservoirs have been widely explored and become
depleted and exhausted at present [4]. Locating and detecting the existence of stratigraphic lithologic
reservoirs are gaining more and more attention. For some sedimentary basins, such as Williston Basin
in America [5–7], Alberta Basin in Canada [8,9], SongLiao and Tarim Basins in China [10,11], lithologic
reservoirs are composed of thin beds with the thicknesses below the vertical resolution limits [12].
Meanwhile, thin-bed problems are also faced in engineering exploration, such as monitoring CO2

storage at Sleipner in the Norwegian North Sea [2,13–15]. Therefore, seismic responses of a thin bed,
which carry information of stratigraphic structure, lithology and pore fluid, are significantly important
to crustal, exploration and engineering research.
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Differed significantly from single-interface cases, seismic responses of a thin bed are composed
of reflections from the top and bottom interfaces, including the interbed multiples and converted
reflections [16,17]. Therefore, current AVO analysis techniques based on the Zoeppritz equations and
their corresponding approximations for a single interface are generally inefficient for the thin-bed
reflections [18]. The reflectivity theory and seismic characteristics of thin-bed models have been
discussed for several decades [12,19–25].

Normal seismic responses of a thin bed are widely discussed and mainly focused on the
relationship of reflected amplitude and thin-bed thickness [12,24–27]. For arbitrary incidence, Liu and
Schmitt derived an analytical approximation of a thin bed in acoustic media without considering the
interbed multiples [20]. Rubino and Velis extended thin-bed AVO analysis from acoustic media to
elastic media based on Liu and Schmitt’s work [21]. Yang et al. gave approximate formulas of thin-bed
reflections in elastic media under the assumptions of small incidence angles and weak impedance
contrasts [22]. These approximations show as relatively compact forms, but all ignore the contributions
of interbed multiples and converted waves. Juhlin and Young ever pointed out when the contrast of
elastic properties between the thin layer and its surrounding rock increases, it is necessary to consider
the contributions of the interbed multiples and converted waves [17].

The contributions of interbed waves on thin-bed reflections have been considered by many
researchers. Thomson [28] and Haskell [29] proposed a matrix method that transfers displacements and
stresses through successive layers in multi-layered media. Brekhovskikh established the propagator
matrices of displacements and stresses in multi-layered media as the seismic waves defined by
displacement potential functions [19]. Restrepo et al. presented a closed-form Green’s function in the
frequency wavenumber domain for a layered, elastic half-space model for SH wave propagation [30].
Yang et al. derived displacement reflection/transmission (R/T) coefficient equations of a thin bed
and simplified them into pseudo-Zoeppritz equations under thin-bed assumption [23]. Kumar et al.
presented reflection coefficients due to incident plane SH-wave at an anisotropic magnetoelastic layer
sandwiched between two inhomogeneous viscoelastic half-spaces [31]. Sahu et al. gave reflection and
transmission of plane waves through isotropic medium sandwiched between two highly anisotropic
half-spaces [32]. Paswan et al. studied the reflection and transmission of a plane wave through a
fluid layer of finite width sandwiched between two dissimilar monoclinic elastic half-spaces [33].
Singh et al. gave reflection and transmission matrix equations of P-wave at the interfaces of the
layered sandwiched model comprised of a water layer between an upper ice half-space and a lower
isotropic elastic half-space [34]. These matrix formulas considered all wave modes including interbed
multiple waves and converted waves. However, to a certain extent, the complex forms of matrix
equations limited their application in thin-bed AVO analysis and inversion. Therefore, thin-bed
reflected approximate formulas, which consider the effects of all wave modes and have relatively
compact forms simultaneously, are needed for thin-bed AVO analysis and inversion.

In this paper, we first propose a series approximation of thin-bed RPP under the small-incidence
assumption, and test accuracy of the approximate formula with four representative thin-bed models
through numerical analysis. And then we give an approach to estimate the thin-bed properties with
this approximation.

2. R/T Coefficients Expressed by Series Functions

For a thin bed in elastic isotropic media, as shown in Figure 1, the exact displacement R/T
coefficient equations for the P-wave incident are as follows [23],

M
[

RPP RPS TPP TPS

]T
= n (1)

where RPP, RPS, TPP, TPS are displacement R/T coefficients of P-waves and converted S-waves,
respectively; M is a 4 × 4 matrix, n is a 4 × 1 vector, which is presented in Appendix A in detail.
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Figure 1. A thin-bed model with two horizontal interfaces. P is incident P-wave, PS is reflected or 

transmitted S-wave, PP is reflected or transmitted P-wave; h is thin-bed thickness; θ is incidence or 

reflected angle of P-wave, θ3 is P-wave transmitted angle, δ1 and δ3 are S-wave reflected and 

transmitted angles respectively; vP and vS are P-wave and S-wave velocities respectively, ρ is density, 

and their subscripts 1, 2, 3 refer to three layers of the thin bed respectively. 

According to Cramer’s rule, the displacement R/T coefficients RPP, RPS, TPP, TPS can be calculated. 

When the thin-bed thickness is equal to zero, Equation (1) will be reduced to that for R/T coefficients 

equations of a single interface between the thin-bed roof and floor, which is consistent with the 

Zoeppritz equations [35]. 

From Equation (1), seismic theoretical characteristics analysis of a thin bed is easily achieved. 

However, complicated matrix calculations prevent its application in thin-bed AVO analysis and 

inversion. To solve Equation (1) approximately, the trigonometric function parameters are rewritten 

as a series expansion of sine incidence angle (see Appendix B).  

Substituting Equations (B1)–(B17) into Equation (1), the elements of M and n are all expressed 

by series functions of sine incidence angle (sinθ). If the elements are even or odd series functions of 
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where A and B are coefficients of series functions. 

Figure 1. A thin-bed model with two horizontal interfaces. P is incident P-wave, PS is reflected or
transmitted S-wave, PP is reflected or transmitted P-wave; h is thin-bed thickness; θ is incidence
or reflected angle of P-wave, θ3 is P-wave transmitted angle, δ1 and δ3 are S-wave reflected and
transmitted angles respectively; vP and vS are P-wave and S-wave velocities respectively, ρ is density,
and their subscripts 1, 2, 3 refer to three layers of the thin bed respectively.

According to Cramer’s rule, the displacement R/T coefficients RPP, RPS, TPP, TPS can be calculated.
When the thin-bed thickness is equal to zero, Equation (1) will be reduced to that for R/T coefficients
equations of a single interface between the thin-bed roof and floor, which is consistent with the
Zoeppritz equations [35].

From Equation (1), seismic theoretical characteristics analysis of a thin bed is easily achieved.
However, complicated matrix calculations prevent its application in thin-bed AVO analysis and
inversion. To solve Equation (1) approximately, the trigonometric function parameters are rewritten as
a series expansion of sine incidence angle (see Appendix B).

Substituting Equations (A18)–(A34) into Equation (1), the elements of M and n are all expressed
by series functions of sine incidence angle (sinθ). If the elements are even or odd series functions of
sinθ, we mark them by ‘even’ or ‘odd’ in Equation (1) respectively as follows,

odd even odd even
even odd even odd
even odd even odd
odd even odd even




RPP
RPS
TPP
TPS

 =


odd
even
even
odd

 (2)

From Equation (2), it can be seen that RPP, TPP are even power series functions of sinθ, while RPS,
TPS are odd power series functions of sinθ. Therefore, RPP, RPS, TPP, TPS can be expressed by series
functions of sinθ as follows, 

RPP =
∞
∑

n=0
A2n sin2n θ

RPS =
∞
∑

n=0
A2n+1 sin2n+1 θ

TPP =
∞
∑

n=0
B2n sin2n θ

TPS =
∞
∑

n=0
B2n+1 sin2n+1 θ

(3)

where A and B are coefficients of series functions.
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3. Approximate Formula of PP-Wave Reflections

For small incidence, sinnθ decreases rapidly with increasing n in Equation (3). RPP can be
simplified into a second-order series approximation of sine incidence angle via a series truncation
procedure as follows,

RPP ≈ A0 + A2 sin2 θ (4)

Figure 2 shows the simplified procedure of the approximate formula from the exact R/T
coefficient equation, i.e., Equation (1), in detail. Taking sinθ as an independent variable, we can
obtain A0, B0, A1, B1, A2 in turn from the constant term, linear term and quadratic term of sinθ in
Equation (1), respectively.
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Figure 2. Flowchart of the second-order series approximation simplified from the thin-bed exact R/T
coefficient equations.

Considering the constant term of sine incidence angle in Equation (1), i.e., normal incidence,
then RPP = A0, TPP = B0, RPS = 0, TPS = 0. Equation (1) is simplified as

(
cos τ + j zP1

zP2
sin τ

)
A0 + B0 = cos τ − j zP1

zP2
sin τ(

cos τ + j zP2
zP1

sin τ
)

A0 − zP3
zP1

B0 = j zP2
zP1

sin τ − cos τ
(5)

where τ = ωh/vP2, zP = ρvP are P-wave impedances and their subscripts 1,2,3 indicate three layers of
the single thin bed, respectively; j is an imaginary symbol.
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Solving Equation (5), there are

A0 =

[(
zP3

zP1
− 1
)

cos τ + j
(

zP2

zP1
− zP3

zP2

)
sin τ

]
/m0 (6a)

B0 = 2/m0 (6b)

with m0 = (zP3/zP1 + 1)cosτ + j(zP2/zP1 + zP3/zP2)sinτ.
When the thickness is equal to zero, the thin-bed model becomes a single interface constituted by

the roof and floor of the original thin bed. Equation (6) is simplified as

A0 =
zP3 − zP1

zP3 + zP1
(7a)

B0 =
2zP1

zP3 + zP1
(7b)

which are consistent with the normal reflection and transmission coefficients given by Zoeppritz [35],
respectively.

Considering the linear term of sine incidence angle in Equation (1), then RPP = A0, TPP = B0,
RPS = A1sinθ, TPS = B1sinθ. Equation (1) is simplified as

a1 A1 − B1 =
(

a3
d1
− cos q

)
(1 + A0) + l1l2B0

+j
(

l1 sin τ + 2
r1

zS1
zS2

sin q− 2l1
r2

sin q
)
(1− A0)

a2 A1 +
zS3
zS1

B1 = j
(

a5 − zS2
zS1

sin q
)
(1 + A0)

+
(

2
r1

cos q− 2a3l1
r2

zS2
zS1

)
(1− A0)− a4B0

(8)

where q = ωh/vS2, d1 = ρ2/ρ1; zS = ρvS are S-wave impedances, r = vP/vS are the ratios of P-wave
velocities to S-wave velocities, their subscripts 1, 2, 3 refer to three layers of the single thin bed
respectively. lk = vPk + 1/vPk are the ratios of the P-wave velocities in adjacent layers with k = 1, 2,
a1~a5 are presented in Appendix C.

Solving Equation (8), there are

A1 = 1
m1

[(
a3
d1
− cos q

)
zS3
zS1

+ j
(

a5 − zS2
zS1

sin q
)]

(1 + A0) +
1

m1

(
l1l2

zS3
zS1
− a4

)
B0

+ 1
m1

[(
1
r1
− l1

r2

zS2
zS1

)
a6 +

2l1
r2

cos τ zS2
zS1

+ jl1 sin τ zS3
zS1

]
(1− A0)

(9a)

and
B1 = 1

m1

(
1− a2a3

d1
+ ja1a5

)
(1 + A0)− 1

m1
[l1l2a2 + (cos q + j sin q)a4]B0

+ 1
m1

[
2
r1
− ja2l1 sin τ + 2l1

r2

zS2
zS1

(a1 cos τ − 1)
]
(1− A0)

(9b)

with m1 = (zS3/zS1 + 1)cosq + j(zS2/zS1 + zS3/zS2)sinq. a6 is given in Appendix C.
Considering the quadratic term of sine incidence angle in Equation (1), then RPP = A0 + A2sin2θ,

TPP = B0 + B2sin2θ, RPS = A1sinθ, TPS = B1sinθ. Equation (1) is simplified as(
cos τ + j zP1

zP2
sin τ

)
A2 + B2 =

(
b1 + jb3

zP1
zP2

)
(1 + A0)

+b6(1− A0) +
l2
1 l2

2
2 B0 +

l1l2
r3

B1

+

(
b1 +

1
r1

cos τ + a3
r1d1

+ j 2 sin τ
r2

1

zP1
zP2

)
A1

(10a)
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and (
cos τ + j zP1

zP2
sin τ

)
A2 + B2 =

(
b1 + jb3

zP1
zP2

)
(1 + A0)

+b6(1− A0) +
l2
1 l2

2
2 B0 +

l1l2
r3

B1

+

(
b1 +

1
r1

cos τ + a3
r1d1

+ j 2 sin τ
r2

1

zP1
zP2

)
A1

(10b)

with b1~b6 are presented in Appendix C.
Solving Equation (10), there is

A2 = 1
m0

[
− l2

1
2 τ sin τ + 2 a3l2

1
r2

2
(d1 − 1) + 2

r2
1

cos τ + b1
zP3
zP1

+ jb3
zP3
zP2

]
(1 + A0)

+ 1
m0

(
b6

zP3
zP1

+ 2jb2l1
r2

1
+ jb4

zP2
zP1

)
(1− A0) +

b5
m0

[
l1l2

(
r2

3
4 − 1

)
B0 +

( r3
2 − 1

)
B1

]

+ 1
m0


(

b1 +
cos τ

r1

)
zP3
zP1

+ 2
r2

1
cos τ + l1a3

(
2
r2

2

zP2
zP1

+ 1
r1

zP3
zP2

)
+ 2j sin τ

r2
1

zP3
zP2

+ j sin τ
r1

zP2
zP1
− j b2l1

r1

A1

(11)

Equations (4) with (6a) and (11) constitute the wholly second-order series approximation of
thin-bed RPP, algorithmic steps of which are shown in Figure 3 detailly. The intercept and gradient
of the approximate formula are dependent on frequency, which is greatly different from those of a
single interface [36]. It is worthy to notice that, the approximate formula can be further simplified for
ultra-thin bed cases by introducing in the approximations of sinτ ≈ τ, sinq ≈ q, cosτ ≈ 1, and cosq ≈ 1.Appl. Sci. 2019, 9, 709 7 of 23 
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4. Accuracy Analysis

We tested the accuracy of the second-order series approximation on four representative thin-bed
models, including (1) high-impedance thin bed, (2) low-impedance thin bed, (3) low-to-high impedance
transition thin bed, and (4) high-to-low impedance transition thin bed. Table 1 lists rock properties of
these models, including P-wave velocity (vP), S-wave velocity (vS), density (ρ), the normal-incident
P-wave reflection coefficient of thin-bed top-interface (R1), as well as the normal-incident P-wave
reflection coefficient of thin-bed bottom-interface (R2).
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Table 1. Rock properties of thin-bed models, units of velocities and densities are m/s and
g/cm3, respectively.

Layer No. vP vS ρ R1 R2

Model 1
1 3000 1414 2.29 / /
2 3800 2103 2.43 0.1468 –0.1468
3 3000 1414 2.29 / /

Model 2
1 3000 1414 2.29 / /
2 2400 897 2.17 −0.1376 0.1376
3 3000 1414 2.29 / /

Model 3
1 3000 1414 2.29 / /
2 3200 1586 2.33 0.0409 0.0388
3 3400 1759 2.37 / /

Model 4
1 3400 1759 2.37 / /
2 3200 1586 2.33 −0.0388 –0.0409
3 3000 1414 2.29 / /

We compare the second-order series approximation and the true value of thin-bed RPP in
Figures 4–7 for Models 1–4 respectively. For a better understanding of differences between thin-bed
and single-interface responses, RPP of thin-bed top- and bottom- interfaces based on the Zoeppritz
equations are also curved in Figures 4–7. In the numerical analysis, the thin-bed thickness is set
as 3 m and incidence frequencies are set as 20, 30, and 40 Hz, respectively. Meanwhile, we plot
relative errors of RPP induced by the approximate formula under the small-incidence assumption for
Models 1–4 in Figure 8. Considering small-incidence assumption of the approximate formula, the
maximum incidence angle in all cases is set as 30 degrees. Due to that thin-bed RPP are complex valued,
we discuss them in terms of amplitude and phase components, respectively.

Figures 4 and 5 show RPP of Models 1 and 2 versus incidence angles, respectively. Models 1
and 2 are high-impedance or low-impedance thin beds with strong impedance contrasts. Destructive
interference effects cause that thin-bed reflected amplitudes are obviously lower than those of top- and
bottom-interfaces. Meanwhile, the thin-bed reflected phases are not constant zero or π as those of top-
and bottom-interfaces, respectively. Compared with the true RPP, the approximated values show a
similar change regularity that a larger incidence angle and a lower incidence frequency result in a lower
reflected amplitude. For incidence angles smaller than 20 degrees, approximate thin-bed amplitudes
are almost the same as the true values. When incidence angles are over 20 degrees, the approximate
thin-bed amplitudes are lower than the true values and show a larger deviation from the true values at
a larger incidence angle. The approximated phase is almost the same as the true phase in the angle
range from 0 to 30 degrees.

Figures 6 and 7 show RPP of Models 3 and 4 versus incidence angles, respectively. Models 3 and
4 are impedance transition thin beds with equal polarities, which differ from opposite polarities of
Models 1–2. Constructive interference effects cause that thin-bed reflected amplitudes are higher than
those of top- and bottom-interfaces. Compared with Models 1–2 cases, RPP’s amplitudes of Models
3 and 4 are less sensitive to frequency variation. The approximate Amplitude-Versus-Angle (AVA)
curves coincide with the true AVA curves for incidence angles smaller than 20 degrees and deviate
progressively from the true for incidence angles over 20 degrees. Comparison of Models 3 and 4 shows
that the former’s phases are nearly zero while these of the latter are nearly π.
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Figure 8 shows RPP’s relative errors caused by the approximate formula under the small-incidence
assumption. In the numerical analysis, thin-bed thickness varies from λ/100 to λ/8, where λ is the
P-wave wavelength in the middle layer. Approximate amplitude errors of Models 1–2 are less than
5% for incidence angles smaller than 20 degrees, and are less than 10% for incidence angles less than
25 degrees. When incidence angles are over 25 degrees, amplitude errors increase rapidly with an
incidence-angle increase. Phase errors are less than 10% for incidence angles smaller than 30 degrees.
For Models 3 and 4, amplitude accuracy by the approximate formula is higher than those of Models 1–2.
Approximate errors of Model 3 are less than 5% for incidence angles smaller than 25 degrees and are
less than 10% for incidence angles smaller than 29 degrees. For Model 4, amplitude errors versus
incidence angles have similar variation regularity with those of Model 3, while, phase errors are
smaller than 5% for incidence angles less than or equal to 30 degrees.

To sum up, thin-bed RPP are significantly different from the top- or bottom-interface RPP
calculated by the Zoeppritz equations. The second-order series approximation has high accuracy for
incidence angles less than 20 degrees and deviates progressively from the true values over 20 degrees.
Correspondingly, the relative errors are less than 5% for incidence smaller than 20 degrees.
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Model 1, (b) phase of Model 1, (c) amplitude of Model 2, (d) phase of Model 2, (e) amplitude of Model 3,
(f) phase of Model 3, (g) amplitude of Model 4, and (h) phase of Model 4.

5. Application Example

Using the second-order series approximation, we built templates to estimate thin-bed properties,
including P-wave impedance ratios and thin-bed thickness. The templates are constituted by amplitude
and phase contour maps of RPP’s A0, A2 of 120 thin-bed models. Figure 9 shows the R1 and R2

distributions of 120 thin-bed models, which reveal that those 120 models include most of the cases for
thin-bed R1 and R2 ranging from −0.2 to 0.2. Meanwhile, those 120 models cover all types of thin-bed
models, i.e., high-impedance thin beds, low-impedance thin beds, high-to-low impedance transition
thin beds and low-to-high impedance transition thin beds, of which each type includes 30 models.
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Figure 10. A0’s amplitude of 120 thin-bed models with different thickness, R1 or R2. 

Figure 9. R1 and R2 distributions of 120 thin-bed models.

The thin-bed thickness of those 120 models is set as λ/10, λ/20, λ/30, λ/40, λ/50, λ/60, λ/70,
λ/80, λ/90, and λ/100. Using the second-order series approximation, we plot amplitudes and phases
contour maps of RPP’s A0, A2 of those 120 thin-beds at different R1, R2 and thicknesses. Taking the
cases of λ/10, λ/20, λ/40, and λ/60 for examples, the contour maps of A0 and A2 of those 120 thin-bed
models are shown in Figures 10–13 respectively. Considering that the coefficients A0 and A2 are
also complex valued, we discuss them in terms of amplitude and phase components, respectively.
The expressions of amplitude and phase of A0 and A2 are shown in Appendix D in detail.

Figures 10 and 11 show A0’s amplitude and phase of those 120 models versus R1 and R2,
respectively. For the λ/10 case, amplitude contours are similar to ellipses with the major axis along the
line R2 = −R1 and minor axis along the line R2 = R1. The amplitude increases with increasing R1 and
R2. The amplitude growth rate of thin-bed models with equal polarities is larger than opposite-polarity
cases, especially for a thinner bed. For the cases of thin beds with higher R1, R2 and thinner thickness,
the amplitude contours in the direction of major axis are approximately parallel to the line R2 = −R1.
A0’s phases show that a positive R2 results in a negative phase, while a negative R2 results in a positive
phase. For the same R2, a positive R1 results in a relatively smaller phase than that of a negative
R1 case.
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Figure 11. A0’s phase of 120 thin-bed models with different thickness, R1 or R2.

Figures 12 and 13 show A2’s amplitude and phase of those 120 models versus R1 and R2,
respectively. Compared with A0, A2 has a relatively higher amplitude and a completely different
phase variation. For A2, a positive R2 results in a positive phase, while a negative R2 results in a
negative phase.
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Model 5 
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Figure 13. A2’s phase of 120 thin-bed models with different thickness, R1 or R2.

When thin-bed R1 and R2 range from−0.2 to 0.2, thin-bed properties can be estimated based on the
templates of A0 and A2. Once the amplitude and phase values of A0 and A2 are obtained from thin-bed
AVA data, we can exhibit the corresponding contours in the templates and seek the intersections of
those contours. The intersection of the four contour curves, including those of amplitude and phase
of A0 and A2, indicates thin-bed R1, R2 and thickness. The P-wave impedance ratios at the top- and
bottom-interfaces of the thin bed can be obtained from R1, R2 as follows,

zP2

zP1
=

1 + R1

1− R1
(12)

and
zP3

zP2
=

1 + R2

1− R2
(13)

In order to illustrate the estimation approach clearly, we build up a testing thin-bed model, marked
as Model 5, whose parameters are listed in Table 2. For Model 5, amplitude and phase of A0 are 0.1006
and 0.9355 respectively, amplitude and phase of A2 are 0.2364 and −2.2545 respectively. We obtain the
corresponding contour lines in the amplitude and phase templates at different thicknesses. Taking
the cases of λ/10, λ/20, λ/40, and λ/60 for examples, we exhibit the contours lines of amplitude and
phase of A0 and A2 at fixed thicknesses, which are shown in Figure 14.

Table 2. Rock properties, A0 and A2 of the testing thin-bed model, units of velocities and densities are
m/s and g/cm3, respectively.

Layer No. vP vS ρ h R1 R2

Model 5

1 3000 1414 2.29 / / /
2 3440 1793 2.37 λ/10 0.0854 −0.0854
3 3000 1414 2.29 / / /

A0
Amplitude 0.1006 A2

Amplitude 0.2364
Phase 0.9355 Phase −2.2545
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Figure 14. A sketch map of properties estimations of Model 5.

In Figure 14, the four contour curves intersect at a point “p” approximately when the thin-bed
thickness is equal to λ/10. While there is no common intersect of the four contour curves for the other
thickness cases. Therefore, we estimate the thin-bed thickness is equal to λ/10, which is consistent
with the true value (λ/10). R1 and R2 are estimated through the coordinates of the intersect point
“p”, as R1 = 0.087 and R2 = −0.085. The estimated R1 and R2 are very close to those of Model 5
(R1 = 0.085, R2 = −0.085) respectively. Meanwhile, the estimated P-wave impedance ratios at the top-
and bottom-interfaces are 1.190 and 0.843, of which the relative errors are 0.32% and 0.08%, respectively.
The good estimated results verify the availability of the estimation approach for thin-bed properties
based on the approximate formula.

6. Discussion

Utilizing the parity of trigonometric functions in the exact displacement R/T matrix equations,
P- and S-wave R/T coefficients are expressed in form of power series functions of sine incidence
angles. Considering the factor that P-wave reflection responses are broadly used at present,
we just give the second-order series approximation of thin-bed P-wave reflection coefficients.
If necessary, the approximate formula of P-S reflection coefficients can be given through the similar
approximate method.

This paper concentrates on the derivation of RPP’s approximate formula of a single thin bed.
When the target thin bed is embedded in a finely layered background, the reflection problems become
much more complex. The study shows that interlayer structure and lithologies of finely layered
reservoirs can be determined by long-wavelength approximation [37–40]. Therefore, we will introduce
long-wavelength approximation in our further AVA analysis and inversion of finely layered reservoirs.

Thin-bed properties estimation in Section 5 is just an example of the application of the approximate
formula for thin-bed properties analysis. In this paper, we give the templates to estimate thin-bed
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properties based on A0, A2 from 120 thin-bed models with R1 and R2 between−0.2 and 0.2. Meanwhile,
the S-wave velocity and density of those 120 thin-bed models are determined by P-wave velocity
through Castagna’s Relationship [41] and Gardner’s Equation [42], respectively. We will develop the
database of templates gradually for a wider application in future thin-bed properties analysis.

7. Conclusions

Based on the exact displacement R/T matrix equations of a thin bed, this paper first expands
thin-bed R/T coefficients in the form of a power series of sine incidence angles. P-wave R/T coefficients
are even functions of sine incidence angles, while S-wave R/T coefficients are odd functions. Under the
small-incidence assumption, P-wave reflection coefficients are simplified into the second-order series
approximation of sine incidence angles. Meanwhile, it is worthy to notice that, the approximate
formula is also based on the fundamental assumptions of conventional AVO methods, including
horizontal interface, incident plane-wave, continuous boundary conditions, etc.

Numerical analysis shows the approximate formula of thin-bed RPP can reveal the thin-bed
true reflections for small incidence exactly. Relative errors are less than 5% for incidence angles
smaller than 20 degrees. The approximate formula is derived with no weak impedance contrast
hypothesis, so it is valid for thin-bed models with strong impedance contrasts. The proposed approach
to estimate thin-bed properties is established by thin-bed models with R1 and R2 between −0.2 and
0.2. The templates of amplitude and phase of A0, A2 can be utilized to estimate P-wave impedance
ratios and thin-bed thickness, which verify the availability of the approximate formula.
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Appendix A

In Equation (1), M is a 4 × 4 matrix with 4 column vectors, M ≡ [m1 m2 m3 m4], defined as:

m1 = −A


sin θ

− cos θ

−jρ1ωvP1 cos 2δ1

jρ1ω
v2

S1
vP1

sin 2θ

 (A1)

m2 = −A


cos δ1

sin δ1

jρ1ωvS1 sin 2δ1

jρ1ωvS1 cos 2δ1

 (A2)

m3 =


sin θ3

cos θ3

−jρ3ωvP3 cos 2δ3

−jρ3ω
v2

S3
vP3

sin 2θ3

 (A3)
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m4 =


cos δ3

− sin δ3

jρ3ωvS3 sin 2δ3

−jρ3ωvS3 cos 2δ3

 (A4)

n is a 4 × 1 vector defined as:

n = −A


− sin θ

− cos θ

jρ1ωvP1 cos 2δ1

jρ1ω
v2

S1
vP1

sin 2θ

 (A5)

A is a 4 × 4 matrix with elements aij defined as:

a11 = a44 = 2 sin2 δ2 cos P + cos 2δ2 cos Q (A6)

a12 = a34 = −j(tan θ2 cos 2δ2 sin P− sin 2δ2 sin Q) (A7)

a13 = a24 =
j sin θ2

ρ2ωvP2
(cos P− cos Q) (A8)

a14 =
1

ρ2ωvS2
(tan θ2 sin δ2 sin P + cos δ2 sin Q) (A9)

a21 = a43 = −j
(

vS2 cos θ2

vP2 cos δ2
sin 2δ2 sin P− tan δ2 cos 2δ2 sin Q

)
(A10)

a22 = a33 = cos 2δ2 cos P + 2 sin2 δ2 cos Q (A11)

a23 =
1

ρ2ωvP2
(cos θ2 sin P + tan δ2 sin θ2 sin Q) (A12)

a31 = a42 = 2jρ2ωvS2 sin δ2 cos 2δ2(cos Q− cos P) (A13)

a32 = −ρ2ω

(
vP2 cos2 2δ2

cos θ2
sin P + 4vS2 cos δ2 sin2 δ2 sin Q

)
(A14)

a41 = −ρ2ωvS2

(
4vS2 sin2 δ2 cos θ2

vP2
sin P +

cos2 2δ2

cos δ2
sin Q

)
(A15)

P =
ωh
vP2

cos θ2 (A16)

Q =
ωh
vS2

cos δ2 (A17)

where vP and vS are P-wave and S-wave velocities, respectively, ρ is density, δ is S-wave transmitted
or reflected angle, and their subscripts 1, 2, 3 refer to three layers of the thin bed respectively; θ is
P-wave incidence angle, θ2 and θ3 are P-wave transmitted or reflected angle in the target thin bed
and its floor respectively; h is the thickness of the middle layer, ω is angular frequency, and j is the
imaginary symbol.

Appendix B

Through Snell’s Law and power series expansions of sine incidence angle, the parameters of the
trigonometric function in Equation (1) can be written as follows:

sin θ2 =
vP2

vP1
sin θ, sin θ3 =

vP3

vP1
sin θ (A18)
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sin δ1 =
vS1

vP1
sin θ, sin δ2 =

vS2

vP1
sin θ, sin δ3 =

vS3

vP1
sin θ (A19)

cos θ = 1−
∞

∑
n=1

Cn
2n

22n(2n− 1)
sin2n θ, cos θ2 = 1−

∞

∑
n=1

Cn
2n

22n(2n− 1)

(
vP2

vP1
sin θ

)2n
(A20)

cos θ3 = 1−
∞

∑
n=1

Cn
2n

22n(2n− 1)

(
vP3

vP1
sin θ

)2n
, cos δ1 = 1−

∞

∑
n=1

Cn
2n

22n(2n− 1)

(
vS1

vP1
sin θ

)2n
(A21)

cos δ2 = 1−
∞

∑
n=1

Cn
2n

22n(2n− 1)

(
vS2

vP1
sin θ

)2n
, cos δ3 = 1−

∞

∑
n=1

Cn
2n

22n(2n− 1)

(
vS3

vP1
sin θ

)2n
(A22)

sin 2θ = 2 sin θ

(
1−

∞

∑
n=1

Cn
2n

22n(2n− 1)
sin2n θ

)
(A23)

sin 2θ3 = 2
vP3

vP1
sin θ

[
1−

∞

∑
n=1

Cn
2n

22n(2n− 1)

(
vP3

vP1
sin θ

)2n
]

(A24)

sin 2δ1 = 2
vS1

vP1
sin θ

[
1−

∞

∑
n=1

Cn
2n

22n(2n− 1)

(
vS1

vP1
sin θ

)2n
]

(A25)

sin 2δ2 = 2
vS2

vP1
sin θ

[
1−

∞

∑
n=1

Cn
2n

22n(2n− 1)

(
vS2

vP1
sin θ

)2n
]

(A26)

sin 2δ3 = 2
vS3

vP1
sin θ

[
1−

∞

∑
n=1

Cn
2n

22n(2n− 1)

(
vS3

vP1
sin θ

)2n
]

(A27)

cos 2δ1 = 1− 2
(

vS1

vP1
sin θ

)2
, cos 2δ2 = 1− 2

(
vS2

vP1
sin θ

)2
(A28)

cos 2δ3 = 1− 2
(

vS3

vP1
sin θ

)2
, tan θ2 =

vP2

vP1
sin θ

[
1 +

∞

∑
n=1

Cn
2n

22n

(
vP2

vP1
sin θ

)2n
]

(A29)

tan δ2 =
vS2

vP1
sin θ

[
1 +

∞

∑
n=1

Cn
2n

22n

(
vS2

vP1
sin θ

)2n
]

(A30)

sin P =
∞

∑
m=0

 (−1)mτ2m+1

(2m + 1)!

2m+1

∑
k=0

(−1)kCk
2m+1

[
∞

∑
n=1

Cn
2n

22n(2n− 1)

(
vP2

vP1
sin θ

)2n
]k
 (A31)

cos P =
∞

∑
m=0

 (−1)mτ2m

(2m)!

2m

∑
k=0

(−1)kCk
2m

[
∞

∑
n=1

Cn
2n

22n(2n− 1)

(
vP2

vP1
sin θ

)2n
]k
 (A32)

sin Q =
∞

∑
m=0

 (−1)mq2m+1

(2m + 1)!

2m+1

∑
k=0

(−1)kCk
2m+1

[
∞

∑
n=1

Cn
2n

22n(2n− 1)

(
vS2

vP1
sin θ

)2n
]k
 (A33)

cos Q =
∞

∑
m=0

 (−1)mq2m

(2m)!

2m

∑
k=0

(−1)kCk
2m

[
∞

∑
n=1

Cn
2n

22n(2n− 1)

(
vS2

vP1
sin θ

)2n
]k
 (A34)

with τ = ωh/vP2, q = ωh/vS2.
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Appendix C

In Equations (8), (9) and (10), a1~a6 and b1~b6 represent as follows:

a1 = cos q + j
zS1

zS2
sin q, a2 = cos q + j

zS2

zS1
sin q, a3 = cos q− cos τ (A35)

a4 =
2l1l2

r3

zS3

zS1
, a5 =

r1l1
r2

(
sin q− 2

r2
sin τ

)
, a6 = 2

(
cos q + j sin q

zS3

zS2

)
(A36)

b1 =
jl1
r2

(
sin q− 2

r2
sin τ

)
, b2 = sin τ − 2

r2
sin q (A37)

b3 =
l2
1
2
(sin τ + τ cos τ)−

l2
1

r2
sin q +

2
r2

1
sin τ (A38)

b4 = 4
l2
1

r2
2

(
1
r2

sin q− sin τ

)
+

l2
1
2
(sin τ − τ cos τ)− 1

2
sin τ (A39)

b5 =
2l1l2

r2
3

zP3

zP1
, b6 =

1
2

(
l2
1τ sin τ − cos τ

)
+ 2a3

(
l2
1

r2
2
− 1

r2
1d1

)
(A40)

Appendix D

A0, A2 are complex valued, their real, imaginary, amplitude and phase components are as follows.
For A0, there are:

Re(A0) =

[(
zP3

zP1
− 1
)

cos τn1
′ +

(
zP2

zP1
− zP3

zP2

)
sin τn2

′
]

/m0
′ (A41)

Im(A0) =

[
2
(

zP2

zP1
− zP3

zP1

zP3

zP2

)
sin τ cos τ

]
/m0

′ (A42)

Amplitude(A0) =
[
Re2(A0) + Im2(A0)

]1/2
(A43)

Phase(A0) = tan−1[Im(A0)/Re(A0)] (A44)

For A2, there are:

Re(A2) =

[
c3
′n1
′ + c7

′n2
′ + c13

′Re(A0) + c14
′Im(A0) + c15

′Re(A1) + c16
′Im(A1)

+c11
′n1
′Re(B0) + c11

′n2
′Im(B0) + c12

′n1
′Re(B1) + c12

′n2
′Im(B1)

]
/m0

′ (A45)

Im(A2) =

[
c7
′n1
′ − c3

′n2
′ − c14

′Re(A0) + c13
′Im(A0)− c16

′Re(A1) + c15
′Im(A1)

−c11
′n2
′Re(B0) + c11

′n1
′Im(B0)− c12

′n2
′Re(B1) + c12

′n1
′Im(B1)

]
/m0

′ (A46)

Amplitude(A2) =
[
Re2(A2) + Im2(A2)

]1/2
(A47)

Phase(A2) = tan−1[Im(A2)/Re(A2)] (A48)

with
Re(B0) = 2n1

′/m0
′ , Im(B0) = −2n2

′/m0
′ (A49)

Re(A1) =

[
a3
′n3
′ + a7

′n4
′ + a10

′Re(A0) + a11
′Im(A0)

+a9
′n3
′Re(B0) + a9

′n4
′Im(B0)

]
/m1

′ (A50)

Im(A1) =

[
a7
′n3
′ − a3

′n4
′ − a11

′Re(A0) + a10
′Im(A0)

−a9
′n4
′Re(B0) + a9

′n3
′Im(B0)

]
/m1

′ (A51)
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Re(B1) =

[
b3
′n3
′ + b7

′n4
′ + b11

′Re(A0) + b12
′Im(A0)

+b13
′Re(B0) + b14

′Im(B0)

]
/m1

′ (A52)

Im(B1) =

[
b7
′n3
′ − b3

′n4
′ − b12

′Re(A0) + b11
′Im(A0)

−b14
′Re(B0) + b13

′Im(B0)

]
/m1

′ (A53)

m0
′ = cos2 τ

(
zP3

zP1
+ 1
)2

+ sin2 τ

(
zP2

zP1
+

zP3

zP2

)2
(A54)

m1
′ = cos2 q

(
zS3

zS1
+ 1
)2

+ sin2 q
(

zS2

zS1
+

zS3

zS2

)2
(A55)

n1
′ = cos τ

(
zP3

zP1
+ 1
)

, n2
′ = sin τ

(
zP3

zP2
+

zP2

zP1

)
(A56)

n3
′ = cos q

(
zS3

zS1
+ 1
)

, n4
′ = sin q

(
zS3

zS2
+

zS2

zS1

)
(A57)

a1
′ =

2
r1

cos q +
2l1
r2

(cos τ − cos q)
zS2

zS1
, a2
′ =

(
1
d1

cos q− 1
d1

cos τ − cos q
)

zS3

zS1
(A58)

a3
′ = a1

′ + a2
′, a4

′ = −a1
′ + a2

′, a5
′ =

r1l1
r2

(
sin q− 2

r2
sin τ

)
− sin q

zS2

zS1
(A59)

a6
′ =

2 sin q
r1

zS3

zS2
+ l1

(
sin τ − 2 sin q

r2

)
zS3

zS1
, a7
′ = a5

′ + a6
′, a8

′ = a5
′ − a6

′ (A60)

a9
′ = l1l2

(
1− 2

r3

)
zS3

zS1
, a10

′ = a4
′n3
′ + a8

′n4
′, a11

′ = −a8
′n3
′ + a4

′n4
′ (A61)

b1
′ = 1 +

cos τ − cos q
d1

cos q +
r1l1
r2

(
2
r2

sin τ − sin q
)

sin q
zS1

zS2
(A62)

b2
′ = 2

r1
+ l1 sin q sin τ zS2

zS1
− 2l1

r2
(1− cos τ cos q) zS2

zS1
, b3
′ = b1

′ + b2
′,

b4
′ = b1

′ − b2
′ (A63)

b5
′ =

cos τ − cos q
d1

sin q
zS2

zS1
− r1l1

r2

(
2
r2

sin τ − sin q
)

cos q (A64)

b6
′ = −l1 sin τ cos q +

2l1
r2

sin q cos τ, b7
′ = b5

′ + b6
′, b8

′ = b5
′ − b6

′ (A65)

b9
′ = −l1l2 cos q

(
1 +

2
r3

zS3

zS1

)
, b10

′ = −l1l2 sin q
(

zS2

zS1
+

2
r3

zS3

zS2

)
, b11

′ = b4
′n3
′ + b8

′n4
′ (A66)

b12
′ = −b8

′n3
′ + b4

′n4
′, b13

′ = b9
′n3
′ + b10

′n4
′, b14

′ = b9
′n4
′ − b10

′n3
′ (A67)

c1
′ = −

l2
1
2

τ sin τ + 2
l2
1

r2
2
(d1 − 1)(cos q− cos τ) +

2
r2

1
cos τ (A68)

c2
′ =

1
2

(
l2
1τ sin τ − cos τ

) zP3

zP1
+ 2

l2
1

r2
2

(
zP3

zP1
−

r2
2

r2
1l1

zP3

zP2

)
(cos q− cos τ) (A69)

c5
′ =

l1
r2

(
sin q− 2

r2
sin τ

)
zP3

zP1
+

l2
1
2

(
sin τ + τ cos τ − 2

r2
sin q

)
zP3

zP2
+

2
r2

1
sin τ

zP3

zP2
(A70)

c6
′ = 2l1

r2
1

(
sin τ − 2

r2
sin q

)
+

4l2
1

r2
2

(
1
r2

sin q− sin τ
)

zP2
zP1

+
l2
1
2 (sin τ − τ cos τ) zP2

zP1
− sin τ

2
zP2
zP1

(A71)

c3
′ = c1

′ + c2
′, c4
′ = c1

′ − c2
′, c7
′ = c5

′ + c6
′, c8
′ = c5

′ − c6
′ (A72)
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c9
′ =

cos τ

r1

zP3

zP1
+

2
r2

1
cos τ + l1(cos q− cos τ)

(
2
r2

2

zP2

zP1
+

1
r1

zP3

zP2

)
(A73)

c10
′ =

2 sin τ

r2
1

zP3

zP2
+

l1
r2

(
sin q− 2

r2
sin τ

)
zP3

zP1
+

sin τ

r1

zP2

zP1
+

l1
r1

(
2
r2

sin q− sin τ

)
(A74)

c11
′ = l2

1 l2
2

(
1
2
− 2

r2
3

)
zP3

zP1
, c12

′ =
l1l2
r3

(
1− 2

r3

)
zP3

zP1
, c13

′ = c4
′n1
′ + c8

′n2
′ (A75)

c14
′ = −c8

′n1
′ + c4

′n2
′ (A76)

References

1. Backus, G.E. Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res. 1962, 67,
4427–4440. [CrossRef]

2. Ghaderi, A.; Landrø, M. Estimation of thickness and velocity changes of injected carbon dioxide layers from
prestack time-lapse seismic data. Geophysics 2009, 74, O17–O28. [CrossRef]

3. Zeng, H.; Marfurt, K.J. Recent progress in analysis of seismically thin beds. Interpretation 2015, 3, SS15–SS22.
[CrossRef]

4. Chang, C.H.; Shih, R.H. Characteristics of reflectivity strength on a thin bed. Terr. Atmos. Atmos. Ocean Sci.
1996, 7, 269–276. [CrossRef]

5. Jones, L.E.A.; Wang, H.F. Ultrasonic velocities in Cretaceous shales from the Williston Basin. Geophysics 1981,
46, 288–297. [CrossRef]

6. Ye, F. Sensitivity of Seismic Reflections to Variations in Anisotropy in the Bakken Formation, Williston Basin,
North Dakota. Master’s Thesis, University of Texas at Austin, Austin, TX, USA, 2010.

7. Sayers, C.M.; Dasgupta, S. Elastic anisotropy of the upper and middle Bakken. In Second International
Workshop on Rock Physics; EAGE Publication: Houten, The Netherlands, 2013.

8. Chung, H.; Lawton, D.C. Some properties of thin beds. In Seg Technical Program Expanded Abstracts; Society
of Exploration Geophysicists: Tulsa, OK, USA, 1991; pp. 224–227.

9. Chopra, S.; Castagna, J.P.; Xu, Y. Thin-bed reflectivity inversion and some applications. First Break 2014, 31,
27–34. [CrossRef]

10. Zhang, Q.F.; Wang, Y.Q.; Wang, T.Q. Seismic prediction technique of thin interbed channel sand in SongLiao
Basin. Lithol. Reserv. 2007, 19, 92–95.

11. Huifeng, L.; Xiangtong, Y.; Jiangyu, L.; Pengyao, Z.; Dengfeng, R.; Sheng, Y. Lesson learned from an
unsuccessful multi-stage fracturing case and an improved design in Tarim Basin, China. Int. Petrol.
Technol. Conf. 2016, 26, 1923–1927.

12. Widess, M.B. How thin is a thin bed? Geophysics 1973, 38, 1176–1180. [CrossRef]
13. Rubino, J.G.; Velis, D. Seismic characterization of thin beds containing patchy carbon dioxide-brine

distributions: A study based on numerical simulations. Geophysics 2011, 76, R57–R67. [CrossRef]
14. Williams, G.; Chadwick, A. Quantitative seismic analysis of a thin layer of CO2 in the Sleipner injection

plume. Geophysics 2012, 77, R245–R256. [CrossRef]
15. Cowton, L.R.; Neufeld, J.A.; White, N.J.; Bickle, M.J.; White, J.C.; Chadwick, R.A. An inverse method for

estimating thickness and volume with time of a thin CO2-filled layer at the Sleipner Field, North Sea.
J. Geophys. Res.-Sol. Earth 2016, 121, 5068–5085. [CrossRef]

16. Almoghrabi, H.; Lange, J. Layers and bright spots. Geophysics 1986, 51, 699–709. [CrossRef]
17. Juhlin, C.; Young, R. Implications of thin layers for amplitude variation with offset (AVO) studies. Geophysics

1993, 58, 1200–1204. [CrossRef]
18. Guo, Z.; Li, X. Cracked thin layered reservoir analysis using offset-dependent spectrum characteristics.

In Seg Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Tulsa, OK, USA, 2010;
pp. 478–482.

19. Brekhovoskikh, L.M. Waves in Layered Media; Academic Process: Tamil Nadu, India, 1960.
20. Liu, Y.; Schmitt, D.R. Amplitude and AVO responses of a single thin bed. Geophysics 2003, 68, 1161–1168.

[CrossRef]
21. Rubino, J.G.; Velis, D. Thin-bed prestack spectral inversion. Geophysics 2009, 74, R49–R57. [CrossRef]

http://dx.doi.org/10.1029/JZ067i011p04427
http://dx.doi.org/10.1190/1.3054659
http://dx.doi.org/10.1190/INT-2014-0232.1
http://dx.doi.org/10.3319/TAO.1996.7.3.269(T)
http://dx.doi.org/10.1190/1.1441199
http://dx.doi.org/10.3997/1365-2397.2009009
http://dx.doi.org/10.1190/1.1440403
http://dx.doi.org/10.1190/1.3556120
http://dx.doi.org/10.1190/geo2011-0449.1
http://dx.doi.org/10.1002/2016JB012895
http://dx.doi.org/10.1190/1.1442123
http://dx.doi.org/10.1190/1.1443504
http://dx.doi.org/10.1190/1.1598108
http://dx.doi.org/10.1190/1.3148002


Appl. Sci. 2019, 9, 709 21 of 21

22. Yang, C.; Wang, Y.; Lu, J. Weak impedance difference approximations of thin-bed PP-wave reflection
responses. J. Geophys. Eng. 2017, 14, 1010–1019. [CrossRef]

23. Yang, C.; Wang, Y.; Wang, Y.H. Reflection and transmission coefficients of a thin bed. Geophysics 2016, 81,
N31–N39. [CrossRef]

24. Chung, H.M.; Lawton, D.C. Amplitude responses of thin beds: Sinusoidal approximation versus Ricker
approximation. Geophysics 1995, 60, 223–230. [CrossRef]

25. Chung, H.M.; Lawton, D.C. Frequency characteristics of seismic reflections from thin beds. Can. J.
Explor. Geophys. 1995, 31, 32–37.

26. Zeng, H.; Backus, M.M. Interpretive advantages of 90◦-phase wavelets, Part I: Modeling. Geophysics 2005, 70,
C7–C15. [CrossRef]

27. Zeng, H.; Backus, M.M. Interpretive advantages of 90◦-phase wavelets, Part II: Seismic applications.
Geophysics 2005, 70, C17–C24. [CrossRef]

28. Thomson, W. Transmission of elastic waves through a stratified solid medium. J. Appl. Phys. 1950, 21, 89–93.
[CrossRef]

29. Haskell, N. The dispersion of surface waves in multilayered media. Bull. Seismol. Soc. Am. 1953, 43, 17–34.
30. Restrepo, D.; Gómez, J.D.; Jaramillo, J.D. SH wave number green’s function for a layered, elastic half-space.

Part i: Theory and dynamic canyon response by the discrete wave number boundary element method.
Pure Appl. Geophys. 2014, 171, 2185–2198. [CrossRef]

31. Kumar, S.; Pal, P.C.; Majhi, S. Reflection and transmission of plane SH-waves through an anisotropic
magnetoelastic layer sandwiched between two semi-infinite inhomogeneous viscoelastic half-spaces. Pure
Appl. Geophys. 2015, 172, 2621–2634. [CrossRef]

32. Sahu, S.A.; Paswan, B.; Chattopadhyay, A. Reflection and transmission of plane waves through isotropic
medium sandwiched between two highly anisotropic half-space. Wave Random Complex 2015, 26, 1–26.
[CrossRef]

33. Paswan, B.; Sahu, S.A.; Chattopadhyay, A. Reflection and transmission of plane wave through fluid layer
of finite width sandwiched between two monoclinic elastic half-spaces. Acta Mech. 2016, 227, 3687–3701.
[CrossRef]

34. Singh, P.; Chattopadhyay, A.; Srivastava, A.; Singh, A.K. Reflection and transmission of p-waves in an
intermediate layer laying between two semi-infinite media. Pure Appl. Geophys. 2018, 175, 4305–4319.
[CrossRef]

35. Zoeppritz, K. On the reflection and penetration of seismic waves through unstable layers.
Göttinger Nachrichten 1919, 1, 66–84.

36. Castagna, J.P.; Swan, H.W. Principles of AVO cross plotting. Lead. Edge 1997, 1, 66–84.
37. An, Y.; Lu, J. Calculation of AVA responses for finely layered reservoirs. Math. Probl. Eng. 2018, 1–11.

[CrossRef]
38. Roganov, Y.; Stovas, A. Low-frequency wave propagation in periodically layered media. Geophys. Prospect.

2012, 60, 825–837. [CrossRef]
39. Stovas, A.; Landrø, M.; Avseth, P. AVO attribute inversion for finely layered reservoirs. Geophysics 2006, 71,

C25–C36. [CrossRef]
40. Stovas, A.; Landrø, M. Uncertainty in discrimination between net-to-gross and water saturation for

fine-layered reservoirs. In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists:
Tulsa, OK, USA, 2006; pp. 1698–1702.

41. Castagna, J.P.; Batzle, M.L.; Eastwood, R.L. Relationship between compressional-wave and shear-wave
velocities in clastic silicate rocks. Geophysics 1985, 50, 571–581. [CrossRef]

42. Gardner, G.H.F.; Gardner, L.W.; Gregory, A.R. Formation velocity and density—The diagnostic basics for
stratigraphic traps. Geophysics 1974, 39, 770–780. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1088/1742-2140/aa6dd8
http://dx.doi.org/10.1190/geo2015-0360.1
http://dx.doi.org/10.1190/1.1443750
http://dx.doi.org/10.1190/1.1925740
http://dx.doi.org/10.1190/1.1925741
http://dx.doi.org/10.1063/1.1699629
http://dx.doi.org/10.1007/s00024-014-0780-4
http://dx.doi.org/10.1007/s00024-015-1048-3
http://dx.doi.org/10.1080/17455030.2015.1102361
http://dx.doi.org/10.1007/s00707-016-1684-4
http://dx.doi.org/10.1007/s00024-018-1896-8
http://dx.doi.org/10.1155/2018/8519190
http://dx.doi.org/10.1111/j.1365-2478.2011.01028.x
http://dx.doi.org/10.1190/1.2197487
http://dx.doi.org/10.1190/1.1441933
http://dx.doi.org/10.1190/1.1440465
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	R/T Coefficients Expressed by Series Functions 
	Approximate Formula of PP-Wave Reflections 
	Accuracy Analysis 
	Application Example 
	Discussion 
	Conclusions 
	
	
	
	
	References

