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Featured Application: Validation of all-sky imager technology at 3 locations: NREL, Joint Base
San Antonio, and the Canary Islands, Spain.

Abstract: Increasing photovoltaic (PV) generation in the world’s power grid necessitates accurate
solar irradiance forecasts to ensure grid stability and reliability. The University of Texas at San
Antonio (UTSA) SkyImager was designed as a low cost, edge computing, all-sky imager that provides
intra-hour irradiance forecasts. The SkyImager utilizes a single board computer and high-resolution
camera with a fisheye lens housed in an all-weather enclosure. General Purpose IO pins allow
external sensors to be connected, a unique aspect is the use of only open source software. Code for
the SkyImager is written in Python and calls libraries such as OpenCV, Scikit-Learn, SQLite, and
Mosquito. The SkyImager was first deployed in 2015 at the National Renewable Energy Laboratory
(NREL) as part of the DOE INTEGRATE project. This effort aggregated renewable resources and
loads into microgrids which were then controlled by an Energy Management System using the
OpenFMB Reference Architecture. In 2016 a second SkyImager was installed at the CPS Energy
microgrid at Joint Base San Antonio. As part of a collaborative effort between CPS Energy, UT San
Antonio, ENDESA, and Universidad de La Laguna, two SkyImagers have also been deployed in the
Canary Islands that utilize stereoscopic images to determine cloud heights. Deployments at three
geographically diverse locations not only provided large amounts of image data, but also operational
experience under very different climatic conditions. This resulted in improvements/additions to
the original design: weatherproofing techniques, environmental sensors, maintenance schedules,
optimal deployment locations, OpenFMB protocols, and offloading data to the cloud. Originally,
optical flow followed by ray-tracing was used to predict cumulus cloud shadows. The latter problem
is ill-posed and was replaced by a machine learning strategy with impressive results. R2 values
for the multi-layer perceptron of 0.95 for 5 moderately cloudy days and 1.00 for 5 clear sky days
validate using images to determine irradiance. The SkyImager in a distributed environment with
cloud-computing will be an integral part of the command and control for today’s SmartGrid and
Internet of Things.
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1. Introduction

The Department of Energy (DOE) estimates that PV power will grow to 14% of the electricity
supply by 2030 as the price of solar electricity reaches a point at which it is cost-competitive with
cogen ($0.06/kwh by 2020). It is imperative that power grid reliability and stability be maintained
under this high penetration of low carbon energy [1]. Organizations such as North American Electric
Reliability Corporation (NERC) and California Energy Commission (CEC) [2] have formulated several
requirements needed in a “grid-friendly” PV power plant. For instance, CEC has developed a set
of several smart inverter functionalities such as dynamic volt/var operation and ramp rate control.
Existing PV plants do not have these functionalities even though the inverters are capable, due to the
lack of communications standards and dynamic control. For PV power plants to participate in energy
markets and ancillary services markets, they need to be considered “dispatchable” power plants.

High penetration of PV systems can be achieved if PV inverters [3] participate in the grid frequency
regulation by active power control. Currently, frequency disturbances in the grid are handled by load
curtailment. The disadvantage of this methodology is that it can cause voltage stress on the distributed
generation. The alternative is to operate the PV system below its MPP (Maximum Power Point) to
provide active power control. This can be done by modifying the MPP algorithm in such a way that it
can track the next MPP point while working in the reduced power mode (RPM). A critical component
of coordinated inverter control is forecasted solar power output or forecasted MPP at the array level.
Having accurate intra-hour solar forecasts can enable implementation of a coordinated inverter control
strategy capable of regulating a set-point, which may be a signal from a utility requiring either power
curtailment or frequency regulation. The electric utility industry has yet to see an integrated solution
to the dispatchability problem of PV plants, a system solution that effectively integrates intra-hour
solar forecasting and smart control of inverters to achieve not only a grid-friendly plant, but also one
that provides monetary and efficiency benefits to the PV plant operator.

Microgrids lack the stabilizing effects present in a large urban macrogrid that itself is joined
to an interconnect; these issues are critical when a microgrid is operated in islanded mode. The
Energy Management Systems (EMS) that balance PV output, load, and battery storage require accurate
intra-hour irradiance forecasts to solve the control problem by shedding non-critical load when power
generated is predicted to drop significantly below the load. An increasingly important problem for
utilities is optimal scheduling and dispatch of a microgrid [4–7], both when connected to the macrogrid
and when operated as an island. This task is divided into Day-Ahead Scheduling, which finds optimal
schedules for the next operating day and focuses on energy markets, and Intra-day Dispatching and
Scheduling in which schedules are continuously updated during the current day. Both cases follow
these steps: (1) forecast day-ahead load, (2) forecast day-ahead renewable power (solar, wind), (3)
Micro-Grid Management System (MGMS) optimizes the day-ahead plan, produces schedules for flows
within the microgrid and to the PCC, (4) MGMS transmits schedules to utility control center.

This article describes a four-year research effort to develop hardware and software with an aim to
solve the intra-hour solar forecasting problem for electric utilities. It was a collaborative effort between
many groups, including national labs and research institutes (NREL and the Texas Sustainable Energy
Research Institute TSERI), two universities (The University of Texas at San Antonio and Universidad
de La Laguna in the Canary Islands), public and private utilities (CPS Energy, ENDESA, and Duke
Energy), and a private company, Siemens-Omnetric. It serves as a case study in managing research in
a joint theatre of operations and integrating the efforts of researchers and engineers who came from
very different university and industrial cultures. Details of our research and technology development
have been presented in journal articles [8,9], conference proceedings [10–13], and technical reports [14].
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While this paper gives a detailed overview of that research, our primary goal is to describe how the
UTSA SkyImager was validated at three geographically diverse locations, the pitfalls encountered, the
lessons learned, and the outlook for future research efforts.

The SkyImager evolved from a realization that existing all-sky imaging systems were too
expensive to be deployed in large numbers, suffered from data-loss issues caused by the shadow
band and camera arm, and used proprietary software. The Raspberry Pi single board computer ($35)
and programable high-resolution Pi-Cam ($20) with a fisheye lens ($20) formed the heart of the new
system. The most expensive component was the all-weather security camera enclosure ($350). In
addition, General Purpose IO (GPIO) pins would allow a variety of external sensors to be connected
to the Pi. Low cost and ease of use were essential if the SkyImager were to be deployed in a rural
sustainable development microgrid. In contrast to some commercial all-sky imaging systems, only
open source software would be used. The Pi accommodates several operating systems (OS) including
Raspbian, a Linux-based derivative of Debian. It can be operated with a monitor or in “headless”
mode, and once deployed can be accessed remotely with SSH/SFTP. Code for the SkyImager would be
written in Python and allow calls to libraries such as Open Computer Vision, Scikit-Learn, SQLite, and
Mosquito. In the summer of 2014 it was an open question whether the proposed imager could deliver
the functionality of much more expensive systems and be thoroughly tested before its deployment.

As part of the DOE microgrid INTEGRATE program, the first deployment of the SkyImager
occurred in Fall 2015 at the ESIF building at NREL. INTEGRATE aggregated sustainable generation
and loads into microgrids controlled by an Energy Management System with the OpenFMB protocol.
In 2016 a second SkyImager was installed at the CPS Energy microgrid at Joint Base San Antonio.
A multi-year collaboration between CPS-UTSA and the Universidad de La Laguna resulted in the
deployment of two SkyImagers in the Canary Islands. These utilize stereoscopic images to determine
heights of the bases of cumulus clouds. Deployment of SkyImagers in three diverse locations
provided not only big data, but operational experience in harsh extremes of climate. This resulted in
improvements and additions to our original design: weatherproofing, new environmental sensors, the
need for scheduled maintenance, optimal positioning of the camera, communications with OpenFMB
publish-subscribe protocols, and using WiFi and cloud computing. The SkyImager will be an integral
part of the command and control for microgrids, both as part of the larger SmartGrid in an urban
environment or in an islanded mode in a military or rural setting.

Solar forecasting is widely considered a key means of integrating solar power efficiently and
reliably into the electric grid. For a utility to meet projected customer demand with electricity from
sustainable resources, high-accuracy global horizontal irradiance (GHI) forecasts must be available
over widely different time and space scales. A convenient separation of this forecasting problem into
two parts is as follows: (1) intra-hour forecasts of the ramp events that are caused when cumulus clouds
move between the sun and the solar panels, and (2) day-ahead forecasts for 12, 24, and perhaps 36 h into
the future. There is overlap between the two parts, but this taxonomy is convenient not only because
the physics and forecasting techniques are generally different, but also the way in which the utility
makes use of the forecasts. A single ramp event on a microgrid powered primarily by PV arrays can
result in over/under voltages, as well as frequency deviations and may require secondary spinning
reserves to be brought on line. Day-ahead irradiance forecasts are useful in predicting surplus/deficit
generation capacity that can then be augmented or sold in the day-ahead electricity market.

1.1. Day-Ahead GHI Forecasting

For day-ahead GHI forecasting, both numerical weather prediction (NWP) [15] and satellite
imagery provide effective tools for forecasting irradiance. The National Center for Environmental
Prediction (NCEP), a part of NOAA, runs two versions of the Rapid Refresh (RAP) numerical weather
model to predict environmental data. The first version generates weather data on a 13-km (8-mile)
resolution horizontal grid and the second, the High-Resolution Rapid Refresh (HRRR), generates data
on a 3-km (2-mile) grid. RAP forecasts use multiple data sources: commercial aircraft weather data,
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balloon data, radar data, surface observations, and satellite data to generate forecasts with hourly
resolution in time and forecast lengths of 18 hours. For further details, consult the RAP website [16].
RAP data are available for download through the National Model Archive and Distribution System
(NOMADS). Several benefits accrue from using NWP for irradiance forecasting: NOAA incurs
much of the computational burden and these models incorporate first-principles physics such as the
Navier-Stokes equations, thereby allowing for the dynamic formation of clouds. Satellite technology is
advancing rapidly with GOES-16 (Geostationary Operational Environmental Satellite) pictures being
updated every 5 min with maximum resolution of 5000 by 3000 pixels. Figure 1 shows such an image
cropped to the central Texas region. The temporal sampling of the data is still insufficient to support
optical flow predictions 15-min ahead. Continued improvements in GOES-R (geostationary satellite
with high spatial and temporal resolution) may well make the satellite approach to minutes-ahead
irradiance prediction more attractive in the future [17–20]. Statistical methods based on historical
time-series data and climatology are also useful for day-ahead PV forecasting.
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Figure 1. GOES high-resolution satellite image cropped to show the central Texas region.

1.2. Intra-Hour Solar Forecasting

The energy alliance between UTSA and CPS Energy has as one of its primary goals the
development of new solar forecasting technologies that combine inexpensive all-sky imaging cameras
with sophisticated image processing techniques and artificial intelligence software to produce
high-accuracy 15-min ahead solar irradiance forecasts. GHI consists of two components, the Direct
Normal Irradiance (DNI) caused by sunlight traveling in a direct path from sun to PV array and the
Diffuse Horizontal Irradiance (DHI), background illumination that is due to secondary reflections
and absorption/re-radiation. The formula is GHI = cos(θz) DNI + DHI where θz is the zenith angle.
Shadows cast by low-level cumulus clouds significantly impact the DNI but have little effect upon
the background DHI. While it is possible to predict DNI separately [21], for verifying PV power
output forecasts GHI is used. Figure 2 displays the three quantities: GHI, DNI, and DHI, on the date
27 October 2015 at the NREL ESIF facility in Golden, CO. It shows that moderately cloudy conditions
occasion multiple ramp events.
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 Figure 2. Daily solar irradiance (W/m2) for 27 October 2015, Golden, CO.

Figure 3 displays a sequence of eight pictures taken by the SkyImager at the NREL site, one every
two minutes starting (upper left) at 12:31pm MST. At that time the sun is not obscured, but cumulus
clouds are moving in from the left. At 12:35 the cloud begins to enter the solar disk and by 12:37 the
sun is completely occluded. This continues until 12:44 when the cloud has moved past the sun and
the DNI recovers. This ramp event is seen in the DNI oscillations that occur around the noon hour in
Figure 2. While this example considers a single ramp event, it strongly suggests that the correlation
between measured GHI and the presence of clouds obscuring the sun in the SkyImager pictures could
be learned by AI models.
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Figure 3. SkyImager sequence (27 October 2015, Golden, CO) showing a ramp event.

The challenge in short term prediction of PV power is simply “Where will cumulus cloud shadows
be fifteen minutes from now?” Our approach incorporates as much of the physics as possible, but is
an idealization necessitated by the requirement to produce GHI forecasts in real time for the MGMS.
Solving Navier-Stokes for the true dynamics of the atmosphere is not feasible on a Raspberry Pi. If
GHI can be accurately forecast, then predicting PV power output is straightforward. The evolution
of clouds and irradiance shown in Figures 2 and 3 is even more striking when video of the images is
viewed, confirming that SkyImager pictures are highly correlated with the observed GHI time series.
Moreover, it suggests the camera sensor could be used to measure irradiance as well as predict it. Once
GHI has been accurately forecast, it is usually straightforward to assign a corresponding PV power
output, which is what the MGMS requires.

Figure 4 shows the relationship between GHI (Watts/m2) and PV power (Watts) from the RSF2
PV arrays located at NREL. The relationship is almost linear with a slight hysteresis effect that reflects
the differences in morning versus afternoon irradiance. The task of predicting PV power output
over multiple temporal and spatial scales, and from a variety of different equipment is a challenging
one [22–24].
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State of the Art in Solar Forecasting

As photovoltaics achieve greater penetration, the SmartGrid will demand accurate solar
forecasting hence a network of low cost, distributed sensors to acquire large amounts of image
and weather data for input to the forecasting algorithms. Commercial sky imaging systems often
prove too costly and have proprietary software, leading several research groups to develop their own
systems. The solar forecasting research group at UC San Diego [25–29] has done pioneering work
in this field for many years. For one example, Coimbra et al. [30] proposed DNI forecasting models
using images from a Yankee TSI 880 with hemispherical mirror as inputs to Artificial Neural Networks
(ANN). The TSI has high capital and maintenance costs, uses a shadow band mechanism, and requires
proprietary software. The UCSD Sky Imager described in Yang et al. [31] captures images with an
upward-facing charge-coupled device (CCD) Panasonic sensor and a 4.5 mm focal length fisheye lens.
Compared with the TSI it has higher resolution, greater dynamic range, and lossless PNG compression.
The Universitat Erlangen-Nurnberg [32] group used a five-megapixel C-mount camera equipped with
a fisheye lens. They implemented the Thirions ”‘daemons’” algorithm for image registration and
cloud-motion estimation similar to optical flow. In Australia, West et al. [33] used off-the-shelf IP
security cameras (Mobotix Q24, Vivotek FE8172V) for all-sky imaging. Inexpensive compared to the
TSI, the cost of such systems still is ~800 euros. Rather than a feature-tracking strategy, they used
dense optical flow to estimate cloud movement. See also Wood-Bradley [34]. Several research groups
in China are working on the irradiance forecasting problem [35,36] generally using a TSI imager,
but in one case Geostationary Statellite data [37]. As mentioned before dramatic improvements in
GOES-R technology and resolution (spatial and temporal) will make this approach more attractive for
intra-hour forecasting. See also the historical review [38] of irradiance and PV power forecasting that
was produced using text mining and machine learning.

A recurring theme in the INTEGRATE project was that while all-sky imaging was a critical
component of microgrid stability and control, it could not be developed in a stand-alone fashion but
must be fully integrated into the microgrid management system (MGMS). Uriate et al. [39] discuss the
importance of Ramp Rates (RR) on the inertial stability margin of a microgrid deployed at the Marine
Corp Base at Twentynine Palms. They show that a large ramp in PV power can destabilize frequency
when the PV load is suddenly transferred to the cogen. The inertia constant H of a generator is the
ratio of stored kinetic energy to system capacity. Microgrids usually have H < 1 s compared to 2–10 s
for large generation plants. Frequency stability is defined by the condition

∣∣∆ fpu
∣∣ < ∆ f pu

max where
allowable frequency deviation ∆ f pu

max in p.u. is typically 0.01–0.05 per unit. In [39] the authors derive
the ODE ωmechJdωmech/dt +ω2

mechD = Paccel where ωmech is the mechanical speed of the generator
in rad/s, J the moment of inertia (kg·m2), D a damping coefficient (Nm/s), and Paccel the power
imbalance exerted on a generator rotor, to model the microgrid stability control problem. The NREL
microgrid has a 300 kW Caterpillar diesel generator, whereas JBSA has no cogen. However, the same
issues of stability and frequency control apply when there are no spinning resources. Some electric
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codes are specifying ancillary control must be added to the EMS in order to handle ramp events of a
certain magnitude and duration. See [40–42] for details.

1.3. Climatology and Microgrid Architectures at the Three Locations

As shown in Figure 5 the UTSA SkyImager has been deployed at 3 geographically diverse
locations: Golden, Colorado on the rooftop of the ESIF building at NREL, in San Antonio, Texas at the
CPS Energy microgrid facility at Joint Base San Antonio (JBSA) and the Engineering Building at UTSA,
as well as in the Canary Islands, Spain at Tenerife and Caleta de Sebo. Each location presented unique
challenges in terms of local climate, physical and cyber access, and microgrid design, equipment,
operation, and customer needs.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 31 

resources. Some electric codes are specifying ancillary control must be added to the EMS in order to 

handle ramp events of a certain magnitude and duration. See [40–42] for details. 

1.3. Climatology and Microgrid Architectures at the Three Locations 

As shown in Figure 5 the UTSA SkyImager has been deployed at 3 geographically diverse 

locations: Golden, Colorado on the rooftop of the ESIF building at NREL, in San Antonio, Texas at 

the CPS Energy microgrid facility at Joint Base San Antonio (JBSA) and the Engineering Building at 

UTSA, as well as in the Canary Islands, Spain at Tenerife and Caleta de Sebo. Each location presented 

unique challenges in terms of local climate, physical and cyber access, and microgrid design, 

equipment, operation, and customer needs. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5. SkyImager at (a) NREL, (b) JBSA, (c) Tenerife and (d) Caleta de Sebo. 

The UTSA SkyImager was first conceived as a technology for providing accurate intra-hour 

irradiance forecasts as inputs to a microgrid management system that would then provide the utility 

with command and control of the microgrid in either connected or islanded mode. The Department 

of Energy INTEGRATE project [43] lasted for 18 months beginning on 6 March 2015 and partnered 

NREL, Omnetric-Siemens, CPS Energy, Duke Energy, and UTSA. The project goal was to increase 

the capacity of the electric grid to incorporate renewables by upgrading and optimizing architectures 

for control and communication in microgrids. There were three major components: (1) OpenFMB, a 

reference architecture that allows real time interaction among distributed intelligent nodes, (2) 

optimization with the Spectrum Power Microgrid Management System based on the Siemens SP7 

Platform, and (3) PV and Load Forecasting using UTSA’s applications for both intra-hour and day-

ahead irradiance and building load forecasts. The OpenFMB framework leverages existing standards 

such as IEC’s Common Information Model (CIM) semantic data model and the Internet of Things 

(IoT) publish/subscribe protocols (DDS, MQTT, and AMQP) to allow flexible integration of 

renewable energy and storage into the existing electric grid. The OpenFMB standard was ratified by 

the North American Energy Standards Board (NAESB) in March of 2016 and allows communication 

between diverse grid devices–meters, relays, inverters, capacitor bank controllers, etc. It allows 

federated message exchanges with readings such as kW, kVAR, V, I, frequency, phase, and State of 

Charge (SOC) published every 2 seconds as well as data-driven events, alarms, and control in near-

real-time. 

1.3.1 SkyImager at National Renewable Energy Laboratory in Golden, CO  

The site of the first SkyImager deployment was NREL in the Rocky Mountains. Golden’s high 

elevation and mid-latitude interior continent geography results in a cool, dry climate. There are large 

seasonal and diurnal swings in temperature. At night, temperatures drop quickly and freezing 

temperatures are possible in some mountain locations year-round. The thin atmosphere allows for 

greater penetration of solar radiation. As a result of Colorado's distance from major sources of 

moisture (Pacific Ocean, Gulf of Mexico), precipitation is generally light in lower elevations.  

 

Figure 5. SkyImager at (a) NREL, (b) JBSA, (c) Tenerife and (d) Caleta de Sebo.

The UTSA SkyImager was first conceived as a technology for providing accurate intra-hour
irradiance forecasts as inputs to a microgrid management system that would then provide the utility
with command and control of the microgrid in either connected or islanded mode. The Department of
Energy INTEGRATE project [43] lasted for 18 months beginning on 6 March 2015 and partnered NREL,
Omnetric-Siemens, CPS Energy, Duke Energy, and UTSA. The project goal was to increase the capacity
of the electric grid to incorporate renewables by upgrading and optimizing architectures for control
and communication in microgrids. There were three major components: (1) OpenFMB, a reference
architecture that allows real time interaction among distributed intelligent nodes, (2) optimization with
the Spectrum Power Microgrid Management System based on the Siemens SP7 Platform, and (3) PV
and Load Forecasting using UTSA’s applications for both intra-hour and day-ahead irradiance and
building load forecasts. The OpenFMB framework leverages existing standards such as IEC’s Common
Information Model (CIM) semantic data model and the Internet of Things (IoT) publish/subscribe
protocols (DDS, MQTT, and AMQP) to allow flexible integration of renewable energy and storage into
the existing electric grid. The OpenFMB standard was ratified by the North American Energy Standards
Board (NAESB) in March of 2016 and allows communication between diverse grid devices–meters,
relays, inverters, capacitor bank controllers, etc. It allows federated message exchanges with readings
such as kW, kVAR, V, I, frequency, phase, and State of Charge (SOC) published every 2 seconds as well
as data-driven events, alarms, and control in near-real-time.

1.3.1. SkyImager at National Renewable Energy Laboratory in Golden, CO

The site of the first SkyImager deployment was NREL in the Rocky Mountains. Golden’s high
elevation and mid-latitude interior continent geography results in a cool, dry climate. There are
large seasonal and diurnal swings in temperature. At night, temperatures drop quickly and freezing
temperatures are possible in some mountain locations year-round. The thin atmosphere allows for
greater penetration of solar radiation. As a result of Colorado’s distance from major sources of moisture
(Pacific Ocean, Gulf of Mexico), precipitation is generally light in lower elevations.

Eastward-moving storms from the Pacific lose much of their moisture falling as rain or snow
on the mountaintops. Eastern slopes receive relatively little rainfall, particularly in mid-winter. The
SkyImager enclosure came equipped with a heater/fan that performed well at NREL. Given the
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climate, it proved useful in keeping frost off the plastic dome. It adds to the expense and complexity of
the technology and may not be required at other locations. Most installations of the security camera
enclosure would be facing downward and perhaps under a building overhang. Used facing upward
and exposed to the sky, there were issues with water getting inside the enclosure. A simple solution
was silicon caulk applied at the base of the dome. In a typical security installation, a green tinted
plastic dome is used with the enclosure to protect components from UV radiation. For all-sky imaging
a clear plastic dome is a necessity. With any plastic material on a bright sunny day there can be issues
with glare caused by the dome, but this was minor. The alternative is a glass dome but that has it own
set of problems.

As shown in Figure 6, the microgrid at NREL was already well established and the process of
deploying the SkyImager went relatively smoothly. Denver International Airport is located some
36 miles from Golden; this distance introduces some error in the Cloud Base Height for the ray-tracing
algorithm originally used in the SkyImager. The ESIF building at NREL had the infrastructure necessary
for easy installation of both the SkyImager and the Hardkernel Odroid C1 single board computer (SBC)
used for load and day-ahead PV forecasts. Information was transferred using a Wi-Fi network on a
LAN system. NREL also provided un-interruptible 120 VAC power, ample Ethernet connectivity, and
excellent on-site weather and irradiance data. In addition to solar PV arrays, generation included a
500 kW wind power simulator and a 300 kW caterpillar diesel. A 300 kWh battery system provided
energy storage and the load was separated into a controllable component (250 kW) and a critical load
(250 kW).Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 31 
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1.3.2. SkyImager at San Antonio, TX, USA

Texas produces more electricity than any of the other 49 states, and as a result has its own
interconnect ERCOT. In 2017, power statewide was generated by a variety of sources: natural gas
(45%), coal (30%), wind (15%), and nuclear (9%). In 2014, wind replaced nuclear as the third-largest
source of power and Texas now produces more wind power than any other state. Solar generation is
increasing, but still relatively small for a state with abundant annual sunshine. Located in central Texas
some 200 miles from the Gulf of Mexico, San Antonio is home to almost 1.5 million people and several
military bases. CPS Energy serves San Antonio and is the nation’s largest public power, natural gas
and electric company. They are committed to renewables, funding a 400 MWac project with multiple
PV plants (Alamo 1–7) close to San Antonio, and wind farms in West and South Texas. CPS Energy
is among the top public power wind energy buyers in the nation and number one in Texas for solar
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generation. In keeping with this commitment, TSERI was formed in 2001 as an alliance between CPS
Energy and UTSA.

For San Antonio, the most significant local weather issue is low-level Gulf stratus [44]. Elevations
of the terrain increase from sea level at the Gulf coast to almost 800 ft at San Antonio, and a moist
air mass over the Gulf of Mexico will cool adiabatically to saturation as it moves upslope. Nocturnal
radiational cooling causes cloud formation before midnight, resulting in a ceiling of 500–1000 feet. A
solid cloud deck will cover much of central Texas and remain in place until late morning when the
sun burns off the stratus and cumulus clouds begin to form. Forecasting Gulf stratus is an important
problem for aviation; it is a matter of accurately predicting low-level wind flow (<5000 ft) with the
most favored wind direction for stratus formation from 90◦ to 180◦. It is important to address these
local weather conditions that occur below the spatial and temporal resolution of NWP, but are crucial
for both inter-hour and day-ahead irradiance forecasts. Use of machine learning using local datasets
and climatology will allow the information and intelligence of a study such as [44] to be incorporated
in site-specific irradiance forecasts.

The Fort Sam Houston Library location at JBSA presented several unique challenges for the
deployment of the UTSA hardware and software, challenges that provide valuable insights for other
researchers. Many of the issues that arose were heavily dependent on the specific location. At JBSA, the
Sky Imager was deployed using an edge-computing configuration with a wired Ethernet connection
for cyber security. The JBSA microgrid is shown in Figure 7 and includes the Base Library building,
solar arrays, inverters, and the pod housing the battery energy storage system (ESS). The need for
accurate on-site meteorological observations necessitated installation of a complete MET Station atop a
10m antenna tower. A Campbell Scientific weatherproof instrument box at the tower base contained a
National Instruments MyRio computer, a transformer, backup battery, and an Odroid C2 single board
computer (SBC) for calculating the day-ahead load/PV forecasts. Atop the tower sat the SkyImager, a
WXT520 Vaisala weather transmitter, and a pyranometer.
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In July of 2018 another SkyImager was deployed in San Antonio at the location of a university
PV generation project. Funded by a DOE-SECO grant [45] in 2014, solar panels were installed on
the Engineering Building, HEB University Center III, and Durango buildings at UTSA. In addition,
equipment was installed to record measurements from 4 Combiners, 4 Inverters, 2 Kipp & Zonen
CMP11 pyranometers, and a WXT520 Vaisala Weather Transmitter at the UCIII. Figure 8a displays the
SkyImager and PV panels and Figure 8b shows combiners/inverters atop the Engineering Building.
The only ingredient lacking to make this a research microgrid was energy storage.
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1.3.3. SkyImager in the Canary Islands

Six insular power grids comprise the electrical network in the Canary Islands. Conventional
generation costs more here than PV technologies, and savings can be shared between the PV system
owners and the Spanish utility ENDESA. Penetration of renewables varies among these grids, from a
high of 60% penetration of wind energy in El Hierro (after Gorona del Viento hydro-wind power plant is
operational) to Lanzarote-Fuerteventura which achieves single-digit integration of renewables because
of strong environmental regulations, a weak power grid, and an unstable regulatory environment
in Spain for renewable energy infrastructure during the period 2011-15. However, new regulatory
policies will provide a more attractive framework for investment. The Canary Islands Government
plans to avoid ground-based renewable facilities with a large environmental footprint in favor of
smaller rooftop plants close to electricity users. As in Hawaii, the existing distribution grid is not
prepared for a large penetration of residential PV systems with resulting reverse flows, voltage and
frequency instabilities, and drops at the end of long lines. ENDESA has built a testbed smart grid in a
village at the north end of the Fuerteventura-Lanzarote insular power system (La Graciosa).

La Graciosa is the smallest island in the Canary Archipelago with a surface area of 29 km2. It
is in a marine nature reserve north of Lanzarote and home to about 700 people in the island capital
of Caleta de Sebo. Average global irradiation is 5.157 kWh/ kW·day (1883 kWh/kW·yr) while the
average monthly high temperature is 20.8 ◦C. Located a few kilometers away from the African coast,
its proximity to the Sahara Desert gives to La Graciosa particularly stable atmospheric characteristics
due to a quasi-permanent subsidence thermal inversion. Constant north trade winds, along with the
high content of aerosols and dust in the atmosphere, have a large influence over the cloud dynamics
and therefore, the irradiance in the region. As shown in Figure 9, the La Graciosa grid is supplied by
three 20/0.4 kV transformers (600, 400, and 400 kVA) and tied by a 20 kV seabed cable to Lanzarote.
The island has two PV generation plants (5 kW and 30 kW), but recently La Graciosa PV capacity was
increased, enhancing the attractiveness of a smart grid energy management system.
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One of the main differences between La Graciosa project and the prior two experiences in the USA,
is that in the island, a system composed of two sky-imagers was installed, as can be seen in Figure 9.
The reason behind this was to give the forecasting system the ability to estimate cloud base height
(CBH) making use of stereoscopic techniques as in [46,47]. This provides the system with added value
in terms of functionality and gives extra data to incorporate in the next steps of the image processing
and forecasting pipeline. A recent paper comparing the use of different instruments to measure the
CBH concluded that using a pair of inexpensive cameras was the most cost-effective alternative in
comparison with other methods such as a ceilometer or LIDAR [48]. In fact, cloud base height is quite
important to estimate the position of the shadows if a ray tracing approach is taken and it can also be
included as a feature if Machine Learning methods are preferred, as it correlates with the position of
the clouds in the image and the recorded irradiance or PV production.

In this case, the device falls away from the Internet of Things (IoT) concept, since two cameras
are involved in the system, and some computation must be done either in one of the devices or (as it
was done in the project) on a dedicated server. Of course, there are some advantages and drawbacks
for using either method, but we found particularly easy the connection between the sky-imagers and
the server, and we could exploit the higher computational capabilities of the dedicated server. The
main requirement to work this way is to have a robust internet access, which fortunately was granted
by the owners of the buildings where the sky-imagers were installed. The network speed can also
influence the way of operating, as it can act as a bottleneck in the data stream (due to the relatively
large size of images compared to other types of files). Also, in the future the use of Machine Learning
algorithms could be done on the server, which is expected to perform better than computing directly
on the device.

2. Materials and Methods

In the original configuration of the SkyImager, a security camera enclosure housed a Raspberry
Pi single board computer with programmable Pi camera. The enclosure contained a small circuit
board with heater and fan that runs off a supplied 24V AC power supply, standard with many security
cameras. The 12V AC output from this board is input to an AC-DC converter which supplies 12V DC
to a TOBSON converter which supplies 5VDC at 3A for the Raspberry Pi.

2.1. SkyImager Hardware

Figure 10a displays the original SkyImager hardware. At NREL it was found necessary to add
an extra SBC for increased computational power–the Odroid C1 by Hardkernel. Heat dissipation
is an issue with SBC in Texas summers. One C1 was destroyed by heat and as result a cooling fan
was added to the design. The new C2 Odroid has a heat sink to eliminate the overheating issue.
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Acquiring and fusing the 3-exposure images could be done with just the Raspberry Pi 2. The Pi 3
model is 50% faster than its predecessor; careful optimization of the workflow will allow acquisition,
processing, and forecasting with just a Pi 3. This would reduce cost and greatly simplify network
connections. Figure 10b shows this configuration with a single Pi 3, plastic case, cooling fan, camera,
and WeatherBoard. Images could be pushed to the cloud for processing, however, the necessary
bandwidth would be substantial. The sky imagers in La Graciosa are built upon a Raspberri Pi 3 model
B with no ancillary boards, and a super wide fish-eye lens (field of view over 180◦). An inexpensive
mini PV module was added to record irradiance at the camera locations there.
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Figure 10. (a) Original configuration Raspberry Pi 2/Odroid C1, (b) Current hardware with a single Pi
3 Model B.

Figure 11 shows the equipment deployed on the MET tower at Ft. Sam: a Kipp&Zonen CMP11
pyranometer, the UTSA SkyImager, and a Vaisala WXT520 weather transmitter. Each of the commercial
devices costs several thousand dollars; this cost prompted us to search for low-cost substitutes.
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Figure 11. CMP11 pyranometer, UTSA SkyImager, Vaisala Weather Station.

Several inexpensive alternatives to a commercial pyranometer exist [49]. Devices can be added to
the GPIO pins on the Raspberry Pi. The Hardkernel Weather-Board 2 shown in Figure 12a can take not
only temperature, humidity, and pressure readings (bme280 Application-Specific Integrated Circuit
ASIC), but also measures light in the Visible, Infra-Red, and Ultra-Violet bands (si1132 ASIC). There is
a Python interface for data retrieval. After calibration and conversion of Lux to W/m2, this provides
irradiance measurements and limited weather data in real time. Another ancillary device that will
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be useful during initial deployment of the SkyImager is a GPS locator. At $20, it looks like a small
mouse for a desktop computer and plugs into a USB port. The Linux programs gpsmon and cgps can
be installed on Raspbian and used to take readings of the exact position using the latest GPS satellite
data. These are just two of many environmental sensors that can be connected to the Raspberry Pi.
Figure 12b shows the new PiNoIR camera, which captures infrared light as well as visible. This would
allow for increased contrast between low-level cumulus and high-level cirrus clouds composed of ice
crystals. The SkyImager can be used for additional tasks such as air quality monitoring. Figure 12c
shows the $25 MQ-131 ozone detection sensor, for example.
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2.2. Image Processing Pipeline

Several additional external inputs were required for our forecasting algorithms: distortion
parameters for the fish eye lens, zenith angle, True North, and most importantly the cloud base
height (CBH). These inputs are used in the image processing pipeline (Figure 13) to output real-time
GHI forecasts for the MGMS. A summary of the pipeline is included here, for details see [8]. (1)
Distortion Removal (due to fish eye lens), (2) Cropping and Masking, (3) Calculation of “Red-to-Blue
Ratio” (RBR), (4) Apply Median Filter to remove impulsive noise, (5) Thresholding to determine
cloud presence, (6) Compute Cloud Cover percentage (clear/moderately-cloudy/overcast), (7) Project
Clouds to height of CBH, (8) Use Optical Flow to move clouds forward in time, (9) Ray-Tracing to
locate cloud shadows, and finally (10) Calculate GHI using shadow locations. Although physically
correct, Step (9) Ray-Tracing is an inverse problem mathematically, hence “ill-posed”. Small errors in
locating shadows can produce significant errors in the forecast irradiance. To address this issue, we
investigated using artificial intelligence and neural works to predict GHI values directly from forecast
cloud locations.

At NREL another raw image was acquired every 15-seconds. The pipeline described above must
be fine-tuned if the processing SBC is to achieve the necessary throughput. An SBC is much more
limited than a desktop server as regards CPU speed and available memory/storage, which is provided
by a 32 Gb micro-SD card. The usual tradeoffs between keeping a large array in memory versus writing
it to disk, are still present even though there is no disk. Efficient programming constructs are required
if the goal of low cost is to be achieved. The EMS may run on a military grade RuggedCom server but
the SkyImager software is constrained run on an ARM architecture. Steps in the pipeline that have
little effect on the overall forecast accuracy can be eliminated. Profiling/timing runs on the optical
flow algorithms will show bottlenecks that can be addressed. This is important whether a ray-tracing
approach or a machine learning strategy is employed.

The goal in intra-hour solar forecasting is real time PV power predictions. Those forecasts result
from a two-step process: predicting cumulus cloud locations 15-min in the future and using projected
cloud locations to forecast irradiance. Each step introduces errors. Work is ongoing for Step 1 - Optical
Flow: compute error metrics of the 15-min ahead image versus the actual image. Step 2 - Machine
Learning takes the predicted image and computes GHI. This approach separates optical flow [50] from
machine learning (ML) and allows GHI to be predicted directly from the image itself. The SkyImager can
be used as a pyranometer for measuring/observing irradiance.
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The training datasets for the neural networks are region-specific, if not site-specific, and require
many all-sky images taken on moderately cloudy days. The weights determined for Golden, CO, will
have to be fined tuned for deployment in the San Antonio area for example. Training is computationally
expensive, whereas the inference or prediction is very fast and can be handled by the Pi. Research on
massive deep learning networks requires Graphical Processing Units (GPU) for training and software
such as Theano, Keras, or Tensorflow.
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2.3. Machine Learning for Irradiance Forecasting

Machine Learning (ML) is now ubiquitous in all areas of engineering and data science. It has been
used in many different ways to help solve the solar power forecasting problem, as described in [51,52].
Another area where ML is widely used is forecasting building load [53,54] which includes methods that
are physics-based, statistics-based (Gaussian Process, Linear Regression), and use machine learning
(Artificial Neural Network, Support Vector Machine, Deep Learning). Classic references for Deep
Learning include [55–57] and for Convolutional Neural Networks, [58].

AI software for data mining has evolved dramatically over the last few years. In data analytics
Python is the premier programming language [59] and this fully validated our decision to use it for
the SkyImager project. Rapidminer (Version 8.1.001) [60] is a machine learning platform with a point
and click interface. As shown in Figure 14, a data flow pipeline is established that permits the user to
input a data set, select attributes to analyze, determine target and predictor variable roles, partition the
data into training, validation, and sometimes testing subsets, create a logical fork to apply different
subprocess models such as Random Forests or Deep Learning, run the model(s), and assess error
metrics and overall performance. It is a proprietary package, but a version with somewhat reduced
functionality is available for educational use. For some models Rapidminer utilizes the H2O machine
learning modules (Version 3.8.2.6) [61,62]. Specifically, our Deep Learning (DL) model is found in H2O
as the Python function H2ODeepLearningEstimator(). An open source Python package Scikit-Learn
(Version 0.19.0) [63] allows a user to prototype and compare a variety of classification, clustering,
and regression models. Neural networks and deep learning has seen the evolution of specialized
software such as Keras, Theano, and Google’s Tensorflow, which recently became open source. The
computational demands of training networks on big data are extreme, and this has resulted in a
hardware evolution from central processing units (CPU) to graphical processing units (GPU) to special
purpose tensor processing units (TPU).
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Before predicting irradiance for cloudy days, consider the much simpler problem of forecasting
on a clear day. The Haurwitz analytic model performs well on days with no clouds. Using physics,
one can derive a closed-form functional relationship [64]: GHIclr = 1098 [cosθz exp(−0.057/cosθz)],
where θz is the solar zenith angle. Can neural networks learn this relationship, given a large enough
dataset on which to train? The actual forecasting problem on a cloudy day is of course much harder.
Information in each all-sky image is used to locate and track low-level cumulus clouds as they move
between the sun and PV-arrays. It is the difference between using ML to recognize machine-written
(or even hand-written) digits versus recognizing and identifying faces in a crowd of people moving
down the street. Work is ongoing to identify the best features to extract from the images, to efficiently
solve the intra-hour solar forecasting problem and to predict very short-term ramp events.

A critical component of any machine learning strategy is deciding which features or input
variables are most strongly correlated with the labels or output variables. A second aspect involves
finding a representation of the data that is compressed or sparse in some basis. This dimensionality
reduction [65] can be achieved through principal component analysis (PCA) or by the simple process
of discarding unimportant features in the inputs. In our studies, the label or target variables were
scalars: GHI values measured atop the ESIF Building at NREL. Other choices are possible such as the
value GHIclr − GHImea, the deviation from the clear sky value.

Each input or example is a 3-channel RGB image from the Pi camera. In the current configuration,
3 images taken 5 seconds apart at low, medium, and high exposure times are fused using the Mertens
algorithm into one raw image. As mentioned, this approach reduces over-exposure and washout in the
circumsolar region. The 1024 × 768 JPEG forms the basic input measurement for both the optical flow
and machine learning algorithms. Low level cumulus clouds between the sun and the PV arrays have
the greatest effect on the DNI, hence on GHI. For that reason, and to satisfy the need for dimensionality
reduction, the first preprocessing step is to locate the area in the image that surrounds the sun and
extract a 128 × 128 subimage.

Several approaches to locating the sun in the image are possible. Calculating the zenith angle
from the SOLPOS program, finding true North, and then mapping physical to pixel coordinates would
require extensive calibration. It was decided to use a simple robust image processing approach that
finds the maximum intensity in the image. On a clear day, this always locates the sun, but occasionally
when the sun is totally obscured by broken clouds, the brightest point in the picture is actually sunlight
reflected off of a nearby cloud. This can be observed in a time lapse video clip in which for a few
frames the sun is not at the center of the sub-image. While the cause of some transient errors, it never
lasts long and does not happen when the sun is totally obscured by a uniform cloud deck without
breaks. Figure 15 shows the low exposure image used to locate and center the sun and the resulting
raw fused image that will ultimately become the input to the neural networks. Lastly the subimage
will be resized to a point (8 × 8) where the neural networks will train in a reasonable amount of time.
In supervised learning, the neural networks require labeled training examples: ordered pairs (x, y)
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where x is the input vector, in this case the extracted subimage img, and y is the measured irradiance in
units of Watts/m2 at the time the picture was taken. Since new images are fused every 15 seconds,
GHI values were treated as constant on a 60 second interval for the purposes of assigning labels for the
neural network images.Appl. Sci. 2018, 8, x FOR PEER REVIEW  16 of 31 
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Many different metrics are used in data analysis and ML for evaluating model performance.
Table 1 lists common ones for solar forecasting. At is the actual value, Ft the forecast value, and µ the
mean; the summation over t can be over all observations in the ML context or over the values of a time
series. The metrics provide a posteriori error bounds upon which utilities can make economic decisions.
MAPE is relative L1 error, normalized for number of observations and converted to percent. When the
denominator of a fraction is close to zero, µ is used instead of At, a common practice when predicting
spot electricity prices. Some metrics such as L1 are more robust–less sensitive to outliers–than the
classical RMS error norms.

Table 1. Regression Metrics: A actual, F forecast, µmean.

Metric Definition

Mean Squared Error MSE = (1/n)∑
t
(At − Ft)

2

Normalized RMS Error nRMSE =
√

MSE/ρ, ρ = (Amax − Amin)

Explained Variance R2 = 1−∑
t
(At − Ft)

2/ ∑
t
(At − µ)2

Mean Absolute Error MAE = (1/n)∑
t
|At − Ft|

Mean Absolute Percent Error MAPE = 100%
n ∑

t
|(At − Ft)/At|

2.4. Stereographic Method for CBH Estimation

Obtaining CBH from paired sky images has been done by several authors in the past. For
instance, the method proposed in [46] generated blocks of clouds which are computed to make a
3D reconstruction of the clouds. Then, the authors were able to obtain the height of the clouds by
using geometric computation. On the other hand, the method in [66] used the cross correlation of
non-projected saturation images to find all possible combinations that yield feasible heights, selecting
the most correlated one (or the one with the minimum error).

In the GRACIOSA project, a pure geometric method based on the relative position of the
sky-imagers and the clouds was implemented. First, the algorithm looks for the same cloud feature
in the images coming from the two sky-imagers. This task can be extremely difficult due to the
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chaotic nature of clouds and slight changes in image properties such as luminosity. But fortunately,
a Scale-Invariant Feature Transform (SIFT) algorithm [67], can handle this situation. This algorithm
performs excellently, identifying features in a constantly changing shape (as clouds), since it considers
possible changes in scale and orientation. SIFT is applied to pairs of simultaneous images from both
cameras (Figure 16). Once the features from both images have been paired up, the best matches are
selected to continue the calculations. Valid features are then transposed from the image (pixels) to real
space (azimuth and zenith). With real space coordinates defined and the projection matrix of the lenses
known, geometric computation is used to obtain the length of the vectors containing each feature and
the geographical position of each camera in real space, from which the height of the evaluated feature
can be derived.
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3. Results

Almost a terabyte of image data was collected at NREL from 15 October 2015 through 16 April
2016. The measured DNI values were recorded using NREL’s CHP1-L pyranometer with units of
Watts/m2. Days were grouped into three categories: (1) Clear Sky; consisting of predominantly clear
days with little or no cloud cover; (2) Overcast; large masses of clouds that obscure the sun for most of
the day; and finally (3) Moderately Cloudy; characterized by large variation in irradiance values and
multiple ramp events. For Clear Sky and Overcast conditions there is no forecasting to do –persistence
can’t be beat. Other cloud cover classifications are possible. One could use unsupervised ML clustering
algorithms on the raw irradiance data to find other breakdowns. Standard METAR cloud classification
separates clouds into low, middle, and high level. All clouds affect measured irradiance [68]. We focus
on cumulus clouds because they have the greatest effect on ramp events.

Prediction of intra-hour GHI can be partitioned into several distinct sub-tasks. (1) Acquiring a
time series of all-sky images. Every 15 s a new raw image is fused [69] from three different exposure
times to allow for High Dynamic Range (HDR) [70]. (2) Using the recent past images and optical flow
to extrapolate cloud locations 15 min into the future. It is possible to enhance the algorithm, but it must
not hamper production of real time forecasts. (3) Using the predicted image and the weights from
training the neural network, a predicted GHI value is output to the microgrid management system.

In the original configuration, our software used optical flow to track movement of cumulus
clouds and then ray tracing to predict cloud shadow locations. A better methodology would utilize
artificial intelligence (AI) to classify the reduction in GHI that will result when cumulus clouds are
predicted in the circumsolar region. It is expensive to train neural networks, but this is done offline for
a given location. Once optimal weights are determined, the calculation of a single GHI value is very
fast–amounting to an inner product. If the optical flow calculation requires too much time, a second
single board computer can be added to the hardware as was employed at NREL.

Details of our research on machine learning to predict solar irradiance are described in the
paper [9]. Our intent here is to provide the reader with a concise summary of that research. A
critical outcome was verification that the SkyImager with the Pi camera can measure GHI in real time.
Lacking the accuracy of an expensive pyranometer, this approach would use the image sequence
acquired to solve the forecasting problem, in order to simultaneously estimate GHI. This data could be
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incorporated with readings from the WeatherBoard to provide additional inputs to the MGMS using
MQTT or DDS protocols. Variables that are considered deterministic should be treated as stochastic
random variables. Convolutional neural networks [58] which preserve spatial information offer the
best performance for image datasets. Expensive offline training of the networks is normally done one
time but it is possible to do continuous learning where the networks use feedback in the form of newly
acquired data to refine the learned weights.

In the field of machine learning, there are standard ways of visualizing both the input dataset
consisting of vectors in a high dimensional space, as well as targets and predicted outputs. The UTSA
SkyImager collected all images in this study on the ESIF building rooftop at NREL as part of the
INTEGRATE project. During 147 days from October, 2015 until May, 2016 there were 14 days of
no data collected (technical reasons) and 27 days of partial data collection. The remaining 106 days
of no missing data formed the inputs for training and testing the neural networks. This yielded
156,495 observations (examples or rows) for input to the neural networks. We used the standard split
(70% − 30%) of the data into training and testing subsets: 109,547 examples for training and 46,948
for testing.

3.1. Comparing 4 Different ML Models

Each input example is uniquely associated with one of the SkyImager pictures taken every 15 s.
The normalized pixel values for the Red-Green-Blue (RGB) channels of an 8 × 8 resized subimage
centered about the sun are flattened into one row vector. Note that other color spaces such as HSV
or HSL could also be used. Resizing provided dimensionality reduction and reduced runtimes, but
with substantial computer resources the 128 × 128 sub-images could be used for training. Average
values of each channel were included as additional features for a total of 3 × 64 + 3 = 195 features.
The first entry in each row is the measured GHI in W/m2. To show how well random variables X
and Y are correlated, one uses a scatter diagram. Figure 17 shows scatter diagrams of measured GHI
versus predicted GHI for four ML models: Multi-Layer Perceptron (MLP), Random Forest (RF), Deep
Learning (DL), and Gradient Boosted Trees (GBT). While all models perform well (tight clustering
around y = x, perfect correlation), DL and GBT have fewer outliers and visually outperform the other
two models.

Note that the MLP and RF models were run using the Scikit-Learn ML software package while
DL and GBT were run on the Rapidminer platform. This validated our results on different ML
packages—results should depend on the algorithms, not the platform on which they are implemented.
Currently, Scikit-Learn does not offer a deep learning model. Using Rapidminer is very convenient on a
powerful desktop PC, our ultimate goal is to use the trained weights on a Raspberry Pi 3 computer for
real time forecasting. Scikit-Learn with its open source Python interface should prove valuable for
that task.

MAE, MAPE, nRMSE, and R2 error metrics are given in Table 2 and run times in minutes. The
explained variance (R2) in the last column is very significant. Both DL and GBT achieve values of 0.87,
while MLP and RF are 0.1 less. The other error metrics closely track the R2 values. In DL the extra
accuracy is at the expense of much longer run times, but GBT gets the highest accuracy and is very
fast: 10 min faster than RF.

Table 2. Evaluation of four machine learning models.

ML Model Platform Runtime (min) MAE MAPE nRMSE R2

Multilayer Perceptron Scikit-Learn 3:05 81.21 33.05% 32% 0.71

Random Forest Scikit-Learn 14:53 66.86 28% 29% 0.76

Deep Learning Rapidminer 43:52 50.992 27.13% 21.6% 0.871

Gradient Boosted Trees Rapidminer 4:50 47.072 22.73% 21.1% 0.875



Appl. Sci. 2019, 9, 684 19 of 29

Appl. Sci. 2018, 8, x FOR PEER REVIEW  19 of 31 

features. The first entry in each row is the measured GHI in W/m2. To show how well random 

variables X and Y are correlated, one uses a scatter diagram. Figure 17 shows scatter diagrams of 

measured GHI versus predicted GHI for four ML models: Multi-Layer Perceptron (MLP), Random 

Forest (RF), Deep Learning (DL), and Gradient Boosted Trees (GBT). While all models perform well 

(tight clustering around y = x, perfect correlation), DL and GBT have fewer outliers and visually 

outperform the other two models. 

 

Figure 17. GHI actual vs GHI predicted on 24 Oct 2015 using different AI models. 

Note that the MLP and RF models were run using the Scikit-Learn ML software package while 

DL and GBT were run on the Rapidminer platform. This validated our results on different ML 

packages—results should depend on the algorithms, not the platform on which they are implemented. 

Currently, Scikit-Learn does not offer a deep learning model. Using Rapidminer is very convenient on 

a powerful desktop PC, our ultimate goal is to use the trained weights on a Raspberry Pi 3 computer 

for real time forecasting. Scikit-Learn with its open source Python interface should prove valuable 

for that task. 

Table 2. Evaluation of four machine learning models. 

ML Model Platform Runtime (min) MAE MAPE nRMSE R2 

Multilayer Perceptron Scikit-Learn 3:05 81.21 33.05% 32% .71 

Random Forest Scikit-Learn 14:53 66.86 28% 29% .76 

Deep Learning Rapidminer 43:52 50.992 27.13% 21.6% .871 

Gradient Boosted Trees Rapidminer 4:50 47.072 22.73% 21.1% .875 

MAE, MAPE, nRMSE, and R2 error metrics are given in Table 2 and run times in minutes. The 

explained variance (R2) in the last column is very significant. Both DL and GBT achieve values of 0.87, 

while MLP and RF are 0.1 less. The other error metrics closely track the R2 values. In DL the extra 

accuracy is at the expense of much longer run times, but GBT gets the highest accuracy and is very 

fast: 10 minutes faster than RF. 

Figure 17. GHI actual vs GHI predicted on 24 October 2015 using different AI models.

A time series is another approach to visualizing the results: GHI values are plotted on the y-axis
and time on the x-axis. Figure 18 compares measured and predicted GHI for one day, 3 October 2015.
Although there are differences in the two curves, they track each other well. More illuminating is
a time series display for the entire group of testing days shown in Figure 19, where actual GHI is
blue and forecast values are red. It is difficult to distinguish the two curves because they track each
other so closely. For both figures the deep learning model was used for prediction. Observe in the
center of Figure 19 a group of five consecutive clear sky days that are easy to predict, as are completely
overcast days.
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3.2. Different Deep Learning Model Results

Machine learning algorithms have many hyper-parameters that can be optimized to improve
accuracies and reduce run times. Table 3 shows how changing the number of hidden layers for the
DL model, nodes in the layers, and number of epochs (complete passes through the training dataset)
affects results. Model 1 has 2 hidden layers each with 50 nodes; it requires ten epochs to train with a
run time of ~2 min and R2 = 0.815. Model 2 also has two hidden layers (195,195) and 10 epochs, but
runs 3 times longer and only improves R2 to 0.824. To achieve R2 = 0.871 Model 3 (195,195,195) needs
500 epochs and ~45 min. A point of diminishing returns is reached: Model 4 (195,195,97, 195,195) takes
more than an hour to run on a desktop PC. Further improvements in accuracy would require larger
input images or tuning DL parameters.

Table 3. Comparison of 4 Deep Learning Models.

Hid.
Layer

Nodes per H.
Layer # Epochs Run Time MAE MAPE nRMSE R2

2 50,50 10 1:55 min 65.807 32.73% 25.8% 0.815

2 195,195 10 7:10 min 66.872 40.76% 25.6% 0.824

3 195,195,195 500 43:52 min 50.992 27.13% 21.6% 0.871

5 195,195,97,195,195 100 67:42 min 48.519 26.09% 21.6% 0.871

3.3. Cloudy Versus Clear Sky Days

From each 1024 × 768 fused raw image, the algorithm extracts a 128 × 128 pixel subimage
centered on the sun. Using the transform.resize function from Skimage, this is resized to 8 × 8 pixels to
achieve dimensionality reduction. This idea is critical to successful machine learning: each example in
the dataset is a vector in a high-dimensional space and there are many examples. Principal Component
Analysis and Linear Discriminant Analysis are other techniques for reduction, but our approach is
simple and has proved to be effective.

In the following case study ten days of SkyImager data acquired at NREL were used to synthesize
two datasets. Five moderately cloudy days comprised the first dataset, October 16, 17, 18, 19, 20 in
2015. Five clear sky days of data from November 10, 11, 12, 13, 14 of 2015 made up the second dataset.
The neural networks were fed 32 × 32 pixel resized images and 4 ML models from Scikit-Learn were
compared: Generalized Linear Regression Model (GLM), Multi-Layer Perceptron (MLP), Random
Forest Regressor (RFR), and Gradient Boosted Trees (GBT). Table 4 and Figure 20 show the results.
GLM and GBT have much shorter runtimes in both cases, while MLP and RFR achieve higher R2

values. Maximum accuracies are achieved with MLP but at a cost of increased runtimes. Extreme
accuracy in R2 values for clear sky days (0.97, 1.0, 1.0, 0.99) indicates the networks are learning the
analytic form of the Haurwitz clear-sky GHI model well.
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Table 4. Results for two datasets of 32 × 32 resized sub-images.

5 Moderately Cloudy Days 5 Clear Sky Days

Model Name GLM MLP RFR GBT GLM MLP RFR GBT

MAPE 39.75 13.53 15.79 20.93 12.0 2.44 2.66 3.79

Explained Variance R2 0.70 0.95 0.93 0.90 0.97 1.00 1.00 0.99

Mean Absolute Error 86.43 30.66 33.30 44.68 20.43 5.30 5.84 8.57

Elapsed Time (Sec) 0.1 513.1 69.9 12.4 0.1 512.8 60.5 12.0

Appl. Sci. 2018, 8, x FOR PEER REVIEW  21 of 31 

2 195,195 10 7:10min 66.872 40.76% 25.6% 0.824 

3 195,195,195 500 43:52min 50.992 27.13% 21.6% 0.871 

5 195,195,97,195,195 100 67:42min 48.519 26.09% 21.6% 0.871 

3.3. Cloudy Versus Clear Sky Days 

From each 1024 × 768 fused raw image, the algorithm extracts a 128 × 128 pixel subimage 

centered on the sun. Using the transform.resize function from Skimage, this is resized to 8 × 8 pixels to 

achieve dimensionality reduction. This idea is critical to successful machine learning: each example 

in the dataset is a vector in a high-dimensional space and there are many examples. Principal 

Component Analysis and Linear Discriminant Analysis are other techniques for reduction, but our 

approach is simple and has proved to be effective. 

In the following case study ten days of SkyImager data acquired at NREL were used to 

synthesize two datasets. Five moderately cloudy days comprised the first dataset, October 16, 17, 18, 

19, 20 in 2015. Five clear sky days of data from November 10, 11, 12, 13, 14 of 2015 made up the second 

dataset. The neural networks were fed 32 × 32 pixel resized images and 4 ML models from Scikit-

Learn were compared: Generalized Linear Regression Model (GLM), Multi-Layer Perceptron (MLP), 

Random Forest Regressor (RFR), and Gradient Boosted Trees (GBT). Table 4 and Figure 20 show the 

results. GLM and GBT have much shorter runtimes in both cases, while MLP and RFR achieve higher 

R2 values. Maximum accuracies are achieved with MLP but at a cost of increased runtimes. Extreme 

accuracy in R2 values for clear sky days (0.97, 1.0, 1.0, 0.99) indicates the networks are learning the 

analytic form of the Haurwitz clear-sky GHI model well. 

Table 4. Results for two datasets of 32 × 32 resized sub-images. 

 5 Moderately Cloudy Days 5 Clear Sky Days 

Model Name GLM MLP RFR GBT GLM MLP RFR GBT 

MAPE 39.75 13.53 15.79 20.93 12.0 2.44 2.66 3.79 

Explained Variance R2 0.70 0.95 0.93 0.90 0.97 1.00 1.00 0.99 

MeanAbsoluteError 86.43 30.66 33.30 44.68 20.43 5.30 5.84 8.57 

ElapsedTime (Sec) 0.1 513.1 69.9 12.4 0.1 512.8 60.5 12.0 

 

Figure 20. Scatterplots of Actual GHI versus Predicted GHI for 4 ML Models on 

moderately cloudy days (top row) and clear sky days (bottom row). 

Figure 20. Scatterplots of Actual GHI versus Predicted GHI for 4 ML Models on moderately cloudy
days (top row) and clear sky days (bottom row).

Using still finer sampling for the resized sub-images should yield better results at the cost of larger
data files and runtimes. At some point however, statistics suggests diminishing returns. In addition to
detailed descriptions of ML models and software our article [9] presents another case study. It uses
only one moderately cloudy day (17 October 2015) of observations and runs the four ML models with
8 × 8, 32 × 32, and 64 × 64-pixel sub-images. The size of the CSV input data file increases quickly:
3 Megabytes, 111 Mb, and 442 Mb, as do runtimes 139 s, 444 s, and 1309 s. Accuracies improve, but not
beyond a certain point.

3.4. JBSA Microgrid Data

The JBSA microgrid was built as a testbed for the CPS Energy Grid Modernization Laboratory.
Management and control of a microgrid must address many factors including cybersecurity, data
acquisition, data management, real-time computation, storage, bandwidth, interoperability, and
usability requirements. In addition to the data acquired by the UTSA equipment–SkyImager, WXT520
Vaisala weather station, and pyranometer; this includes 36-hour ahead hourly weather forecasts
scraped from the web, the day-ahead Load/PV forecasts, battery State-Of-Charge (SOC) readings,
actual load for the base library building, and control data from the Siemens MGMS. The goal is to
use all available data in order to refine site-specific solar irradiance forecasts for improved operation
and control of the microgrid. Non-UTSA data from the JBSA microgrid was acquired from Itron
MV-90 xi meters. This is a system used for the collection and management of interval data consisting
of time stamped readings taken every x minutes where x can be 5, 15, 30, or 60. A large electric
utility may acquire a billion interval readings in a single year and use them in a variety of ways
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including billing (demand response, real time pricing, curtailable rates), open market operations, and
load/market research.

Analyses of the JBSA MV90 data, all of which were taken at 15 min intervals, demonstrated that
much finer temporal resolution would be required to capture details of ramp events and provide
accurate irradiance forecasts to the MGMS. While 1 min resolution was provided by the UTSA
equipment such as the pyranometer and Vaisala weather station, the cost of this equipment precluded
widespread deployment in a distributed environment. Similar equipment at the UTSA solar testbed
provided a wealth of 1 min data, but we envisioned a network of hundreds of low cost SkyImagers
spread across the city of San Antonio, and for this scenario low cost was an essential requirement. As
previously discussed, there are a plethora of low-cost sensors that can be connected to the GPIO pins on
a SBC, including the WeatherBoard2 (WB2), air quality and ozone sensors, and even devices to measure
dust. Costing tens of dollars they provide a cost-effective way of environmental sensing that can
easily be incorporated with the SkyImager. Figure 21 shows observations of irradiance, temperature,
humidity, and pressure taken every minute on 26 November 2018 with the WB2 sensor mounted on
a SkyImager.Appl. Sci. 2018, 8, x FOR PEER REVIEW  23 of 31 
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Figure 21. Data from the WeatherBoard sensor on the UTSA SkyImager.

The mini photovoltaic module used at ULL is an off-the-shelf PV module, made of c-Si, with open
circuit voltage of 6V and a short circuit current of 200 mA, with a maximum DC output of 1.1 W. The
module was connected to a resistive load to dissipate the heat, and the data was registered by a INA219
DC Current Sensor able to measure very small currents, attached to the Raspberry Pi 3 model B.

3.5. One Second Minimodule Data from La Graciosa

The Universidad de La Laguna in the Canary Islands provided 1 sec data from the minimodule at
the La Graciosa microgrid operated by ENDESA. How does the spectral content of the voltage signal
change when moving from 1 s, 5 s, 15 s, to 60 s sampling? Figure 22 shows the effect of sub-sampling
on the time-series. Some of the noise present in the data might be due to voltage fluctuations or
seagulls (the location was the Fisherman’s Guild building). Certainly the area of the minimodule is
very small, so it behaves as a point measurement where small occulding objects can drastically the
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affect irradiance measurements. Still, the analysis strongly suggests that to resolve the frequency and
voltage swings that occur during a sudden ramp event, PMU measurements may be a necessity.
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3.6. CBH Estimations

The results of the CBH estimations are presented in Figure 23. The left boxplot shows the statistical
distribution of the heights obtained with the stereographic method, while the right boxplot shows
the statistical distribution of a weather station located in Arrecife, Lanzarote, which belongs to the
network of the University of Wyoming.
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Figure 23. Statistical distribution of the heights obtained by two-camera stereographic method (left)
and from a weather station located in Arrecife, Lanzarote (right).

There are several reasons for the apparent mismatch in the data. First, the weather station is
located 30 km south of the position of the cameras, which undoubtedly has a significant effect taking
into account how the atmospheric conditions develop in the region (with the thermal inversion steadily
rising its level from the Sahara Desert). Second, the data of the weather station is obtained using a
punctual measurement such as LIDAR, while the CBH estimations of the cameras cover a larger area
of the sky (mainly the central part of the fish-eye image, since the distortion on the borders makes
it almost impossible to compute the height). Finally, the temporal resolution of the weather station
data is up to 1 hour, while the estimation of the CBH by the stereographic approach is done every
minute. Likely the most important conclusion here is that the estimations made by the systems are
coherent with the previous knowledge of the atmospheric conditions, with a stable thermal inversion
ranging from 600 to 2000 m depending on the season of the year, which prevents clouds to rise over a
certain height.

4. Discussion

Our future research efforts will be directed in several areas. Optical flow is a critical area for the
success of intra-hour solar forecasting. IoT and cyber-security also form a critical component. Solving
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the AC Optimal Power Flow equations with GHI forecasts from the SkyImager will be important for
solving the energy storage and microgrid control problems. Using the Raspberry Pi additionally as a
multiple-sensor platform will be investigated. Environmental studies of the effects of dust and bird
feces on the solar panels may well utilize SkyImager technology.

It was on the INTEGRATE project that a synergism developed between researchers and engineers
at the national lab, universities, utilities, and private industry that continued after the project ended.
Management styles are quite different in academia and private industry with national labs somewhere
in between. Software version control was critical, as was careful documentation of all work. Both for
the utility where engineers would use the hardware/software and for the university where graduate
students and faculty would move on to other projects this was very important. Our decision to use
Python was an excellent one. Increasingly, both documentation, tutorials, and example programs are
being delivered in the form of IPython notebooks (.IPNB files) as, for example, Google’s Tensorflow.
Even a package such as Open Computer Vision [71,72] that is written in C++ for efficiency has Python
bindings that allow easy access to routines for image fusion and optical flow.

4.1. Lessons Learned at the 3 Deployment Locations

4.1.1. SkyImager at NREL

The NREL microgrid was located at a specialized research facility, but every attempt was made
to simulate conditions at a utility. The communications network was well established; there was
abundant state-of-the-art ancillary equipment such as pyranometers and an on-site weather station,
and the process of deployment went relatively smoothly. Still there were important lessons to be
learned. The SkyImager was initially configured with a single Raspberry Pi 2, which proved insufficient
for both acquiring images and processing them through the pipeline to produce irradiance forecasts.
This problem was solved by adding an Odroid C1, but this made the design more complex and
required bridging between the two SBC using a USB-internet connection. The plethora of operating
systems for both the SBC and EMS servers provided still another challenge. There are differences
in the way open source packages such as OpenCV and Mosquitto install and operate on Raspbian,
Ubuntu 14, and Ubuntu 16. In some cases, there are compiled binaries available and in others software
must be compiled from source files. From a solar forecasting perspective, NREL was where the best,
most complete data was acquired: over six months of daily images and ground truth pyranometer
observations. It took researchers over a year to analyze the data and the process is ongoing.

4.1.2. SkyImager at San Antonio, TX, USA

Two critical applications of islanded microgrids are remote installations in developing countries
and power systems for the military that must be entirely stand alone. While this made a military
base the perfect site for testing a microgrid EMS, it also meant that obtaining base access for UTSA
researchers was an issue. For safety purposes, it requires at least two people to lower the 10 m MET
tower. Beyond the initial installation, access to the tower is required every month to inspect the
instruments and clean the surface of the plastic dome that covers the camera enclosure. The cost of
the pyranometer and weather station exceeded that of the SkyImager by a factor of 20 and prompted
adding low-cost sensors to the SBC for measuring temperature, humidity, and light.

Occasional loss of power to the SBC as the battery went through its initial testing phase was a
minor issue which required tinkering so that the forecasting software was immediately brought back
on line during a reboot. Initially the Mosquitto MQTT broker was chosen for the UTSA software, but
because of compatibility issues with the MyRio software, HiveMQ proved to be a better choice. Direct
internet access to our SBC from outside the corporate network was available only through a WebEx
session that required close coordination between the utility and university personnel. Lesson learned:
when initially transitioning hardware/software from a research environment to a production one, it
is imperative to have physical/cyber access to the equipment and network. Several Odroid’s were
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damaged by high temperatures in the enclosure boxes and had to be replaced. MV90 meter readings
every 15 min are clearly insufficient for the intra-hour forecasting problem. We are currently working
with a group in Austin to add inexpensive Phasor Measurement Units (PMU) to acquire detailed
frequency and phase information in conjunction with weather, irradiance, and sky images. Cloud
computing [73] and 5G networks offer unique opportunities to move most of the computations off the
Raspberry Pi to the cloud.

4.1.3. SkyImager at La Graciosa, Canary Islands

Some valuable lessons learned from the Graciosa project have to do with the performance and
durability of the sky-imagers in a harsh, dusty, and salty environment such as La Graciosa. The
closeness of the island to the Sahara Desert makes the dust content in the atmosphere high. Quality of
the images is severely affected by the deposition of dust on the enclosure, as seen in Figure 24, showing
that scheduled cleanings of the enclosure are necessary to ensure the proper function of the devices.
Our first estimation is that cleaning is necessary at least twice a year, but it is highly dependent on
the climatologic and atmospheric conditions. Besides the deposition of dust on the enclosure, water
infiltrations in the interior of the enclosure have been a frequent problem, even if the equipment
was specially selected to have a high degree of protection to water and dust (IP67). Closeness to the
sea, as well as the strong rains that occurred in December of 2017, appear to be the main source of
this problem.
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5. Conclusions

In March of 2018 the California Energy Commission mandated that beginning in 2020, all new
home and apartment construction must include solar generation. When this level of distributed
generation becomes part of the electric grid, ISO are faced with new challenges in terms of frequency
and voltage control. Indeed, in Hawaii these issues resulted in a temporary hold on rebates for new
residential solar installations.

In a macrogrid extending over hundreds of square kilometers, integrating a mix of generation
conventional power plants, solar, and wind, and functioning as part of a larger interconnect such as
ERCOT, there is an inherent inertia that works on the side of the utility. In microgrids, however, this
inertia is lacking, and the control problem becomes much more difficult to solve when in islanded
mode [4,7]. There are also different temporal scales involved. Optimal day-ahead scheduling and
control of a microgrid is a distinct problem from hour-ahead control to ensure frequency and voltage do
not vary outside prescribed limits. Using equipment such as the OP4500 RT-LAB/RCP/HIL real-time
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power grid digital simulator by Opal RT, we hope to use Hardware-in-the-Loop equipment to analyze
the microgrid at JBSA. PMU measurements also need to be incorporated.

All-sky imaging technology will be a critical component in the overall solution strategy to predict
solar irradiance 15 min ahead, and to take corrective measures during ramp events. It must, however, be
fully integrated with NWP and satellite-based approaches for day-ahead load forecasting and optimal
control of a microgrid. Optimal use of this technology will encompass a diverse group of specializations,
including IoT and edge-computing, cyber-security, machine learning, and image processing.

For example, the characteristics and statistics of the all-sky imager must be included in the
stochastic optimization programming for risk neutral and risk adverse operational control of a
microgrid [6]. An holistic R&D approach is required. While a Raspberry Pi is the essence of
plug-N-play and it is relatively straightforward to build a SkyImager, integration into the IoT and field
deployment will remain an active area of research. Imagers will range the gamut in cost, accuracy, and
interoperability. MGMS will integrate forecasts from imagers, NWP, and satellites, as well as hundreds
of other meters and devices to solve the microgrid control problem. While physics-based methodology
will continue to be important, machine learning and IoT technology will play an increasingly critical
role. Development of standards such as OpenFMB for interoperability of thousands of devices will
also be a necessary component.

6. Patents

A provisional US patent application “distributed solar energy prediction imaging” has resulted
from the work reported in this manuscript.
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