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Abstract: This study presents a two-dimensional ordinary state-based peridynamic (OSB PD) modeling
of mode-I delamination growth in a double cantilever composite beam (DCB) test using revised
energy-based failure criteria. The two-dimensional OSB PD composite model for DCB modeling is
obtained by reformulating the previous OSB PD lamina model in x–z direction. The revised energy-based
failure criteria are derived following the approach of establishing the relationship between critical bond
breakage work and energy release rate. Loading increment convergence analysis and grid spacing
influence study are conducted to investigate the reliability of the present modeling. The peridynamic (PD)
modeling load–displacement curve and delamination growth process are then quantitatively compared
with experimental results obtained from standard tests of composite DCB samples, which show good
agreement between the modeling results and experimental results. The PD modeling delamination
growth process damage contours are also illustrated. Finally, the influence of the revised energy-based
failure criteria is investigated. The results show that the revised energy-based failure criteria improve
the accuracy of the PD delamination modeling of DCB test significantly.

Keywords: peridynamics; composite; ordinary state-based; double cantilever composite beam
(DCB); delamination

1. Introduction

Carbon fiber-reinforced polymer (CFRP) composite materials have been widely used in aerospace
structures due to their high specific stiffness/strength, low coefficient of thermal expansion, and excellent
fatigue resistance. In the design procedure of composite structures, testing and analysis are both needed
due to the overall consideration of cost and reliability. Laminate delamination is one of the main failure
modes of composite structures and, hence, has become a major concern of CFRP composite design and
analysis for many years [1–5]. Currently, the most widely used analysis method for capturing delamination
initiation and growth of CFRP composites is based on the framework of finite element method (FEM), such
as cohesive zone element (CZE) and virtual crack closure technique (VCCT). Although these techniques
have been successfully applied to many delamination problems of CFRP composites [6–8], they usually
have to preset the delamination growth path, which is difficult for many real engineering problems.
Besides, as stated in [9–12], these conventional analysis methods based on classical continuum mechanics
require that the displacement field of body be continuously differential in space. This requirement is in
contradiction with inherent spatial discontinuity existing in delamination growth problems.
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As an alternative to conventional analysis method, Silling et al. [13–15] introduced the
peridynamic (PD) theory of solid mechanics, which attempts to unite the mathematical modeling
of continuous media, cracks, and particles within a single framework. Peridynamic theory
replaces the partial differential equation of the classical theory of solid mechanics with integral
or integral-differential equations, and “spontaneous” formation of fracture and damage of composites
could be simulated without any prior knowledge of damage path [16–19]. Peridynamic theory has
been successfully applied to capture the delamination damage of CFRP composites. The interlayer
delamination damage patterns of composite laminate under low velocity impact were given by Askari
et al. [11] and Xu et al. [10]. The delamination damages between each layer of composite laminates
with notch or open hole were presented by Hu et al. [20–23]. “Spontaneous” delamination damages
were captured by peridynamic theory in these works, without any presetting of delamination path or
refinement of the delamination front mesh.

Although the above works have proved the potential advantages of peridynamic theory in
delamination modeling of CFRP composites, currently, few studies have focused on the quantitative
delamination growth modeling of CFRP composite by peridynamics. Double cantilever composite
beam (DCB) test provides a good benchmark example for validating an approach’s basic ability in
modeling mode-I delamination in composites. It is meaningful to conduct DCB modeling work
to examine the reliability of an approach in modeling structural delamination problem, such as
for CZE [24,25] and VCCT [26]. Hu et al. [12] developed an energy-based approach to simulate
delamination in composites using bond-based peridynamics. Delamination growth in double cantilever
beam (DCB) test is simulated and the convex delamination front was well captured.

In the present study, a two-dimensional ordinary state-based peridynamic (OSB PD) modeling of
mode-I delamination growth of CFRP composite DCB test is presented. Double cantilever beam
(DCB) test is the basic experiment to measure mode-I delamination fracture toughness, GIC, of
CFRP composites. This simple loading case provides a good benchmark example to quantitatively
verify the ability of peridynamic theory in modeling delamination growth of CFRP composites.
The two-dimensional OSB PD composite model used in the present study for DCB modeling is
obtained by reformulating the previous OSB PD lamina model [27] in the x–z direction. The revised
energy-based failure criteria are derived following the approach proposed by Silling et al. [15] of
establishing the relationship between critical bond breakage work and energy release rate. Loading
increment convergence analysis and grid spacing influence study are conducted. Comparisons
of load–displacement curve and delamination growth process between PD modeling results and
experimental results are shown. Delamination growth process damage contours are illustrated.
Numerical results using revised and original energy-based failure criteria are also compared.

2. Two-Dimensional Ordinary State-Based Peridynamic Model for DCB Modeling

2.1. Governing Equation

The two-dimensional OSB PD composite model used in the present study for DCB modeling
is obtained by reformulating the previous OSB PD lamina model (Madenci and Oterkus [27]) in x–z
direction. The detailed derivation process is given in Appendix A. The governing equation of the
present two-dimensional OSB PD composite model can be written as

ρ(k)ü(k) =
∞

∑
j=1

[t(k)(j) − t(j)(k)]V(j) + b(k), (1)

where ρ(k) is the density of material point x(k), ü(k) is instantaneous acceleration of x(k), as shown in
Figure 1, b(k) is the external load density, and t(k)(j) and t(j)(k) are PD force density between x(k) and
x(j). The PD force density can be expressed as
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t(k)(j) = A(k)(j)
y(j) − y(k)∣∣∣y(j) − y(k)

∣∣∣ , (2)

t(j)(k) = B(j)(k)
y(k) − y(j)∣∣∣y(k) − y(j)

∣∣∣ , (3)

with
A(k)(j) = 2ad

δ∣∣∣x(j) − x(k)
∣∣∣Λ(k)(j)θ(k) + 2δbs(k)(j) + 2δ(µFbF + µZbZ)s(k)(j), (4)

B(j)(k) = 2ad
δ∣∣∣x(k) − x(j)

∣∣∣Λ(j)(k)θ(j) + 2δbs(j)(k) + 2δ(µFbF + µZbZ)s(j)(k), (5)

and

s(k)(j) =

∣∣∣y(j) − y(k)

∣∣∣− ∣∣∣x(j) − x(k)
∣∣∣∣∣∣x(j) − x(k)

∣∣∣ , (6)

and

µF =

{
1
0

(x(j) − x(k)) ‖ fiber direction
otherwise

, (7)

µZ =

{
1
0

(x(j) − x(k))⊥fiber direction
otherwise

, (8)

where s(k)(j) is the stretch of bonds, and δ is the radius of the horizon zone. The direction cosines of the
relative position vectors between the material points x(k) and x(j) in the undeformed and deformed
states are defined as

Λ(k)(j) =
y(j) − y(k)∣∣∣y(j) − y(k)

∣∣∣ ·
x(j) − x(k)∣∣∣x(j) − x(k)

∣∣∣ . (9)

The PD dilatation θ(k) can be expressed as

θ(k) = d
∞

∑
j=1

δs(k)(j)Λ(k)(j)V(j). (10)

Figure 1. Peridynamic model notations.
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The PD material parameters a, d characterize the effect of dilatation, and b, bF, bZ are associated
with deformation of material points in arbitrary directions, fiber direction, and thickness direction,
respectively. These parameters are related to material properties of CFRP composite and horizon
radius. The detailed derivation procedures to get these PD material parameters are illustrated in
Appendix A.2. These PD material parameters are related to composite material parameters as

a =
1
2
(Q13 −Q55), (11)

d =
2

πδ3 , (12)

b =
6Q55

πδ4 , (13)

bF =
Q11 −Q13 − 2Q55

2δ
J

∑
j=1

∣∣∣x(j) − x(k)
∣∣∣V(j)

, (14)

bZ =
Q33 −Q13 − 2Q55

2δ
J

∑
j=1

∣∣∣x(j) − x(k)
∣∣∣V(j)

, (15)

where Q11, Q33, Q13, and Q55 are coefficients of stiffness matrix [Q] presented in Appendix A.1.

2.2. Revised Energy-Based Failure Criteria

Following the approach for deriving the relationship between critical bond breakage work
and energy release rate by Silling et al. [15], revised two-dimensional energy-based failure criteria
for mode-I delamination growth of CFRP composites are proposed. The influence of the revised
energy-based failure criteria will be investigated in Section 4.3.

This approach assumes that the energy consumed by a growing delamination front equals the
work required, per unit delamination front area, to separate two halves of a body across a plane
(Figure 2). Suppose a plane A separates two halves of a two-dimensional body B into B+ and B−.
The delamination front area a is on the plane. Consider a mode-I delamination motion with velocity
field on Figure 2. The total energy E absorbed by P in this motion is

E =
∫ t

0
Wabs(P)dt′ =

∫ t0

0

∫
P

∫
B

tz(vz
′ − vz)dV′dVdt. (16)

Figure 2. Computation of total energy absorbed by P for delamination front area a.
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The assumed critical bond breakage work wIC in this motion is

∫ t0

0
tz(vz

′ − vz)dt = wIC. (17)

Therefore,

E = wIC
∫

P

∫
B dV′dV = wIC(

∫
P−

∫
B+/P+

dV′dV +
∫

P+

∫
B−/P−

dV′dV +
∫

P−

∫
P+

dV′dV)

= wIC(2
∫

P−

∫
B+

dV′dV −
∫

P−

∫
P+

dV′dV)

= wIC(2a
∫ δ

0

∫ δ
z

∫ − cos−1(z/ξ)

cos−1(z/ξ)
ξdθdξdz− a

∫ δ
0 a(δ− z)

= wIC(
4
3 aδ3 − 1

2 a2δ2)

, (18)

For Equation (18), as stated by Silling et al. [15], bonds that do not cross plane A have no
contributions to the integrand. However, in the present study, bonds that cross plane A are separated
into three parts: bonds connecting P− and B+\P+, bonds connecting P+ and B−\P−, and bonds
connecting P− and P+, as shown in Figure 2. The bond breakage work between P− and P+ is calculated
only once compared with the original procedure in [15]. Adding these three parts of the bond breakage
work together gives the revised total absorbed energy E shown in Equation (18).

Assuming this total absorbed energy equals the critical energy release rate times the area of
delamination front,

GIC = E/a = wIC(
4
3

δ3 − 1
2

aδ2). (19)

Thus, the critical bond breakage work for mode-I delamination is related to critical energy
release rate,

wIC =
GIC

4
3 δ3 − 1

2 aδ2
. (20)

For two-dimensional numerical modeling, the delamination front area a can be set as the
discretized grid spacing dx,

wIC =
GIC

4
3 δ3 − 1

2 dxδ2
. (21)

From the above derivation, revised energy-based failure criteria for mode-I delamination growth
are proposed as∣∣∣∣ wI

wIC

∣∣∣∣ ≥ 1, wIC =
GIC

4
3 δ3 − 1

2 dxδ2
, wI =

∫ t

0
tz(vz

′ − vz)dt = tz(w′ − w). (22)

Local damage at a material point is defined as the weighted ratio of the number of eliminated
interactions to the total number of initial interactions of the material point with its family members [28].

The status variable for delamination damage, µ, is defined as

µ =

 1,
∣∣∣ wI

wIC

∣∣∣ < 1 no damage

0,
∣∣∣ wI

wIC

∣∣∣ ≥ 1 damage
. (23)
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The delamination damage between ply (n) and (n + 1) at a point can be quantified as

ϕ
(n)
out−of−plane_upper = 1−

N(upper)
(k)

∑
j=1

µ
(n)(m)
(k)(j)

N(upper)
(k)

ϕ
(n+1)
out−of−plane_lower = 1−

N(lower)
(k)

∑
j=1

µ
(n)(m)
(k)(j)

N(lower)
(k)

ϕ
(n)(n+1)
delamination = 1

2 (ϕ
(n)
out−of−plane_upper + ϕ

(n+1)
out−of−plane_lower).

(24)

2.3. Numerical Implementation

Although the peridynamic governing equation is in dynamic form, it can still be used to solve
quasi-static or static problems [29–31]. Adaptive dynamic relaxation (ADR) method [29] is currently the
most widely used method to solve quasi-static or static problems for PD. ADR method is particularly
effective for solving highly nonlinear problems, including geometric and material nonlinearities [31].

According to the ADR method, Equation (1) at the nth iteration can be rewritten as

..
U

n
(X, tn)+cn .

U
n
(X, tn)=D−1Fn(Un, U

′n
, X, X

′
), (25)

where D is the fictitious diagonal density matrix and c is the damping coefficient which can be
expressed by

cn = 2
√
((Un)T1KnUn)/((Un)TUn), (26)

in which 1Kn is the diagonal “local” stiffness matrix, which is given as

1Kn
ii = −(Fn

i /λii − Fn−1
i /λii)/(∆t

.
un−1/2

i ), (27)

where Fn
i is the value of force vector Fn at material point x, which includes both the peridynamic force

state vector and external forces, and λii are the diagonal elements of D which should be large enough
to avoid numerical divergence.

By utilizing central-difference explicit integration, displacements and velocities for the next time
step can be obtained:

.
U

n+1/2
=
((2− cn∆t)

.
U

n−1/2
+ 2∆tD−1Fn)

(2 + cn∆t)
(28)

and
.

U
n+1

=Un + ∆t
.

U
n+1/2

. (29)

To start the iteration process, we assume that U0 6= 0 and
.

U
0
= 0, so the integration can be

started by
.

U
1/2

=
∆tD−1F0

2
. (30)

Due to the large computational amount of PD model, GPU-parallel computing is introduced.
The PGI CUDA FORTRAN compiler, PGI/17.10 Community Edition, is used for compiling. The GPU
node at Cranfield University Delta HPC Cluster is applied for running the GPU-parallel program. The
GPU block threads are fixed to 256, and the number of blocks depend on the total number of parallel
processes [32].
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3. Experimental Setup and Results

In order to validate the reliability of the present two-dimensional OSB PD composite model, a
CFRP double cantilever beam (DCB) test is conducted. The CFRP composite DCB test setup is shown
in Figure 3a. The experiment was conducted in accordance with ASTM standard D5528-13 [33]. The
DCB test specimens are bonded with two piano hinges at the initial delamination end. White paint
marking is sprayed on the side of the specimen for visualizing the delamination front position. As
shown in Figure 4, the length of the specimen is 167 mm, with 25 mm width and 4 mm thickness. The
layup of the specimen is [0]32, with 0.125 mm/ply. Initial delamination a0 = 50 mm is preset on the
mid-plane of the specimen, between Layer 16 and 17. In this experiment, five DCB specimens are tested.
The loading velocity is 1 mm/min. The resulting load–displacement curves of the specimens are
presented in Figure 12. The delamination growth of each specimen is also recorded in Table 1. Modified
beam theory (MBT) method from ASTM standard D5528-13 was used to analyze the experimental
data, and the resulting average GIC of the CFRP composite is shown in Table 2.

Figure 3. Carbon fiber-reinforced polymer (CFRP) double cantilever beam (DCB) test and
two-dimensional PD modeling. (a) Double cantilever composite beam (DCB) test setup, (b) peridynamic
(PD) modeling deformed displacement field in thickness direction (mm).
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Figure 4. CFRP double cantilever beam (DCB) test specimen.

Table 1. Experimental delamination growth process observed in DCB test (DELL: delamination length).

DELL
(mm)

DCB-1 DCB-2 DCB-3 DCB-4 DCB-5
Disp.
(mm)

Load
(N)

Disp.
(mm)

Load
(N)

Disp.
(mm)

Load
(N)

Disp.
(mm)

Load
(N)

Disp.
(mm)

Load
(N)

50 4.77 88.04 5.07 97.22 5.52 86.16 5.27 94.29 4.79 91.07
51 5.17 87.59 5.23 86.22 5.59 79.09 5.27 94.29 5.24 91.09
52 5.18 85.84 5.26 82.09 5.60 77.87 5.75 89.35 5.34 90.19
53 5.20 85.23 5.29 81.60 5.62 77.53 5.75 89.35 5.62 92.44
54 5.26 85.60 5.30 80.78 5.65 72.54 5.75 89.35 5.62 92.44
55 5.54 84.56 5.34 80.10 5.67 69.59 5.96 81.77 6.02 93.91
60 6.15 62.19 5.52 77.25 5.89 55.74 6.47 74.20 6.42 66.33
65 6.79 68.00 6.15 66.52 6.03 47.80 7.13 62.66 8.12 73.22

Table 2. Material properties of CFRP composite DCB specimen.

E1 (GPa) E2 (GPa) G12 (GPa) ν12 GIC (N/mm)

127 7.9 4.2 0.32 0.512

4. Numerical Results and Discussion

The double cantilever composite beam test described in Section 3 is modeled using the
two-dimensional OSB PD composite model in Section 2. The DCB specimen shown in Figure 4
is made of CFRP composite with material properties shown in Table 2. The horizon of the present
two-dimensional OSB PD model is δ = 3 dx, dx is the grid spacing. The boundary conditions for PD
DCB model are shown in Figure 5. Displacement boundary conditions are applied at the loading
end. The loading increment for each iteration step is noted as dL. No-fail zones are set for preventing
possible premature failure due to boundary effects [12]. The modeling flowchart is shown in Figure 6.
For each loading step, firstly, a displacement boundary condition dL is applied; secondly, ADR is used
to get the static results; thirdly, the revised energy-based failure criteria derived in Section 2.2 are used
to check bond failure; and finally, a new loading step is applied. The two-dimensional PD modeling
deformed displacement field in thickness direction is shown in Figure 3b.

Figure 5. Boundary conditions for PD DCB model.



Appl. Sci. 2019, 9, 656 9 of 22

Figure 6. PD DCB modeling flowchart.

4.1. Loading Increment Convergence Analysis and Grid Spacing Influence Study

In order to investigate the reliability of the present modeling, loading increment convergence
analysis and grid spacing influence study are conducted. Four different grid spacing dx are studied:
1.0, 0.5, 0.25, and 0.125 (mm). For each grid spacing, four different loading increments dL are studied:

(1) For dx = 1.0, dL: 0.128, 0.064, 0.032, 0.016 (mm);
(2) For dx = 0.5, dL: 0.064, 0.032, 0.016, 0.008 (mm);
(3) For dx = 0.25, dL: 0.032, 0.016, 0.008, 0.004 (mm);
(4) For dx = 0.125, dL: 0.016, 0.008, 0.004, 0.002 (mm).

Firstly, loading increment convergence analysis for each grid spacing dx was conducted, as
shown in Figures 7–10. It can be seen that with the decrease of loading increment dL, the PD
modeling load–displacement curve converges for all grid spacing. As expected, the slope of the
linear load–displacement part is not influenced by the loading increment, and the loading increment
only influences the peak force value for a fixed grid spacing.
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Figure 7. Convergence analysis of loading increment dL for grid spacing dx = 1.0 mm, PD modeling
load–displacement.

Figure 8. Convergence analysis of loading increment dL for grid spacing dx = 0.5 mm, PD modeling
load–displacement.



Appl. Sci. 2019, 9, 656 11 of 22

Figure 9. Convergence analysis of loading increment dL for grid spacing dx = 0.25 mm, PD modeling
load–displacement.

Figure 10. Convergence analysis of loading increment dL for grid spacing dx = 0.125 mm, PD modeling
load–displacement.

Then, the influence of grid spacing was studied in Figure 11. The second least loading increment,
dL, was used for each grid spacing. For example, dL = 0.008 mm was used for grid spacing dx = 0.25
mm. It can be seen that with the decrease of grid spacing, the linear loading part of the PD modeling
load–displacement curve converges. However, PD modeling delamination growth initial point of
load–displacement curve seems sensitive to grid spacing. Similar mesh sensitivity of PD modeling can
be found in the work by Beckmann et al. [34], Henke et al. [35], and Steward et al. [36]. In the present
study, in order to balance the computation reliability and efficiency, dx = 0.25 mm and dL = 0.008 mm
are used in the following discussion.
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Figure 11. Influence of different grid spacing, PD modeling load–displacement.

4.2. Comparison of Load–Displacement Curve and Delamination Growth Process

The DCB load–displacement curve of the PD and experimental results are compared as shown in
Figure 12. The load–displacement curve of PD delamination growth is shown in Figure 13. The results
in Figure 12 show that the PD-based analytical result agrees well with experimental results. It is also
noted that the modeling load–displacement curve of PD delamination growth shows a zigzag-shaped
curve in Figure 13. This is due to the fact that when the delamination front grows for a grid spacing,
the displacement-controlled load will drop. Before the next delamination front growth happens, the
load will slightly increase with the increase of displacement. A similar phenomenon is also observed
in the load–displacement curves obtained from experiments, as shown in Figure 12. However, due
to the complex specimen manufacturing process, preset delamination condition, and experimental
setup condition, the load–displacement curve obtained from experiments show significant discrepancy
between different specimens.

Figure 12. Comparison of load–displacement curve between DCB test and PD (dx = 0.25 mm,
dL = 0.008 mm).
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Figure 13. Zigzag-shaped load–displacement curve of DCB test delamination growth process.

Quantitative delamination growth process is also compared between PD and experiment as
presented in Table 3, and the delamination growth process damage contours are illustrated in Figure 14.
In Table 3, the average delamination growth process of the five DCB test samples from 50 (initial
delamination) to 65 mm (shown in Table 1) is compared with the modeling results. From the results,
it noted that the present PD simulation results for the composite DCB delamination growth process
agree well with the experimental results. The maximum difference between PD and experimental
average results in displacement is −14.10%, and is 11.78% in load. In Figure 14, the delamination
damage coefficient ϕ

(16)(17)
delamination is calculated using Equation (24). The delamination length growing

from 50 (initial delamination) to 65 mm is vividly shown. It is worth noting that the PD delamination
growth process shown in Figure 14 is “spontaneous”. It does not need presetting of delamination path,
nor non-physical stabilization parameters which are required for FEM modeling [26]. Also, it does not
require the refinement of delamination front grid spacing.

Table 3. Comparison between PD delamination growth with experimental average results (DELL:
delamination length).

DELL (mm)
Experimental Avg. PD Difference
Disp.
(mm)

Load
(N)

Disp.
(mm)

Load
(N)

Disp.
(mm)

Load
(N)

50 5.09 91.35 4.39 88.66 −13.78% −2.95%
51 5.30 87.66 4.55 87.16 −14.10% −0.57%
52 5.43 85.07 4.72 85.64 −13.00% 0.67%
53 5.49 85.23 4.89 84.13 −11.00% −1.30%
54 5.52 84.14 5.06 82.62 −8.29% −1.81%
55 5.70 81.99 5.23 81.24 −8.26% −0.91%
60 6.09 67.14 6.16 75.05 1.16% 11.78%
65 6.84 63.64 7.16 69.72 4.66% 9.55%
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4.3. Comparison of Numerical Modeling Using Revised and Original Energy-Based Failure Criteria

In order to investigate the influence of the revised energy-based failure criteria proposed in
Section 2.2, a comparison study is conducted by modeling the DCB delamination using the revised
and original energy-based failure criteria. The revised energy-based failure criteria are illustrated in
Equation (22). And the original energy-based failure criteria [15] for two-dimensional modeling are∣∣∣∣ wI

wIC

∣∣∣∣ ≥ 1, wIC =
GIC
4
3 δ3

, wI = tz(w′ − w). (31)

The modeling load–displacement curve using revised and original energy-based failure criteria, as
well as the experimental results, are shown in Figure 15. The comparison of maximum load using the
revised and original energy-based failure criteria and the average experimental results are presented
in Table 4.

Figure 15. Comparison of load–displacement curve obtained using revised and original bond
energy-based failure criteria.
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Table 4. Influence of the revised bond energy-based failure criteria on maximum load.

Comparison Experimental Avg. PD_original PD_revised

Max load 95.29 82.97 88.66
Difference / −12.93% −6.96%

From Figure 15, it is observed that the modeling load–displacement curve using revised and
original energy-based failure criteria overlapped each other before delamination initiation. However,
the modeling delamination initiation was delayed using the revised energy-based failure criteria, which
agrees more closely with the experimental results. As shown in Table 4, the differences in the maximum
load of the modeling load–displacement curve in comparison with the average experimental results
was reduced from −12.93% to −6.96% by using the revised energy-based failure criteria. The above
results show that the revised energy-based failure criteria can significantly improve the accuracy of the
PD delamination modeling of DCB test.

5. Conclusions

In this study, a two-dimensional ordinary state-based peridynamic (OSB PD) modeling
of mode-I delamination growth in double cantilever composite beam (DCB) test is conducted.
The two-dimensional OSB PD composite model for DCB modeling is obtained by reformulating
the previous OSB PD lamina model in x–z direction. Additionally, revised energy-based failure criteria
are proposed for modeling delamination initiation and growth.

In order to investigate the reliability of current modeling, loading increment convergence analysis
and grid spacing influence study are conducted. It is shown that the PD modeling load–displacement
curve converges with the decrease of loading increment. The linear loading part of PD modeling
load–displacement curve converges with the decrease of grid spacing. However, the delamination
growth initial point of PD modeling load–displacement curve seems sensitive to grid spacing, similar
to the previous literature work.

The standard DCB test was performed with five composite DCB specimens to measure the mode-I
delamination fracture toughness GIC. The load–displacement variation and delamination growths
were also measured. The modeling load–displacement curve and delamination growth process using
the present PD model are then compared with experimental results. The results show that the PD-based
load–displacement curve agrees well with experimental results. The zigzag load–displacement curve
for delamination growth was observed both in experimental results and the present PD modeling
results. Well agreement of the PD modeling delamination growth progress with experimental results
is achieved. In particular, the maximum difference between PD and experimental average results
in displacement is −14.10%, and in load is 11.78%. Besides, the PD modeling delamination growth
process damage contours are illustrated.

To demonstrate the influence of the revised energy-based failure criteria, a comparison study
using the revised and original energy-based failure criteria in the PD modeling is conducted. It is
shown that the modeling delamination initiation was delayed using the revised energy-based failure
criteria, which agrees more closely with the experimental results. In particular, by using the revised
energy-based failure criteria, the differences with experimental results in the maximum load of the
modeling load–displacement curve was reduced from −12.93% to −6.96%, which show significant
improvement in the accuracy of delamination modeling of DCB test.
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Appendix A

Appendix A.1. Stiffness Matrix of DCB Composite Specimen in x–z Direction

Assuming plane strain condition for DCB composite specimen (shown in Figures 4 and 5) in x–z
direction:

ε22 = 0, γ12 = γ23 = 0, τ12 = τ23 = 0. (A1)

Similar to plane stress assumption for unidirectional lamina in x–y direction, the strain–stress
relationship and compliance matrix can be written as ε1

ε3

γ13

 =

 S11 S13 0
S13 S33 0
0 0 S55


 σ1

σ3

τ13

. (A2)

Using uniaxial loading condition, the compliance matrix can be related to the engineering elastic
constants of CFRP composite:

(1) σ1 6= 0, σ3 = 0, τ13 = 0

ε1 = S11σ1, ε3 = S13σ1, γ13 = 0, (A3)

E1 =
σ1

ε1
=

σ1

S11σ1
=

1
S11

, (A4)

ν13 = − ε3

ε1
= −S13σ1

S11σ1
= −S13

S11
, (A5)

S11 =
1

E1
, (A6)

S13 = −S11ν13 = −ν13

E1
. (A7)

(2) σ3 6= 0, σ1 = 0, τ13 = 0

ε1 = S13σ3, ε3 = S33σ3, γ13 = 0, (A8)

E3 =
σ3

ε3
=

σ3

S33σ3
=

1
S33

, (A9)

ν31 = − ε1

ε3
= −S13σ3

S33σ3
= −S13

S33
, (A10)

S33 =
1

E3
. (A11)

(3) τ13 6= 0, σ1 = 0, σ3 = 0

ε1 = 0, ε3 = 0, γ13 = S55τ13, (A12)

G13 =
τ13

γ13
=

τ13

S55τ13
=

1
S55

, (A13)

S55 =
1

G13
. (A14)

The stiffness matrix of DCB composite specimen in x–z direction can be proposed by the inverse
of compliance matrix,  σ1

σ3

τ13

 =

 Q11 Q13 0
Q13 Q33 0

0 0 Q55


 ε1

ε3

γ13

, (A15)
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[Q] = [S]−1 =


S33

S11S33−S13
2 − S13

S11S33−S13
2 0

− S13
S11S33−S13

2
S11

S11S33−S13
2 0

0 0 1
S55

, (A16)

Q11 =
S33

S11S33 − S13
2 =

E1

1− ν13ν31
, (A17)

Q13 = − S13

S11S33 − S13
2 =

ν13E3

1− ν13ν31
, (A18)

Q33 =
S11

S11S33 − S13
2 =

E3

1− ν13ν31
, (A19)

Q55 =
1

S55
= G13. (A20)

Appendix A.2. Derivation Procedure of PD Material Parameters

The PD strain energy density of the present two-dimensional OSB PD composite model for CFRP
composite can be expressed as

W(k) = aθ2
(k) + b

∞
∑

j=1
δ
∣∣∣x(j) − x(k)

∣∣∣s2
(k)(j)V(j) + bF

J
∑

j=1
δ
∣∣∣x(j) − x(k)

∣∣∣s2
(k)(j)V(j) + bZ

J
∑

j=1
δ
∣∣∣x(j) − x(k)

∣∣∣s2
(k)(j)V(j). (A21)

The PD material parameters in Equations (4), (5) and (10) can be derived by comparing the PD
strain energy density and the strain energy density of continuum mechanics under simple loading
conditions. Four simple loading conditions are assumed: (1) Pure shear loading on x–z plane (γ13);
(2) Uniaxial stretch in fiber direction (ε11); (3) Uniaxial stretch in thickness direction (ε33); (4) Biaxial
tension on x–z plane (ε11, ε33).

(1) Pure shear loading on x–z plane (γ13)

Under this loading condition, we assume γ13 = ζ and all other strains equal zero. From the
derivation in Appendix A.1,

θCM
(k) = 0, WCM

(k) =
1
2

Q55ζ2. (A22)

Firstly, the stretch of bonds s(k)(j) should be calculated under γ13 = ζ. As shown in Figure A1,
under this simple loading condition, material point M moves to M’.

Figure A1. Pure shear loading on x–z plane (γ13).
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OM′ =
√

OP′2 + M′P′2 =
√
(ξ cos θ + ξ sin θζ)2 + (ξ sin θ)2

=
√

ξ2 + 2ξ2 cos θ sin θζ + ξ2 sin θ2ζ2

≈
√

ξ2 + 2ξ2 cos θ sin θζ

, (A23)

s(k)(j) = OM′−OM
OM =

√
ξ2+2ξ2 cos θ sin θζ−ξ

ξ =
√

1 + ζ2 cos θ sin θ − 1
≈ 1 + 1

2 ζ2 cos θ sin θ − 1 = ζ sin θ cos θ
. (A24)

Then the PD dilatation can be derived as

θ(k) = d
∞
∑

j=1
δs(k)(j)Λ(k)(j)V(j) = d

∞
∑

j=1
δζ sin θ cos θΛ(k)(j)V(j)

= d
∫ δ

0

∫ 2π
0 δζ sin θ cos θξdθdξ = 0

, (A25)

and the PD strain energy could be derived as

W(k) = aθ2
(k) + b

∞
∑

j=1
δ
∣∣∣x(j) − x(k)

∣∣∣s2
(k)(j)V(j) + bF

J
∑

j=1
δ
∣∣∣x(j) − x(k)

∣∣∣s2
(k)(j)V(j) + bZ

J
∑

j=1
δ
∣∣∣x(j) − x(k)

∣∣∣s2
(k)(j)V(j)

= a(0) + b
∫
H

δξ(ζ sin θ cos θ)2dH + bF(0) + bZ(0)

= b
∫ δ

0

∫ 2π
0 δξ(ζ sin θ cos θ)2ξdθdξ = πδ4ζ2

12 b = 1
2 Q55ζ2

. (A26)

Comparing with Equation (A22),

b =
1
2 Q55ζ2

πδ4ζ2

12

=
6Q55

πδ4 . (A27)

(2) Uniaxial stretch in fiber direction (ε11)

Setting ε11 = ζ, similarly,

θCM
(k) = ζ, WCM

(k) =
1
2

Q11ζ2, (A28)

s(k)(j) = ζ cos2 θ, (A29)

θ(k) = d
∞
∑

j=1
δs(k)(j)Λ(k)(j)V(j) = d

∞
∑

j=1
δζ cos2 θΛ(k)(j)V(j)

= d
∫ δ

0

∫ 2π
0 δζ cos2 θξdθdξ = π

2 dδ3ζ = ζ

, (A30)

W(k) = aθ2
(k) + b

∞
∑

j=1
δ|x(j) − x(k)|s2

(k)(j)V(j) + bF
J

∑
j=1

δ|x(j) − x(k)|s2
(k)(j)V(j) + bZ

J
∑

j=1
δ|x(j) − x(k)|s2

(k)(j)V(j)

= aζ2 + b
∫
H

δξ(ζ cos2 θ)
2dH + bF

J
∑

j=1
δ|x(j) − x(k)|(ζ cos2 θ)

2V(j) + bZ(0)

= aζ2 + b
∫ δ

0

∫ 2π
0 δξ(ζ cos2 θ)

2
ξdθdξ + ζ2bFδ

J
∑

j=1
|x(j) − x(k)|V(j)

= aζ2 + π
4 bδ4ζ2 + ζ2bFδ

J
∑

j=1
|x(j) − x(k)|V(j) =

1
2 Q11ζ2

. (A31)

Comparing Equation (A28) with (A30) and (A31),

d =
2

πδ3 , (A32)

a +
π

4
bδ4 + bFδ

J

∑
j=1

∣∣∣x(j) − x(k)
∣∣∣V(j) =

1
2

Q11. (A33)
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Substituting Equation (A27),

a + bFδ
J

∑
j=1
|x(j) − x(k)|V(j) =

1
2

Q11 −
3
2

Q55. (A34)

(3) Uniaxial stretch in thickness direction (ε33)

Setting ε33 = ζ, similarly,

θCM
(k) = ζ, WCM

(k) =
1
2

Q33ζ2, (A35)

s(k)(j) = ζ sin2 θ, (A36)

θ(k) = d
∞
∑

j=1
δs(k)(j)Λ(k)(j)V(j) = d

∞
∑

j=1
δζ sin2 θΛ(k)(j)V(j)

= d
∫ δ

0

∫ 2π
0 δζ sin2 θξdθdξ = π

2 dδ3ζ = ζ

, (A37)

W(k) = aθ2
(k) + b

∞
∑

j=1
δ|x(j) − x(k)|s2

(k)(j)V(j) + bF
J

∑
j=1

δ|x(j) − x(k)|s2
(k)(j)V(j) + bZ

J
∑

j=1
δ|x(j) − x(k)|s2

(k)(j)V(j)

= aζ2 + b
∫
H

δξ(ζ sin2 θ)
2dH + bF(0) + bZ

J
∑

j=1
δ|x(j) − x(k)|(ζ sin2 θ)

2V(j)

= aζ2 + b
∫ δ

0

∫ 2π
0 δξ(ζ sin2 θ)

2
ξdθdξ + ζ2bZδ

J
∑

j=1
|x(j) − x(k)|V(j)

= aζ2 + π
4 bδ4ζ2 + ζ2bZδ

J
∑

j=1
|x(j) − x(k)|V(j) =

1
2 Q33ζ2

(A38)
Comparing Equation (A35) with (A37) and (A38),

d =
2

πδ3 , (A39)

a +
π

4
bδ4 + bZδ

J

∑
j=1

∣∣∣x(j) − x(k)
∣∣∣V(j) =

1
2

Q33. (A40)

Substituting Equation (A27),

a + bZδ
J

∑
j=1

∣∣∣x(j) − x(k)
∣∣∣V(j) =

1
2

Q33 −
3
2

Q55. (A41)

(4) Biaxial tension on x–z plane (ε11, ε33)

Setting ε11 = ζ, ε33 = ζ, similarly,

θCM
(k) = 2ζ, WCM

(k) =
1
2
(Q11 + 2Q13 + Q33)ζ

2, (A42)

s(k)(j) = ζ, (A43)

θ(k) = d
∞
∑

j=1
δs(k)(j)Λ(k)(j)V(j) = d

∞
∑

j=1
δζΛ(k)(j)V(j)

= d
∫ δ

0

∫ 2π
0 δζξdθdξ = dδ3πζ = 2ζ

, (A44)
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W(k) = aθ2
(k) + b

∞
∑

j=1
δ|x(j) − x(k)|s2

(k)(j)V(j) + bF
J

∑
j=1

δ|x(j) − x(k)|s2
(k)(j)V(j) + bZ

J
∑

j=1
δ|x(j) − x(k)|s2

(k)(j)V(j)

= a(2ζ)2 + b
∫
H

δξζ2dH + bF
J

∑
j=1

δ|x(j) − x(k)|ζ2V(j)bZ
J

∑
j=1

δ|x(j) − x(k)|ζ2V(j)

= 4aζ2 + b
∫ δ

0

∫ 2π
0 δξζ2ξdθdξ + ζ2bFδ

J
∑

j=1
|x(j) − x(k)|V(j)ζ

2bZδ
J

∑
j=1
|x(j) − x(k)|V(j)

= 4aζ2 + 2
3 πbδ4ζ2 + ζ2bFδ

J
∑

j=1
|x(j) − x(k)|V(j) + ζ2bZδ

J
∑

j=1
|x(j) − x(k)|V(j) =

1
2 Q11 + 2Q13 + Q33)ζ

2

. (A45)

Comparing Equation (A42) with (A44) and (A45),

d =
2

πδ3 , (A46)

4a + bFδ
J

∑
j=1

∣∣∣x(j) − x(k)
∣∣∣V(j) + bZδ

J

∑
j=1

∣∣∣x(j) − x(k)
∣∣∣V(j) =

1
2
(Q11 + 2Q13 + Q33 − 8Q55). (A47)

Solving Equations (A34), (A41), and (A47),

a =
1
2
(Q13 −Q55), (A48)

bF =
Q11 −Q13 − 2Q55

2δ
J

∑
j=1

∣∣∣x(j) − x(k)
∣∣∣V(j)

, bZ =
Q33 −Q13 − 2Q55

2δ
J

∑
j=1

∣∣∣x(j) − x(k)
∣∣∣V(j)

. (A49)
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