
applied  
sciences

Article

Iterative Learning Method for In-Flight
Auto-Tuning of UAV Controllers Based on Basic
Sensory Information

Wojciech Giernacki

Institute of Control, Robotics and Information Engineering, Electrical Department, Poznan University of
Technology, Piotrowo 3a Street, 60-965 Poznan, Poland; wojciech.giernacki@put.poznan.pl; Tel.: +48-61-665-23-77

Received: 31 December 2018; Accepted: 30 January 2019; Published: 14 February 2019
����������
�������

Abstract: With an increasing number of multirotor unmanned aerial vehicles (UAVs), solutions
supporting the improvement in their precision of operation and safety of autonomous flights are
gaining importance. They are particularly crucial in transportation tasks, where control systems are
required to provide a stable and controllable flight in various environmental conditions, especially
after changing the total mass of the UAV (by adding extra load). In the paper, the problem of
using only available basic sensory information for fast, locally best, iterative real-time auto-tuning of
parameters of fixed-gain altitude controllers is considered. The machine learning method proposed for
this purpose is based on a modified zero-order optimization algorithm (golden-search algorithm) and
bootstrapping technique. It has been validated in numerous simulations and real-world experiments
in terms of its effectiveness in such aspects as: the impact of environmental disturbances (wind
gusts); flight with change in mass; and change of sensory information sources in the auto-tuning
procedure. The main advantage of the proposed method is that for the trajectory primitives
repeatedly followed by an UAV (for programmed controller gains), the method effectively minimizes
the selected performance index (cost function). Such a performance index might, e.g., express
indirect requirements about tracking quality and energy expenditure. In the paper, a comprehensive
description of the method, as well as a wide discussion of the results obtained from experiments
conducted in the AeroLab for a low-cost UAV (Bebop 2), are included. The results have confirmed
high efficiency of the method at the expected, low computational complexity.

Keywords: UAV; auto-tuning; machine learning; iterative learning; extremum-seeking; altitude controller

1. Introduction

1.1. Auto-tuning of UAV Controllers—Context and Novelty

Common availability of low-cost, computationally efficient embedded systems and small size
sensors directly influence the development of the construction of unmanned aerial vehicles and their
applications, the number of which has been increasing in recent years [1–4]. In every UAV prototype,
the need to ensure reliability and flight precision, both in manual and autonomous mode, are key
aspects and depend directly on the selection of sensors [5], estimation methods [6], and the quality of
position and orientation by controllers resulting from the applied control architecture [7,8]. In addition
to the advanced control systems that often require precise models of UAV dynamics [9–12], due to their
simplicity and versality, fixed-value controllers with a small number of parameters, are commonly
and successfully used [13–16]. They determine the safety of operation, maximum flight duration and
the UAV’s in-flight behavior. That is why it is so important to learn and systematize the mechanisms
of optimal self-tuning of their parameters for various environmental disturbances and for a radical
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change in the dynamics of the UAV itself due to a change in its total mass. Due to the attractive field of
applications of such solutions in many areas (transportation and manipulation tasks performed by one
or several UAV units [17–19], precision agriculture [20,21], missions requiring the sensory equipment
to be re-armed, rescue operations [22], etc.), one is looking for fast solutions with low computational
complexity that work in real-time mode.

While the state-of-the-art analysis shows several computationally complex approaches (requiring
numerous repetitions and the use of the UAV model) to batch, optimal auto-tuning of controllers (via
heuristic bio-inspired [23,24] and deterministic methods [25]), there has been no method reported
to optimize the gains of fixed-value UAV controllers so far. No method has also been reported to
do the latter in flight, iteratively and exclusively on the basis of available, periodic, basic sensory
information (without using the UAV model)—to indirectly increase the flight duration by minimizing
the energy expenditure through shaping a smooth flight characteristic. This issue has been selected
as the core of the conducted research. The obtained result in the form of effective machine learning
method for auto-tuning of gains of UAV controllers is a novelty presented in this article and thoroughly
expands the concept of the method presented in [26] (using the weighted sum of the control error and
control signal in predefining expectations for time courses and as a measure of tracking quality in the
optimization algorithm). In addition, the most important added value also became:

• assessment and systematization (by means of simulation and experimental studies) of the
influence of several environmental factors on the process of auto-tuning of UAV controllers
during the flight by the proposed extremum-seeking method. The key issue here is the analysis
of results in terms of assessing the quality of work of tuned controllers and the work of the
optimization mechanism itself in the following test areas: presence of disturbances (wind gusts),
UAV mass change, different sensory sources, flight dynamics/optimized performance index,

• outlining the rules for conducting the auto-tuning process of controllers, so that the automatic
exploration of the gain space for individual controllers can be as safe as possible (one needs to
keep in mind that the proposed method is not based on any stability criterion, which is its main
limitation compared with numerous batch solutions based on models).

1.2. Motivation

In previous research [26], the author has drawn inspiration from the demanding problems of
mobile robotics, which the world research centers have been coping with. Examples of such problems
can be found in particular challenges of the Mohamed Bin Zayed International Robotics Challenge
(http://www.mbzirc.com) [27], where the common denominator are tasks requiring the use of one
or a group of UAV units to conduct autonomous flights with high precision in varied conditions
(outdoor and indoor) and varied UAV mass. In preparation for the MBZIRC’2020 edition, it turned
out that the only currently available auto-tuning algorithm on commercial auto-pilots (as Pixhawk,
Naze32, Open Pilot, CC3D), named AutoTune, ”(...) uses changes in flight attitude input by the pilot to learn
the key values for roll and pitch tuning. (...) While flying the pilot needs to input as many sharp attitude changes
as possible so that the autotune code can learn how the aircraft responds” [28]. Unfortunately, this solution
is problematic due to the tuning safety (especially in prototyping UAV constructions) and control
goal set: to provide the most smooth, feasible flight trajectories, which will reduce the control effort
to reasonable level, and as a result will be maximally energy efficient. Therefore, in the method
considered in this work, a gain tuning of UAV controllers based on dynamic behavior was replaced by
more energy-efficient and automatic machine learning technique.

1.3. Related Work

Among numerous approaches to machine learning, and apart techniques using neural networks,
which require many learning data sets, the mechanisms based on reward and punishment (as in the case
of reinforcement learning approaches) are becoming increasingly common. In [29], Rodriguez-Ramos
et al. have taught the control system to land autonomously on a moving vehicle, and in [30] Koch
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et al. trained a flight controller attitude control of a quadrotor through reinforcement learning. Despite
the obviously large number of classic approaches to tuning of fixed-value controllers (Panda presents
a whole array of such approaches, of which several dozen are practice-oriented [31]), the optimal
techniques of iterative learning are invariably gaining on importance [32–34]. Iterative learning
techniques have three desirable attributes, namely: automated tuning, low computational complexity
(in optimization algorithms, a decision is made only on the basis of current, cyclic information
from the selected performance index—cost function), and fast tuning speed [26,35] (in contrast to
reinforcement learning approaches, which requires numerous experiments during the learning that
makes it unpractical).

While the methods approximating the gradient of the cost function (first- and second-order
optimization algorithms) presented in [25,36] can be quite problematic for UAV auto-tuning from noisy
measurements (an aspect for careful comparisons in subsequent author’s research), the zero-order
optimization methods works efficiently because of the speed of calculations. However, it should
be remembered and accepted that the obtained solution may be a local (there is no guarantee to
obtain global solutions) or a value near it (depending on the declared level of expected accuracy of
calculations ε).

Among the zero-order optimization methods presented by Chong & Zak in [25], such as
Fibonacci-search, golden-search, equal division, and dichotomy algorithms, especially the first
two of region elimination methods—developed by Kiefer [37] are effective in optimal control
problems [38]. A broad description of the method based on Fibonacci numbers which was used for
UAV altitude controller tuning can be found in the mentioned publication [26] of the author—especially
mathematical basics and proofs for the region elimination mechanisms. Therefore, for undisturbed
presentation of the proposed new method based on the modified golden-search algorithm used in the
auto-tuning of the altitude controller during the UAV flight, only necessary mathematical description
has been presented in the remaining part of the paper. Instead, the author paid more attention to the
application aspects of the method (by placing the necessary pseudocodes) and a wide analysis of the
results obtained from the conducted research experiments.

The paper is structured as follows: in Section 2 the UAV description as a control object and
measurement system, as well as considered control system, is presented. Therein, the control
purpose is highlighted, and the optimization problem is outlined. In the same Section, the proposed
auto-tuning method is introduced, and its mathematical basics are explained. Furthermore, the
experimental platform is shown. The comprehensive description of simulation and real-world
experiments results with discussion are provided in Section 3. Finally, Section 4 presents conclusions
and further work plans.

For a better understanding of the presented content, the most important symbols used in the
paper are described in Table 1.

Table 1. Symbols used in this article.

Symbol of Variable Explanation

α, β weights (in cost function J)
θ, φ, ψ roll, pitch, yaw angles

ρ golden-search reduction factor
ε expected accuracy in GLD method
BF body frame of reference
D (k) considered range for the optimized parameter at k-th iteration
EF Earth frame of reference
e(t) tracking error (in time domain)
f (·) cost function (in GLD method)

J performance index (cost function in GLD procedure)
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Table 1. Cont.

Symbol of Variable Explanation

kP, kI , kD proportional/integral/derivative gains
N minimal number of iterations required to ensure accuracy ε
Nb number of the predefined bootstrap cycles
Nc number of sampling periods necessary to calculate J at l-th iteration of the GLD

Nmax number of sampling periods related to the length of the tuning procedure
p

d
vector of desired UAV position

p
m

vector of measured UAV position
ta time of gathering information for calculation of J in GLD methods
th flight time horizon
Tf time constant of a low-pass filter of transfer function
Tp sampling period for calculation of J
Ts sampling period in low-pass filter

u(t) control signal (in time domain)
x(k

−) lower bound for optimized parameter at k-th iteration
x(k

+) upper bound for optimized parameter at k-th iteration
x̂ candidate point in the optimization procedure
x̂∗ iterative estimate of the optimal solution

xb, yb, zb axes of the BF
xd, yd, zd desired position coordinates
xe, ye, ze axes of the EF

xm, ym, zm measured position of the UAV

2. Materials and Methods

2.1. Multirotor UAV as a Control Object and Its Measurement System

The multirotor UAV can be considered as a multidimensional control plant, being underactuated,
strongly non-linear, and highly dynamic with (in general) non-stationary parameters. These features
result from its physical structure—especially the use of several propulsion units mounted at the ends
of the frame. In addition, measuring, processing, and communication systems are also attached to
the middle of this frame—suited for a particular UAV construction. From the perspective of control,
the appropriate selection of propulsion units (composed of: brushless direct current motors, electronic
speed controllers and propellers) is a key aspect to ensure the expected flight dynamics expressed
via thrust (T) and torque (M) generated by the rotational movement of propellers [39]. By changing
the rotational speed, it is possible to obtain the expected position and orientation of the UAV in 3D
space, i.e., control of its 6 degrees of freedom (DOFs). The obtained control precision also depends on
the quality of sensory information to a large extent. Presently, even in the simplest, low-cost UAVs
(Figure 1), in order to determine current position and orientation estimates during the flight (e.g., based
on more or less advanced modifications of Kalman filters [6]), the sensory data fusion is used (from
3-axes accelerometer, 3-axes gyroscope, 3-axes magnetometer, pressure sensor, optical-flow sensor,
GPS, ultrasound sensor, etc.).

In the paper, two sources of measurements are used in the proposed auto-tuning procedure:
on-board UAV avionics (for roll and pitch angles measurements) and external motion capture
system (OptiTrack) (X, Y, Z position, and yaw angle). In the UAV autonomous control, to ensure
unambiguous description of the UAV’s position and orientation in 3D space, the North-East-Down
(NED) configuration of the reference system is used, since the on-board measurements are expressed
in local coordinate system (BF—Body Frame), and the position control, as well as motion capture
measurements are defined in the global one (EF—Earth Frame). In the paper of Xia et al. [40], one may
find a better known, basic information about the mechanisms of conversions, e.g., how the posture
of the multirotor (its rotational and translational motion) can be described by the relative orientation
between the BF and the EF with the use of the rotation matrix R ∈ SO(3).
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Figure 1. The Bebop 2 quadrotor (and its coordinate system) during one of the initial experiments with
the carrying of payload conducted in AeroLab of Poznan University of Technology.

2.2. Considered Control System and Control Purpose (Formulation of Optimization Problem)

The control system of multirotor UAV from Figure 2 considered here is based on cascaded control
loops. There is control of angles roll (θ) and pitch (φ) around the xb and yb axes, according to the set
(desired) position in the xe and ye axes in faster, internal control loops. Their control is performed in
slower external loops. The control of θ and φ angles occurs indirectly in the realization of autonomous
flight trajectory expressed using the vector of desired position trajectory p

d
= (xd, yd, zd)

T and desired
angle of rotation yaw (ψd) around the ze axis. The purpose of the autonomous control is then to ensure
the smallest tracking errors e(t) during the UAV flight, i.e., the difference in the values of the reference
signals (desired) and output signals (actual/measured) [41]:

ep = p
d
− p

m
, (1)

eψ = ψd − ψm, (2)

where the m index refers to the measured values.
Bearing in mind that in UAVs the current tracking error information from (1) and (2) is used

as the input of a given fixed-value controllers, in the commonly used proportional-derivative (PD)
controller structure or proportional-integral-derivative (PID), it is proposed to use this information (as
well as information from the output of a given type of controller with control signal u(t)) to formulate
a measure of the tracking quality during UAV flight, i.e., the cost function/performance index J(t) (see
Figure 3), defined as follows:

J (t) =
∫ ta

0
(α |e (t)|+ β |u (t)|) dt, (3)

where ta is the time of gathering information (to calculate new controller gains) in the optimization
procedure. By introducing the penalty for excessive energy expenditure (expressed in the cost function
through actual values of the control signal u(t)), it is possible to shape expectations towards transients
and the controller’s dynamics profile (providing smooth or dynamic flight trajectories). At small values
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of the β, the controller works aggressively, using more energy, often at the expense of the appearance
of overshoot, which is undesirable in missions and tasks requiring high flight precision.

Figure 2. Diagram of considered control system.

Figure 3. General block diagram of the control system with optimization.

Unconstrained control signal u(t) is calculated from the controller’s equation, which in the case
of PID structure it is given by

u(t) = kPe(t) + kI

∫ th

0
e (t) dt + kD

d
dt

e(t), (4)

where th is a flight time horizon, kP is the proportional gain, kI represents the integral gain and kD the
derivative gain, respectively. Gains kP and kD are expected to be found using the proposed iterative
learning method.

Remark 1. In the article, when there is a reference to the PID controller, it should be remembered that only
the kP and kD gains are tuned automatically, whereas the value kI (used to eliminate the steady-state error) is
selected in a manual manner. The proposed auto-tuning method can be used to optimize the gains of any type of
controller with three (or even more) parameters; however, this will result in a longer tuning time. Therefore,
from the application point of view, it is better to use the procedure presented further in the article.

Recalling (4), this work deals with the search for the controller gains kP and kD, to minimize the
cost function (3). That is, the current controller design procedure can be posed as an optimization
problem where the solution to the following problem is sought:
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min
k1,k2,...,kN

J (t) =
∫ ta

0 (α |e (t)|+ β |u (t)|) dt,

s.t.

0 ≤ k1 ≤ kmax
1

0 ≤ k2 ≤ kmax
2

...
0 ≤ kN ≤ kmax

N

(5)

where kmax
1 , kmax

2 , ..., kmax
N are upper bounds of the predefined ranges of exploration in the optimization

procedure of N controller parameters.

Remark 2. In the numerical implementation of optimization problem from (5), to quantify the tracking quality
by using the cost function (3), its discrete-time version is used (the integration operation is replaced with the
sum of samples). Then the cost function is built from the weighted sum of the absolute values of the tracking
error samples and the absolute values of the control signal samples (for a given sampling period Tp).

2.3. Procedure for Tuning of Controllers

To increase the safety in the process of tuning UAV controller parameters during the flight, it
is proposed to use the procedure from the flowchart (Figure 4), corresponding to the pyramid of
subsequent expectations for the work of control system (Figure 5).

Figure 4. Flowchart for the proposed tuning strategy of the UAV controllers.

Figure 5. Following steps to obtain optimal gains of controllers.

Remark 3. Manual tuning of UAV control system prototype is out of scope of this work (to focus on auto-tuning
mechanisms). Some useful information regarding UAV controllers prototyping can be found at well-recognized
by the UAV community webpages [42–44].

2.4. Iterative Learning Method for In-Flight Tuning of UAV Controllers—General Idea

Bearing in mind that the search space for the Jmin for all combinations of controller gains
k = (k1, k2, ..., kN)

T in predefined intervals (ranges) of gains, in the problem outlined in (5) is huge,
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one needs a fast, effective mechanism for search space exploration. It should be characterized by low
computational complexity, and after checking the value of J(t) in a maximum of dozen or several
dozen of gain combinations, should be able to provide the value of Jmin (locally best variant) or a
significant improvement compared to the controller’s original gains (expressed using e.g., the expected
accuracy of the ε).

Recalling the publications cited in Section 1.3, iterative learning algorithms are characterized by
fast convergence towards the minimum value—especially the region elimination methods (REMs).
To be able to use them, one needs to refer to the general idea of iterative learning approaches (proposed
by Arimoto et al. in [45]), i.e., minimization of the norm of error (here: cost function) in order to
tune particular controller using the periodical repetitiveness of the trials (here: repetitions of the
same, predefined trajectory primitives—see Figure 6). Then, to find locally best gains of a particular
controller based on a given reference of xd, yd, zd or ψd primitive, and corresponding measured value,
the performance index J(t) calculated during the flight with given safe ranges of controller parameters,
enables the minimum-seeking procedure to find controller gains with respect to the preferred dynamics,
and for a given tolerance of the solution.

Figure 6. Following steps in iterative learning mechanism for altitude controller tuning.

Remark 4. Since the method is based solely on the cyclic collection of measurement data to determine J(t),
the need to use the UAV model is reduced. However, its knowledge is advantageous when in the simulation
conditions it is possible to roughly estimate/determine the maximum values of the elements of the k vector, for
which the UAV does not lose its stability.

For every single primitive being used in the optimization procedure, three phases can be
distinguished (see Figure 6):

1. Acquisition of measurement data (current, sampled values: xm, ym, zm or ψm) for set controller
gains with the assumed Tp and the assumed form of the J(t) function,

2. Determination of new controller gains based on the estimated value of the cost function from the
phase no. 1,

3. Adjusting the controller according to iteratively corrected gains and waiting for the time necessary
to stop the transient processes caused by it.

Determining the sequence of controller gains is possible by systematically narrowing the search
space. For this purpose, the use of region elimination method based on the zero-order deterministic
optimization algorithm (GLD), is proposed.
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2.5. Region Elimination Method Based on GLD Algorithm

Let us consider the problem of iterative searching for a particular controller’s gain as a problem
of reducing the set range of this gain, in which the criterion of stopping the algorithm is the proximity
of following solutions, i.e., the value of the cost function in subsequent solutions (for subsequent
controller gains), and the convergence of the algorithm ensures the use of the mechanism based on
golden-section search from [25] used in REMs.

Principles and assumptions in the GLD method are similar to those in the modified
Fibonacci-search method (FIB) proposed in [26]. The most important are: the unimodality assumption
of optimized cost function f (·), lack of knowledge about the global minimum (which gave rise to
formulation of stopping criteria in the iterative tuning algorithm, e.g., given tolerance to find the
minimizer), successively narrowing the range of values inside which the extremum is known to exist
according to the definition (2.1) of the fundamental rule for REMs.

Definition 1. Let us consider an optimization problem of a one-argument unimodal cost function f : R → R

within in the predefined range [x(0
−),x(0

+)] in initial 0th iteration, where x(0
−)<x(0

+) of a unimodal function f .
The argument x of this function can be interpreted as a gain of controller (here: kP or kD), and the value of f can
be understood as the J value (within some horizon) corresponded to it.

Now, for a pair of two arguments x(1
−) i x(1

+), which lie in the range [x(0
−),x(0

+)], and which satisfy
x(0
−)<x(1

−)<x(1
+)<x(0

+), it is true that:

• If x(1
−) > x(1

+), then the minimum x̂∗ does not lie in (x(0
−), x(1

−)),
• If x(1

−) < x(1
+), then the minimum x̂∗ does not lie in (x(1

+), x(0
+)),

• If x(1
−) = x(1

+), then the minimum x̂∗ does not lie in (x(0
−), x(1

−)) and (x(1
+), x(0

+)).

A region elimination fundamental rule is used to find the x̂∗ with the minimum value of f within
predefined range, based on repeatedly selection of two arguments from the current range according to
symmetrically reduction the range of possible arguments:

x(1
−) − x(0

−) = x(1
+) − x(0

+) = ρ(x(0
+) − x(0

−)), (6)

where ρ = 3−
√

5
2 = 0.381966 is a golden-search reduction factor.

Remark 5. An advantage of using the golden-search reduction factor (according to Algorithm 1) is the fast
exploration of the interval, because following values of x (controller gains) are selected to use one of the values
of the cost function calculated in the previous iteration. For this purpose, the interval is divided regarding
the golden ratio. As a result, of the use of the golden-search reduction factor for a given interval, two new
sub-intervals are obtained. For the new intervals, the ratio of the longer length to the shorter length is equal to
the ratio of the length of the divided interval to the length of the longer interval.

Due to this mechanism, and by using the golden-search reduction factor, the time of range exploration is
shortened (through the reduction the number of points for which f function needs to be evaluate) or alternatively
the f function values can be averaged for the same x in following iterations, i.e., x((k+1)+) and x(k

−), which is
useful in order to reduce the impact of measurement disturbances during the UAV outdoor flight.

Based on predefined initial range x ∈ D (0) =
[

x(0
−), x(0

+)
]
, the golden-search algorithm can be

implemented according to the pseudo-code presented below (Algorithm 1).
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Algorithm 1 Golden-search algorithm.
Step 1. Evaluate the minimal number N of iterations required to provide the sufficient (predefined)
value of the ε:

|x∗ − x̂∗| ≤ ε(x(0
+) − x(0

−)), (7)

where |x∗ − x̂∗| is the absolute value of the difference between the true (unknown minimum x∗) and
iterative solution x̂∗ (which is assumed to be in the center of D (N)).
Step 2. For iteration k = 1, . . . , N,

1) select a pair of intermediate points x̂(k
−) and x̂(k

+) (x̂(k
−) < x̂(k

+),
{

x̂(k
−), x̂(k

+)
}
∈ D (k−1)),

2) reduce the range to D (k) based on REM fundamental rule:

a) x(k+1) ∈ D (k) =
[

x(k−1−), x̂(k
+)
]

for f (x̂(k
−)) < f (x̂(k

+)),

b) x(k+1) ∈ D (k) =
[

x̂(k
−), x(k−1+)

]
for f (x̂(k

−)) ≥ f (x̂(k
+)),

c) start next iteration k := k + 1.

Step 3. Stop the algorithm; put x̂∗ = 1
2 (x(N+) + x(N−)).

For the given value of ε, the minimum number N of iteration in the GLD algorithm can be
calculated according to:

(1− ρ)N ≤ ε, (8)

and for k = 1, . . . , N one may find the pair of intermediate points using

x̂(k
−) = x(k−1−) + ρ(x(k−1+) − x(k−1−)) , (9)

x̂(k
+) = x(k−1−) + (1− ρ)(x(k−1+) − x(k−1−)) . (10)

2.6. Optimal Gain Tuning of a Two-Parameter Controller Based on Bootstrapping Mechanism

In a two-dimensional space of parameters, the vector of parameters x =
[

x1, x2

]T
for the cost

function f (x) (calculated from in-flight measurements) can be interpreted as controller gains (here: kP
and kD). For fast exploration of this space and to give a global character the GLD extremum-seeking
procedure, Algorithm 2 is proposed. It is based on the bootstrapping mechanism (see Table 2), for
the predefined bootstrap cycles Nb. In considered two-parameter controller tuning, in every single
bootstrap, two launch of GLD algorithm (for each of controller gains) are executed to obtain expected
value of the ε. Firstly, the gain no.1 is tuned (while the gain no. 2 is fixed), and then, the gain no. 2
(for fixed value of the no. 1).

Algorithm 2 Two-parameter controller tuning.

Step 0. Put the bootstrap cycles counter to l = 0; for initial D
(l)
i (i = 1, 2) define ε, Nb, and initial value

of the second parameter x(l)2 (take x̂(l)
∗

2 = x(l)2 ), set l := l + 1.

Step 1. Find the optimal x̂(l)
∗

1 using the GLD algorithm, with the second parameter fixed at x̂(l−1)∗

2 .

Step 2. Calculate the optimal x̂(l)
∗

2 analogously to the method from the Step 1, keeping the first

parameter fixed at x̂(l)
∗

1 .
Step 3. If l < Nb, increase the bootstrap cycles counter l := l + 1, and proceed to Step 1, otherwise stop

the algorithm—the optimal solution x̂∗ =
[

x̂(l)
∗

1 , x̂(l)
∗

2

]T
has been obtained after Nb bootstrap cycles,

as desired.
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Table 2. Steps in the bootstrapping mechanism.

Bootstrap No. Gain No.1 Gain No.2

1 Tuning (according to the GLD REM) Kept constant
1 Kept constant Tuning
2 Tuning Kept constant
2 Kept constant Tuning
... ... ...
Nb Tuning Kept constant
Nb Kept constant Tuning

To ensure high effectiveness of the proposed method of auto-tuning, one should remember about
several important aspects (in configuration and implementation):

• The proposed method requires predefining the initial, admissible ranges for x, i.e., D
(0)
i =[

x(
0−)

i , x(
0+)

i

]
for i = 1, 2. It is a crucial choice from the perspective of ensuring the safety of

autonomous flight. If there is a such a possibility, it is strongly recommended to use the expert
knowledge about the controller gains (from initial flights on the base of analysis of a rise time
and the maximum overshoot, prototyping in virtual environment, default settings of on-board
controller, detailed analysis of the UAV feedback control system, etc.),

• For the expected tolerance ε, the number N is calculated. 2N calculations of f are needed in the
tuning of a pair of controller parameters of a single bootstrap,

• The algorithm’s execution time depends on: Nb, N, and the time of a single reference primitive,
which must be correlated with the expected UAV dynamics and its natural inertia,

• Recalling the most important principles of the zero-optimization method from [26], one needs
to have in mind that the proposed method "(...) is iterative-based and collects information about the
performance index (on incremental cost function value) at sampling time instants, equally spaced every
Tp seconds" during the tuning experiments. Thus, for sampling period Tp, a single evaluation of
f value according to Step 2 of Algorithm 1 with a change of a single parameter of controller is
performed using Procedure 1 (for symbols from the Table 1).

• The performance index is calculated as

∆J(n) = J(n+1) + ∆J(n), (11)

where ∆J(n) can be obtained from the discrete-time version of Equation (3), which for n-th sample
(tracking error and control signal) at time t = nTp is given by

∆J(n) = α |en|+ β |un| . (12)

Algorithm 3 Evaluation of performance index (with single change of controller parameter) [26]
Recalling defined Nc, Nmax, and n for f (·). Then:

• for n = 1, . . . , Nc − 1 with the controller parameters are updated in the previous iteration,
the performance index is evaluated using (11) by adding (12); set J(0) = 0;

• for n = Nc a single iteration of GLD algorithm is initialized, cost function is stored, and if
possible—reduce the range for controller parameters or perform the bootstrap; it results
in a transient behavior of the dynamical signal;

• for n = Nc + 1, . . . , Nmax tuning is not performed; the controller parameters have been
updated; no performance index is collected; transient behavior should decay.
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2.7. Signals Acquisition and Their Filtration in the Proposed Method

Bearing in mind that in general to determine the performance index, sensory information is used
from sources with different precision of estimation of the position and orientation of an UAV, therefore
in the auto-tuning procedure it is proposed to use:

• the signals from the UAV odometry—processed using commonly used Kalman filtration. Thanks
to that, it is possible to fuse data from several standard UAV on-board sensors,

• low-pass filtration (presented and tested primarily in [26]), expressed by a transfer function of
first-order inertia type

G(s) =
k

1 + Tf s
, (13)

where k is its gain, and Tf is a chosen time constant (here: k = 1, Tf = 0.1 sec.

For the implementation of the GLD method, the discretized, recursive version of the low-pass
filter (13) for the chosen sampling period Ts, is used:

y (n) = a (n− 1) + (1− a) u (n− 1) , (14)

where
a = exp

(
−Ts/Tf

)
, (15)

and y(n) and u(n) are filtered and pure errors at sample n, respectively.
• (optional) measurement information from an external high-precision measurement system—for

example, the motion capture system (for indoor flights) or GNSS (outdoor), treated as the ground
truth in estimating the difference to UAV avionics measurements.

2.8. Experimental Platform

In the real-world experiments, the low-cost, micro quadrotor Bebop 2 from Parrot company, was
used (see Figure 1 and [46]). Since it is equipped in P7 dual-core CPU Cortex 9 processor, 1 GB RAM
memory, and 8 GB of flash memory, it is possible to perform on-board state estimation of the UAV
using Extended Kalman Filter (EKF) for the data gathered from its on-board sensors listed in Table 3.
The Bebop 2 uses the Busybox Linux operating system. Compact sizes of the UAV (33× 38× 3.6 cm
with hull) and efficient propulsion units (4 × 1280 KV BLDC Motor, 7500-12000 rpm), in combination
with 2700 mAh battery provide maximum flight time up to 25 minutes and maximum load capacity
up to 550 g (which gives a maximum takeoff mass equal to 1050 g, since the UAV weighs 500 g).

Table 3. General characteristic of Bebop 2 sensors.

Parameter Value

accelerometer & gyroscope 3-axes MPU 6050
pressure sensor (barometer) MS5607 (analyses the flight altitude beyond 4.9 m)

ultrasound sensor analyses the flight altitude up to 8 m
magnetometer 3-axes AKM 8963
geolocalization Furuno GN-87F GNSS module (GPS+GLONASS+Galileo)
Wi-Fi Aerials 2.4 and 5 GHz dual dipole

vertical stabilization camera photo every 16 ms
camera 14 Mpx 3-axis Full HD 1080p with Sunny 180 fish-eye lens: 1/2.3”

All experimental studies discussed in the article were carried out in AeroLab [47], the research
space created at the Institute of Control, Robotics and Information Engineering of Poznan University of
Technology for testing solutions in the field of UAVs flight autonomy, where ground truth is the
OptiTrack motion capture system equipped with 8 Prime 13W cameras (with markers placed on the
UAV), and a processing unit (PC) equipped with Motive—OptiTrack’s unified motion capture software
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platform. The measurement program (Robot Operating System (ROS) node) is executed with the
frequency of 100 Hz, control actions with 30 Hz, whereas the tuning methods with 5 Hz. The system
is connected to the ground station (Figure 7) to which information about the current position and
orientation of the UAV (from motion capture system and UAV) are transmitted. The ground station is
the Lenovo Legion Y520 notebook, equipped with Intel Core i7-7700HQ (2.8 GHz frequency), 32 GB
DDR4 RAM memory, SSD hard drive and GeForce GTX 1050 2048 MB under Linux Kinetic 16.04 LTS
operating system. Such a powerful computer was proposed for the autonomous control of the Bebop
2 UAV, to conduct all necessary calculations at the ground station, including: path planning, data
(measurements) processing, autonomous control, auto-tuning of controllers, safety control, etc.

The ground station was also used for tests of the proposed GLD auto-tuning method in simulation
environment. These tests were carried out under the control of the ROS, using the open-source flight
simulator Sphinx [48] and bebop_autonomy library [49] extended by models of cascade control system
enabling simulation of autonomous flights in xe and ye axes(flight for the given coordinates). In the
external position control loops, the PID-type controllers have been used.

During the flights, to ensure the safety, Bebop 2 was equipped with 4 bumpers (12.5 g each, made
in 3D printing technology) protecting propellers, and in AeroLab an additional horizontal safety net
was installed to protect it against hard crashes to the ground level. In addition, for security reasons,
the priority over the autonomous flight of the drone was allocated to the operator equipped with
SkyController 2, enabling manual flight control. Furthermore, a safety button was introduced to cut
off the UAV power supply in a situation of imminent danger. It supported initial experiments, where
additional safety rope was used.

In experiments on variable mass flights, the UAV was also equipped with a plastic bottle and a
gripper (made in 3D printing technology), or alternatively with tool accessories mounted directly on
the Bebop (see Figure 1). Additionally, in studies on the influence of environmental disturbances on
the auto-tuning process, the UT363 thermo-anometer from Uni-T company was used to measure the
air flow speed generated from the Volteno VO0667 fan.

For the simulation and experimental results presented in the next section of the article, a movie
clips (available at the webpage http:www.uav.put.poznan.pl), were prepared.

Figure 7. Simplified block diagram of measurement and control signal architecture used during the
experiments with in-flight tuning of controllers.

3. Results and Discussion

3.1. Simulation Experiments

Let us consider the problem of searching locally best gains of the altitude PID-type controller
of Bebop 2 unmanned aerial vehicle. Default gains are not made available by the Parrot company,
hence the problem of finding the best gains (summarized in Table 4) has been treated at the prototyping

http:www.uav.put.poznan.pl
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stage. After development of the 3D model of this UAV (with bumpers) in the Blender software, it was
implemented in the ROS/Gazebo environment, giving the physical dimensions, mass and moments of
inertia from the real flying robot to its virtual counterpart embedded in the virtual Aerolab scenery.
This enabled reliable preliminary experiments to be conducted in the simulator.

The research purposes were set as:

• recognizing the nature of optimized function J = f (kP, kD) for its various structures (α = var,
β = var),

• validation if given gain ranges of kP and kD (for a constant, very small value of kI = 0.0003) are
safe (i.e., if the closed-loop control system is stable),

• comparative analysis of the effectiveness of GLD and FIB methods.

Table 4. Gains of Bebop’s controllers used in experiments.

X-axis Y-axis Z-axis θ φ ψ

kP 0.69 0.69 1.32 default default 0.07
kI 0.00015 0.00015 0.0003 default default 0.00001
kD 50 50 10.2 default default 0.9

In the first phase of the research, more than 33 hours of simulation tests were conducted.
The results are presented in Figure 8. The same dynamics of the desired reference signal was set
as in [26] for the FIB method. Every 12 seconds the UAV changed periodically the flight altitude
(1.2→1.9→1.2 m). The value of J was being recorded for 10 sec repeatedly. For each combination of kP
and kD gains, the J value was averaged from 5 trials. The results of 400 combinations of (kP, kD) were
recorded for three various J functions. In none of the 2000 trials, the UAV model showed dangerous
behavior, and as expected: higher values of kP correspond to a better quality of reference signal
tracking (lower values of J).

In the second phase of the research, the effectiveness of the GLD and FIB methods was compared
for three initial values of the kD and three J function structures. The very promising results are
presented in Figure 8 and Table 5. Both methods effectively explore the gains space (kP, kD) in search
for smaller values of J, avoiding the local minima (they do not “get stuck” in there)—see Figure 8
(right column). Depending on the set kDinit gain value, both the methods yield in similar kP values, but
various kD, slowing down the expected tracking dynamics respectively (for larger values of β). It is
particularly noteworthy to compare the signals for subsequent set values of β (Figure 9). Bearing in
mind the diversity of UAV applications, it is possible to shape the “energy policy”, i.e., through
an introduction of larger values of β, one obtain a smooth, slower trajectory of the altitude signal,
with a smaller control signal amplitudes (for which the β is punishing), which is conducive to extend
the flight time.

In relation to the FIB method, an additional time of 96 sec (corresponding to 8 iterations of the
auto-tuning algorithm), allows the GLD method in subsequent iterations only to slightly improve the
value of the J performance index (respectively by 1.62%, 0.78%, and 2.10%). The introduction of the
second bootstrap is justified in the FIB method (improvement by respectively: 11.92%, 4.95%, 1.40%),
while in the case of the GLD method, just only one bootstrap provides similar results. The listings
from the altitude controller auto-tuning process are available for both methods in the supplementary
materials at the AeroLab webpage.
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Table 5. Results of simulation experiments.

FIB GLD FIB GLD FIB GLD

α 1.0 1.0 0.9 0.9 0.8 0.8
β 0.0 0.0 0.1 0.1 0.2 0.2

kDinit 2.0 2.0 10.0 10.0 18.0 18.0
kP range [0.5,5.0] [0.5,5.0] [0.5,5.0] [0.5,5.0] [0.5,5.0] [0.5,5.0]
kD range [1.0,20.0] [1.0,20.0] [1.0,20.0] [1.0,20.0] [1.0,20.0] [1.0,20.0]

No. of bootstrap cycles 2 2 2 2 2 2
No. of main iterations 48 56 48 56 48 56

Tuning time [sec] 576 672 576 672 576 672
Low-pass filtration yes yes yes yes yes yes

ε 0.05 0.05 0.05 0.05 0.05 0.05
Best kP and kD values 3.56/8.70 3.70/8.18 4.63/5.99 4.49/8.58 4.23/10.51 4.39/15.44

J1 (after the 1st bootstrap) 6.8235 5.4575 5.7596 5.4865 5.9641 5.8197
J48 (after 48 iter.) 6.0969 5.5024 5.4882 5.4492 5.8815 5.9059

Jend (after the tuning proc.) 6.0969 5.4149 5.4882 5.4068 5.8815 6.0298
Javg (average for tuning proc.) 6.7264 5.4754 5.7730 5.5643 6.0345 5.9376

Figure 8. Obtained values of the J performance index for kP and kD combinations (left column) and
J = f (kP, kD) approximations (right column) for: (a) α = 1.0, β = 0.0, (b) α = 0.9, β = 0.1, (c) α = 0.8, β = 0.2.
FIB (green) and GLD (white) tuning results for: (a) kDinit = 2, (b) kDinit = 10, (c) kDinit = 18 (marked in red).
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Figure 9. Time courses for: (a) first two iterations of the GLD method (mistuned gains), (b) last two
iterations (well-tuned gains) for ZGLD1 (α = 1.0, β = 0.0), ZGLD2 (α = 0.9, β = 0.1), ZGLD3 (α = 0.8, β = 0.2).

3.2. Experiments in Flight Conditions

The GLD method was verified in real-world experiments on the same UAV and for the same
parameter configuration as in simulation tests. The method was tested with great attention paid to the
efficiency of obtaining altitude controller gains and the tracking quality. From variety of conducted
experiments, the author decided to present and discussed, a few, which are the most representative.
Supplementary materials (video and listings) are available at: http://www.uav.put.poznan.pl.

3.2.1. Uncertainty of Altitude Measurements. Change of Sensory Information Sources

The aim of the experiment was to verify how imprecise and non-stationary the altitude
measurements of the UAV flight are in the building, based on its basic on-board avionics only.
The motion capture system was used as a ground truth. The results are shown in Figure 10. The task
for the UAV was to fly to a fixed altitude of 1 m and hover in the air.

As the average error from registered trials is only 0.80%, the range of actual/instantaneous
values ranges from 0.85 m to 1.14 m and increases with the passage of time. Such a dispersion of
measurements is a problem and major difficulty in the proposed machine learning procedure used in
real-world conditions for altitude controller tuning. Therefore, the motion capture system was used
for further estimation of the UAV flight altitude. This eliminates the measurement error as a source of
additional errors during the J calculation.

Figure 10. Tracking of the reference altitude Zset by the Bebop 2 UAV in three trials (Z1–Z3).

3.2.2. Comparison of the Tuning Effectiveness: FIB vs. GLD Method Used in Real-World Conditions

In the Figure 11, the altitude controller gains during auto-tuning procedure using GLD and FIB
methods, are presented. Based on simulation results it was decided to terminate both methods after 48
iterations. Final and average values of J (see Figure 12), are lower for the GLD method: 43.97% and

http://www.uav.put.poznan.pl
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3.39%, for which the tracking quality is better (Figure 13), e.g., lower overshoots were recorded during
the tuning time.

Furthermore, it is worth mentioning that both methods here shown convergence in the vicinity of
the two local minima of the J = f (kP, kD) function, which were estimated based on the preliminary
simulation experiments.

Figure 11. The altitude controller gains and J = f (kP, kD) values during auto-tuning process using
GLD (white color) and FIB (green) methods; kDinit = 10 (marked in red).

Figure 12. Time courses for the GLD and FIB tuning process in real-world conditions.

Figure 13. Values of J(i) in consecutive steps (i) of GLD and FIB tuning.
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3.2.3. Analysis of the Impact of Environmental Disturbances (Wind Gusts) on the Auto-Tuning Procedure

Usually in scientific world literature presented results of research on UAV flights under wind gust
conditions concern the case when the air stream is directed towards the UAV frontally. In real flight
conditions, this direction is usually random and variable in time. Thus, it was decided to verify the
effectiveness of the GLD auto-tuning method with a low-pass filtration, during the UAV flight, in the
stream of the air generated from the rotating fan (1.2 m high), at a distance of 1.8 m, behind the UAV
on the left, as in Figure 14.

In the auto-tuning procedure, the disturbances were introduced twice (see Figure 15). In the first
phase, the maximum air flow speed was 2.7 m/s, in the second—3.7 m/s. It is a severe disturbance
referring to the ratio of physical dimensions to the small weight of the UAV. A complete 56-iterative
tuning cycle was conducted. The results are summarized in Figure 16 and Table A1 (see Appendix
A), and compared with the results of the auto-tuning from the previous Subsection. Very similar,
promising final values of the J performance index were obtained—even only slightly smaller for the
case of impact of a wind gust during the GLD procedure.

Determinism of the method is illustrated by the results of 10 first iterations in both trials and
iterations no. 29-38, where for different values of J, the calculated kP gain values are identical. Similar
behavior can be observed in the presence of wind gusts (iterations no. 15–20, and 43–48). In the future
research, it is worth considering an approach in which two or several UAV units (agents) could be used
to parallel measurements and averaging computations during the auto-tuning procedure, resulting in
better tuning precision.

Figure 14. Test bed for research on wind gusts impact on the GLD method.

Figure 15. Time course for the GLD tuning process in the presence of wind gusts.
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Figure 16. The altitude controller gains and J = f (kP, kD) values during auto-tuning process using
GLD method for nominal case (white color) and at the presence of wind gusts (green); kDinit = 10
(marked in red).

3.2.4. Flights and Auto-Tuning in UAV Mass Change Conditions

The last interesting aspect of the conducted research was to provide knowledge about the quality
of the obtained gains in the context of transport tasks and the use of the GLD method to tune the gains
of the altitude controller after changing the total takeoff weight of the UAV. A series of experimental
studies was conducted for this purpose.

In the simulation experiments, the efficiency of tuning of the UAV altitude controller using the
GLD method was verified in conditions of lifting of the additional payload (jar on the gripper and tool
accessories attached to the UAV). The gains of the other controllers (for X and Y axes, and for yaw angle
control), were adopted from Table 4. In subsequent simulations, the values α and β of the J function
were changed. The results are presented in Table 6, and the search process for the controller’s gains is
illustrated in the attached video material. Based on the obtained results, it can be noticed that in the
case of both payloads tested, the values of kP were smaller than in the nominal case (flight without
payload), and kD values were larger. Increased starting mass of the UAV forces the use of more thrust
to lift the UAV and at the same time—to provide its effective balance, so as not to cause any overshoots
(exceeding the given/reference altitude). In the qualitative evaluation of the results of the auto-tuning
procedure, the obtained controller using a similar gain value of the proportional part, compensates
with a larger gain of kD the nervous behavior of the UAV (which for particular J function tries to match
the dynamics to higher UAV inertia).

Table 6. Results of simulation experiments—flying with: gripper & jar (GRIP), and tool accessories
(TOOL); for 2 bootstrap cycles, 56 iterations of the GLD method with low-pass filtration and ε = 0.05.

GRIP TOOL GRIP TOOL GRIP TOOL

α 1.0 1.0 0.9 0.9 0.8 0.8
β 0.0 0.0 0.1 0.1 0.2 0.2

kDinit 10.0 10.0 10.0 10.0 10.0 10.0
kP range [0.5,5.0] [0.5,5.0] [0.5,5.0] [0.5,5.0] [0.5,5.0] [0.5,5.0]
kD range [1.0,20.0] [1.0,20.0] [1.0,20.0] [1.0,20.0] [1.0,20.0] [1.0,20.0]

Best kP and kD values 2.30/15.11 2.39/18.94 2.20/17.88 1.08/18.94 0.82/15.77 0.67/13.40
J1 (after the 1st bootstrap) 7.5143 7.9741 7.6119 7.6654 7.5773 7.5454
Jend (after the tuning proc.) 7.5150 7.8334 7.5473 7.6591 7.7385 7.4198

Javg (average for tuning proc.) 7.4306 7.9191 7.7877 7.5485 7.5906 7.5454

In the first real-world experiment (Figure 17), the task of the UAV was to start the autonomous
flight from a platform with a plastic bottle attached; then, to fly to the point where the GLD auto-tuning



Appl. Sci. 2019, 9, 648 20 of 26

procedure begins; finally, to perform 56 iterations of the algorithm in the presence of wind gusts.
The drone, using its on-board avionics (including the optical-flow and ultrasonic sensors) moved
vertically after stabilizing the position of the gripper, since it recognized its position as altitude equal
to 0, and in effect moved upwards, which created a danger. The same behavior was observed in the
second experiment, where the UAV task was to compensate its position in the X, Y, and Z axis (refer to
supplementary video material). A decision was made to change the type and manner of payload
attachment as shown in Figure 18, which played its role, both in the GLD auto-tuning experiments
with additional mass, as well as in transportation tasks at designated nominal gains (see Figure 19).
In every conducted trial (Table 7), for subsequent J functions, similar behavior was observed as in
the case of simulation tests. For example, let us consider the results obtained for α = 1.0 (Figure 20).
It can be noticed that the time courses with large overshoots (when the controller forces too hard
the UAV, wanting to overcome its increased inertia), result in an increase in the value of J and are
effectively rejected in the procedure of seeking the smallest value of this performance index. In addition,
by analyzing the subsequent values of this index (Figure 21), it can be seen that the selection of the
gain value kD directly implies the UAV vertical flight dynamics profile. This is particularly seen in the
first bootstrap (marked in Figure 20).

Auto-tuning in UAV mass change conditions will be the subject of a separate article, while it is
worth stressing that the second problem encountered—mentioned at the beginning of the article—i.e.,
lack of stability criterion based on which it would be possible to estimate safe gains ranges of kP and
kD for their exploration in the GLD method. Despite its high efficiency and safe operation in tuning of
controllers of UAVs with nominal mass or with low extra mass, in case of large payloads (see Figure 22
for the case of 282 g) one can find examples of unstable flights. Then it is strongly recommended to use
preliminary simulation tests based on the model. The introduction of the stability criterion into the
proposed GLD method is in the area of further research interest of the author [50].

Figure 17. Snapshots from one of the initial research experiments with the auto-tuning of the altitude
controller during the flight in the presence of wind gusts and with the mass attached to the UAV on a
flexible joint.
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Figure 18. The Bebop 2 with additional payload used for in-flight auto-tuning experiments.

Figure 19. Step responses for the Bebop 2 UAV tuned with GLD method—variants: with and without
addition mass (225 g tool accessories).

Table 7. Results of real-world experiments—flying with the payload (tool accessories); for 2 bootstrap
cycles, 56 iterations of the GLD method with low-pass filtration and ε = 0.05.

Exp.1 Exp.2 Exp.3

α 1.0 0.9 0.8
β 0.0 0.1 0.2

kDinit 10.0 10.0 10.0
kP range [0.5,5.0] [0.5,5.0] [0.5,5.0]
kD range [1.0,20.0] [1.0,20.0] [1.0,20.0]

Best kP and kD values 3.92/7.85 4.02/9.57 3.20/11.68
J1 (after the 1st bootstrap) 2.5070 2.4992 2.6096
Jend (after the tuning proc.) 1.7583 2.5779 2.5255

Javg (average for tuning proc.) 2.8091 2.4566 2.6553

Figure 20. Time course from the tuning experiment via GLD method—variant: tuning of the altitude
controller during the UAV flight with an additional (heavy) mass (225 g); the experiment interrupted
due to the loss of stability.
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Figure 19. Step responses for the Bebop 2 UAV tuned with GLD method – variants: with and without
addition mass (225 g tool accessories).
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Figure 20. Time course from the real-world experiment (Exp. no. 1): tuning of the altitude controller
during the UAV flight with an additional (heavy) mass (225 g).
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Figure 21. Values of J(i) in consecutive steps (i) of the GLD method (Exp. no. 1) – flying with the
payload.

Figure 21. Values of J(i) in consecutive steps (i) of the GLD method (Exp. no. 1)—flying with the
payload.

Figure 22. Time course from the real-world experiment (Exp. no. 1): tuning of the altitude controller
during the UAV flight with an additional (heavy) mass (225 g).

4. Conclusions and Further Work

In the paper, a new and efficient real-time auto-tuning method for fixed-parameters controllers
based on the modified golden-search (zero-order) optimization algorithm and bootstrapping technique,
has been presented. The method ensures fast, iterative behavior, and as a result—returns in the worst
case the locally best gains of controller, in the best case—globally optimal. The GLD method is
fully automated, and uses a low-pass filtration while working in a stochastic environment. It is a
model-free approach, but as it has been articulated in the paper, it is good to combine its advantages
with initial model-based prototyping, since the method does not use any stability criterion. The author
is interested and looking for the mathematical solutions, i.e., in the area of stochastic analysis and
probability, which can be easily adapted into the proposed GLD procedure—without increase of its
computational complexity. It will be useful in a context of solving mentioned transportation tasks and
problems (especially when flying near to the lifting capacity of the UAV).

Supplementary Materials: Recorded videos and data from ROS bags are available online at http://uav.put.
poznan.pl.
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Abbreviations

The following abbreviations are used in this manuscript:

BF Body Frame
CCW Counter-Clockwise
CW Clockwise
DOF Degrees of Freedom
EF Earth Frame
FIB Fibonacci-search Method
GLD Golden-search Method
GNSS Global navigation satellite system
GPS Global Positioning System
MBZIRC Mohamed Bin Zayed International Robotics Challenge
NED North-East-Down
PD Proportional-Derivative Controller
PID Proportional-Integral-Derivative Controller
REM Region Elimination Method
ROS Robot Operating System
UAV Unmanned Aerial Vehicle

Appendix A

Table A1. Comparison of the results of auto-tuning of the UAV’s altitude controller using the GLD
method—variants: nominal and at the presence of wind gusts.

Nominal Disturbed Nominal Disturbed Nominal Disturbed

No. of Iter. kP kP kD kD J J

1 2.2190 2.2190 10.0000 10.0000 3.6232 3.9781
2 3.2810 3.2810 10.0000 10.0000 2.7718 2.9733
3 3.2813 3.2813 10.0000 10.0000 2.9025 3.0650
4 3.9377 3.9377 10.0000 10.0000 2.7974 2.9231
5 3.9379 3.9379 10.0000 10.0000 2.8608 2.9099
6 4.3435 4.3435 10.0000 10.0000 2.4185 2.6717
7 4.3436 4.3436 10.0000 10.0000 2.5228 2.7708
8 4.5943 4.5943 10.0000 10.0000 2.5281 3.2745
9 4.1886 4.1886 10.0000 10.0000 2.8080 2.6899
10 4.3435 4.3435 10.0000 10.0000 2.3742 2.8161
11 4.3436 4.0928 10.0000 10.0000 2.3683 3.0077
12 4.4393 4.1886 10.0000 10.0000 2.3004 2.6560
13 4.4393 4.1886 10.0000 10.0000 2.2584 2.7008
14 4.4985 4.2478 10.0000 10.0000 2.3600 2.4583
15 4.4210 4.2661 8.2580 8.2580 2.4742 2.4305
16 4.4210 4.2661 12.7420 12.7420 2.6279 2.5428
17 4.4210 4.2661 5.4854 5.4854 2.5291 2.8694
18 4.4210 4.2661 8.2566 8.2566 2.5097 2.3611
19 4.4210 4.2661 8.2574 8.2574 2.5057 2.3465
20 4.4210 4.2661 9.9700 9.9700 2.4944 2.7500
21 4.4210 4.2661 9.9705 7.1985 2.6712 2.4564
22 4.4210 4.2661 11.0289 8.2569 2.5066 2.5012
23 4.4210 4.2661 11.0292 6.5441 2.6319 2.5666
24 4.4210 4.2661 11.6833 7.1982 2.5153 2.7464
25 4.4210 4.2661 11.6835 6.1397 2.6646 2.6194
26 4.4210 4.2661 12.0877 6.5439 2.9049 2.4165
27 4.4210 4.2661 11.4336 6.5441 2.8642 2.4360
28 4.4210 4.2661 11.6834 6.7939 2.5492 2.3116
29 2.2190 2.2190 11.7607 6.8711 4.6672 4.4838
30 3.2810 3.2810 11.7607 6.8711 3.3072 2.7008
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Table A1. Cont.

Nominal Disturbed Nominal Disturbed Nominal Disturbed

No. of Iter. kP kP kD kD J J

31 3.2813 3.2813 11.7607 6.8711 3.4729 2.9624
32 3.9377 3.9377 11.7607 6.8711 2.7758 2.4287
33 3.9379 3.9379 11.7607 6.8711 2.7904 2.5296
34 4.3435 4.3435 11.7607 6.8711 2.6357 2.3066
35 4.3436 4.3436 11.7607 6.8711 2.4105 4.4358
36 4.5943 4.5943 11.7607 6.8711 2.3535 2.6047
37 4.5943 4.5943 11.7607 6.8711 2.4362 2.5906
38 4.7493 4.7493 11.7607 6.8711 2.7252 2.4460
39 4.4986 4.7493 11.7607 6.8711 5.4026 2.5969
40 4.5943 4.8450 11.7607 6.8711 2.4769 2.3667
41 4.5943 4.8451 11.7607 6.8711 2.4032 2.3662
42 4.6535 4.9042 11.7607 6.8711 2.3701 2.9292
43 4.6718 4.8268 8.2580 8.2580 2.2139 2.3028
44 4.6718 4.8268 12.7420 12.7420 2.3797 2.5986
45 4.6718 4.8268 5.4854 5.4854 2.2050 2.1790
46 4.6718 4.8268 8.2566 8.2566 2.2468 2.3559
47 4.6718 4.8268 3.7720 3.7720 2.2244 2.4715
48 4.6718 4.8268 5.4846 5.4846 2.2563 2.1976
49 ... 4.8268 ... 5.4851 ... 2.1532
50 ... 4.8268 ... 6.5435 ... 2.5722
51 ... 4.8268 ... 4.8307 ... 2.3696
52 ... 4.8268 ... 5.4848 ... 2.3328
53 ... 4.8268 ... 5.4850 ... 2.2445
54 ... 4.8268 ... 5.8892 ... 2.7051
55 ... 4.8268 ... 5.2350 ... 2.2805
56 ... 4.8268 ... 5.4848 ... 2.2393
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