
applied
sciences

Article

Expanded Douglas–Peucker Polygonal
Approximation and Opposite Angle-Based Exact Cell
Decomposition for Path Planning with
Curvilinear Obstacles

Jin-Woo Jung *, Byung-Chul So, Jin-Gu Kang , Dong-Woo Lim and Yunsik Son

Department of Computer Science and Engineering, Dongguk University, Seoul 04620, Korea;
sbc10620@naver.com (B.-C.S.); kanggu12@dongguk.edu (J.-G.K.); aehddn@gmail.com (D.-W.L.);
sonbug@dongguk.edu (Y.S.)
* Correspondence: jwjung@dongguk.edu; Tel.: +82-2-2260-3812

Received: 16 January 2019; Accepted: 11 February 2019; Published: 14 February 2019
����������
�������

Abstract: The Expanded Douglas–Peucker (EDP) polygonal approximation algorithm and its
application method for the Opposite Angle-Based Exact Cell Decomposition (OAECD) are proposed
for the mobile robot path-planning problem with curvilinear obstacles. The performance of the
proposed algorithm is compared with the existing Douglas–Peucker (DP) polygonal approximation
and vertical cell decomposition algorithm. The experimental results show that the path generated by
the OAECD algorithm with EDP approximation appears much more natural and efficient than the
path generated by the vertical cell decomposition algorithm with DP approximation.

Keywords: curvilinear obstacle; douglas–peuker polygonal approximation; opposite angle-based
exact cell decomposition; path planning; mobile robot

1. Introduction

The path-planning process of a mobile robot aims at finding a collision-free path to move the robot
from the current posture to the goal posture [1–3]. If there are multiple available paths, the optimal
path in the sense of an objective function, such as the minimum distance, can be chosen. The algorithms
for mobile-robot path planning can be grouped into four categories: roadmap approaches, such as
the visibility graph or generalized Voronoi graph; cell decomposition approaches, such as the vertical
cell decomposition (VCD) or approximate cell decomposition; sampling-based planning methods,
such as the rapidly exploring random tree (RRT) or probabilistic roadmap (PRM), and potential field
methods [2–5]. Among these methods, roadmap approaches are generally fast and easy to implement,
but an intrinsic way to describe environmental information is not provided [1–3]. Sampling-based
planning methods are more practical, but they do not provide completeness so we cannot recognize
the non-existence of a path [2,3]. Potential field methods are useful to control the robot by generating a
differentiable smooth path, but they cannot give explicit information on the roadmap and easily fall
into a local minimum [1–3]. There are also some hybrid approaches, such as a potential field with
RRT [6] or potential field with cell decomposition [7].

Cell decomposition, which is a classical and representative method for mobile-robot path planning,
decomposes the given environment into several cells and finds a collision-free path based on the
connectivity graph of these cells [2–10]. Here, each node of a connectivity graph is made by the
representative point of each cell or its border line. Each link of the connectivity graph between the
nodes indicates that the corresponding cell is adjacent to each other [11]. In various cell decomposition
algorithms [12–17], one of the most widely known algorithms is vertical cell decomposition (VCD), but

Appl. Sci. 2019, 9, 638; doi:10.3390/app9040638 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-4262-7840
https://orcid.org/0000-0002-2580-4393
http://www.mdpi.com/2076-3417/9/4/638?type=check_update&version=1
http://dx.doi.org/10.3390/app9040638
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 638 2 of 17

it does not generate an efficient path because it uses too many cells [8]. Figure 1 shows an example of
the previous exact cell decomposition using VCD. VCD makes vertical lines from the convex vertices
to decompose the environment into cells. The adjacency relationship among the cells is represented by
the connectivity graph and used to find a path using graph search algorithms. VCD does not guarantee
the optimality of the number of decomposed cells since there is no consideration of the shape of the
obstacle. Reducing the number of decomposed cells directly increases the efficiency in path planning,
but finding the optimal decomposition case is known as an NP-hard problem [1–3].

Appl. Sci. 2019, 9, x 2 of 17

decomposition (VCD), but it does not generate an efficient path because it uses too many cells [8].

Figure 1 shows an example of the previous exact cell decomposition using VCD. VCD makes vertical

lines from the convex vertices to decompose the environment into cells. The adjacency relationship

among the cells is represented by the connectivity graph and used to find a path using graph search

algorithms. VCD does not guarantee the optimality of the number of decomposed cells since there is

no consideration of the shape of the obstacle. Reducing the number of decomposed cells directly

increases the efficiency in path planning, but finding the optimal decomposition case is known as an

NP-hard problem [1–3].

To supplement this drawback, the Opposite Angle-based Exact Cell Decomposition (OAECD)

[18] was proposed by using a type of greedy approach to minimize the number of cells and increase

efficiency. However, the OAECD can only be applied for polygonal obstacles, since it is operated

based on the relationship among the vertices of the obstacles. In other words, path planning in an

environment with curvilinear obstacles is impossible by itself. Therefore, in this paper, a novel

expanded polygonal approximation method based on Douglas–Peucker (DP) algorithm is proposed

to apply OAECD path planning to the cases with curvilinear obstacles.

Figure 1. An example of Vertical Cell Decomposition (VCD) and its path.

In Chapter 2, a novel polygonal approximation algorithm for curvilinear obstacles is addressed.

Then, the algorithm is applied to a modified OAECD algorithm in Chapter 3. The experimental

results are shown in Chapter 4, and the paper is concluded in Chapter 5.

2. Polygonal Approximation Algorithm of Curvilinear Obstacle

In this chapter, the Douglas–Peucker (DP) algorithm [19], which is one of the most popular

algorithms for polygonal approximation, is reviewed. An Expanded Douglas–Peucker (EDP)

algorithm for the application with curvilinear obstacles is proposed with mathematical validation on

the circumscription of the EDP Algorithm.

2.1. Douglas-Peucker Algorithm

The DP algorithm is a representative method of polygonal approximation. The purpose of a DP

algorithm is to find a similar piecewise linear curve with fewer points given a closed curve. The

algorithm uses the concept of dissimilarity based on the maximum distance between the original

curve points and their simplified piecewise linear curve [17,18].

Figure 1. An example of Vertical Cell Decomposition (VCD) and its path.

To supplement this drawback, the Opposite Angle-based Exact Cell Decomposition (OAECD) [18]
was proposed by using a type of greedy approach to minimize the number of cells and increase
efficiency. However, the OAECD can only be applied for polygonal obstacles, since it is operated
based on the relationship among the vertices of the obstacles. In other words, path planning in
an environment with curvilinear obstacles is impossible by itself. Therefore, in this paper, a novel
expanded polygonal approximation method based on Douglas–Peucker (DP) algorithm is proposed to
apply OAECD path planning to the cases with curvilinear obstacles.

In Chapter 2, a novel polygonal approximation algorithm for curvilinear obstacles is addressed.
Then, the algorithm is applied to a modified OAECD algorithm in Chapter 3. The experimental results
are shown in Chapter 4, and the paper is concluded in Chapter 5.

2. Polygonal Approximation Algorithm of Curvilinear Obstacle

In this chapter, the Douglas–Peucker (DP) algorithm [19], which is one of the most popular
algorithms for polygonal approximation, is reviewed. An Expanded Douglas–Peucker (EDP) algorithm
for the application with curvilinear obstacles is proposed with mathematical validation on the
circumscription of the EDP Algorithm.

2.1. Douglas-Peucker Algorithm

The DP algorithm is a representative method of polygonal approximation. The purpose of a
DP algorithm is to find a similar piecewise linear curve with fewer points given a closed curve. The
algorithm uses the concept of dissimilarity based on the maximum distance between the original curve
points and their simplified piecewise linear curve [17,18].

Appl. Sci. 2019, 9, 638 3 of 17

The algorithm (Algorithm 1) measures the distance between each point of a curve and the base
line, which is the line segment with the same first and last points with the curve, to find the farthest
point from the line segment with the maximum perpendicular distance.

Here, C is the set of obstacle contours, which is the set of point lists of the obstacle; ε is the threshold
value for the maximum dissimilarity tolerance; R is the final result of the polygonal approximation of
all obstacles; c is a point list of the obstacle contour, which is arranged in counter-clockwise order; pl is
a point list; r1 and r2 indicate each result of the recursiveDP procedure; r indicates the final result of
the polygonal approximation of an obstacle by DP algorithm.

Algorithm 1. Pseudo Code of the Initial DP.

Input:
C← Set of point lists of the obstacle
ε← Threshold value for maximum dissimilarity tolerance
Output:
R← Final result of polygonal approximation of all obstacles represented as a set of point lists

Begin DP Procedure
1 for each c in C do
2 find two points in c, p1 and p2, which have the maximum distance from each other and p1 is in front of p2

3 r1 ← recursiveDP(pl[p1 . . . p2], ε) // pl: point list of a segment of obstacle contour
4 r2 ← recursiveDP(pl[p2 . . . starting point of c . . . p1], ε)
5 r← point list[r1[0] . . . r1[end1 − 1] r2[0] . . . r2[end2 − 1]] // endi: number of points in ri
6 insert r to R
7 end for
End DP Procedure

In the recursive procedure of DP algorithm (Algorithm 2), the line segment is further divided into
two sub-line segments using the farthest point as the via-point whenever the maximum perpendicular
distance is greater than or equal to the threshold value for maximum dissimilarity tolerance, ε. This
process is recursively repeated until the maximum perpendicular distance is less than ε.

Here, r1 and r2 are each the result of the recursiveDP procedure, and r is the result of the polygonal
approximation of the given curve.

Figure 2 shows the process of the DP algorithm. lb is the base line, which is identical to linebase in
Algorithm 2. lb1 is determined with the starting point P1 and ending point P2, which makes the widest
width of the given obstacle. Then, we check whether distmax is less than ε. If distmax is less than ε, two
vertices of lb1 are inserted into the point list of the polygonal approximation. If distmax is greater than
or equal to ε, a new base line lb2 with P1 and P3 is made, new distmax is found again based on lb2, and
the above procedures are repeated.

The obstacle approximation result by DP algorithm does not guarantee the circumscription of
the original obstacle. In other words, some interior points of the obstacle region may not be included
inside the polygon by the DP algorithm. Similarly, some exterior points of the obstacle region may be
included inside the polygon by the DP algorithm.

Thus, if the result of the DP algorithm on a curvilinear obstacle is directly used for path planning,
the generated path may penetrate inside the real obstacle region, and the robot may easily collide with
the obstacle. To overcome this problem, a modified DP algorithm is proposed in this paper.

Appl. Sci. 2019, 9, 638 4 of 17

Algorithm 2. Pseudo Code of the Recursive DP.

Input:
pl← Point list of the given curve
ε← Threshold value for maximum dissimilarity tolerance
Output:
r← Result of the polygonal approximation of the given curve represented as a point list
Initialization:
linebase ← line segment connected from pl[0] to pl[end] // end: number of points in pl
distmax ←−1
imax ←−1

Begin recursiveDP Procedure
1 for each point p in pl[1 . . . end−1] do
2 dist← perpendicular distance between linebase and p
3 if dist > distmax

4 distmax ← dist
5 imax ← index of p
6 end if
7 end for
8 if distmax >= ε then
9 r1 ← recursiveDP(pl[0 . . . imax], ε) // pl: point list of a segment of the given curve
10 r2 ← recursiveDP(pl[imax . . . end], ε)
11 r← point list[r1[0] . . . r1[end1 − 1] r2[0] . . . r2[end2]] // endi: # of points in ri
12 else
13 insert pl[0] to r
14 insert pl[end] to r
15 end if
End recursiveDP Procedure

Appl. Sci. 2019, 9, x 4 of 17

Algorithm 2. Cont.

4 distmax ← dist

5 imax ← index of p

6 end if

7 end for

8 if distmax >= ε then

9 r1 ← recursiveDP(pl[0…imax], ε) // pl: point list of a segment of the given curve

10 r2 ← recursiveDP(pl[imax…end], ε)

11 r ← point list[r1[0]… r1[end1 - 1] r2[0]… r2[end2]] // endi: # of points in ri

12 else

13 insert pl[0] to r

14 insert pl[end] to r

15 end if

End recursiveDP Procedure

Figure 2 shows the process of the DP algorithm. lb is the base line, which is identical to linebase in

Algorithm 2. lb1 is determined with the starting point P1 and ending point P2, which makes the widest

width of the given obstacle. Then, we check whether distmax is less than ε. If distmax is less than ε, two

vertices of lb1 are inserted into the point list of the polygonal approximation. If distmax is greater than

or equal to ε, a new base line lb2 with P1 and P3 is made, new distmax is found again based on lb2, and

the above procedures are repeated.

(a)

(b)

(c)

(d)

Figure 2. Douglas–Peucker (DP) process between P1 and P2: (a) If distmax ≥ ε, then (b) lb2 between P1

and distmax point P3 is used for the next base line; (c) If distmax < ε, then (d) lb3 between P3 and P2 is used

for the next base line.

Figure 2. Douglas–Peucker (DP) process between P1 and P2: (a) If distmax ≥ ε, then (b) lb2 between P1

and distmax point P3 is used for the next base line; (c) If distmax < ε, then (d) lb3 between P3 and P2 is
used for the next base line.

Appl. Sci. 2019, 9, 638 5 of 17

2.2. Proposed Expanded Douglas-Peucker (EDP) Algorithm

The path planning for curvilinear obstacles using DP algorithm may not be collision-free. The
basic philosophy of the EDP algorithm is to guarantee the circumscription of obstacles by expanding
the polygon of the DP algorithm with the maximum dissimilarity tolerance. In addition, by appending
additional points near the convex corner, the convex corner clearance is considered, where the robot
control may become more difficult during path following.

Figure 3 shows the operation of EDP based on the counter-clockwise traversal. The first step is to
perform the DP algorithm. If the half angle between line segments l0 and l1 is 0–90◦, i.e., the corner
of DP polygon is convex, the perpendicular half-lined to l0 and l1 are v0 and v1 at the corner point,
respectively. Then, the points on the arc, with the center point as the convex corner and the radius of ε,
are appended starting from v0 and rotating with angle θrot until they meet v1 in the counter-clockwise
direction. These points are added for the convex corner clearance. If the half angle between line
segments l0 and l1 is 90◦ or more, i.e., the corner of DP polygon is concave, the point far from the
cross point of l0 and l1 with distance ε to the outer direction of the obstacle is appended. The above
procedures are repeated for the remaining corner points of the DP polygon.

Appl. Sci. 2019, 9, x 5 of 17

The obstacle approximation result by DP algorithm does not guarantee the circumscription of

the original obstacle. In other words, some interior points of the obstacle region may not be included

inside the polygon by the DP algorithm. Similarly, some exterior points of the obstacle region may

be included inside the polygon by the DP algorithm.

Thus, if the result of the DP algorithm on a curvilinear obstacle is directly used for path planning,

the generated path may penetrate inside the real obstacle region, and the robot may easily collide

with the obstacle. To overcome this problem, a modified DP algorithm is proposed in this paper.

2.2. Proposed Expanded Douglas-Peucker (EDP) Algorithm

The path planning for curvilinear obstacles using DP algorithm may not be collision-free. The

basic philosophy of the EDP algorithm is to guarantee the circumscription of obstacles by expanding

the polygon of the DP algorithm with the maximum dissimilarity tolerance. In addition, by

appending additional points near the convex corner, the convex corner clearance is considered, where

the robot control may become more difficult during path following.

Figure 3 shows the operation of EDP based on the counter-clockwise traversal. The first step is

to perform the DP algorithm. If the half angle between line segments l0 and l1 is 0–90°, i.e., the corner

of DP polygon is convex, the perpendicular half-lined to l0 and l1 are v0 and v1 at the corner point,

respectively. Then, the points on the arc, with the center point as the convex corner and the radius of

ε, are appended starting from v0 and rotating with angle θrot until they meet v1 in the counter-

clockwise direction. These points are added for the convex corner clearance. If the half angle between

line segments l0 and l1 is 90° or more, i.e., the corner of DP polygon is concave, the point far from the

cross point of l0 and l1 with distance ε to the outer direction of the obstacle is appended. The above

procedures are repeated for the remaining corner points of the DP polygon.

(a)

(b)

(c)

(d)

Figure 3. Abstract process of Expanded Douglas–Peucker (EDP) algorithm: (a) Before applying EDP

for a convex corner; (b) After applying EDP for a convex corner; (c) Before applying EDP for a concave

corner; (d) Overall appearance after applying EDP for a concave corner.

Figure 3. Abstract process of Expanded Douglas–Peucker (EDP) algorithm: (a) Before applying EDP
for a convex corner; (b) After applying EDP for a convex corner; (c) Before applying EDP for a concave
corner; (d) Overall appearance after applying EDP for a concave corner.

Algorithm 3 shows the abstract version of the pseudo code of the EDP algorithm.

Appl. Sci. 2019, 9, 638 6 of 17

Algorithm 3. Pseudo Code of EDP (Abstract version).

Input:
RDP ← Result of DP polygonal approximation of all obstacles represented as a set of point lists
ε← Threshold value for maximum dissimilarity tolerance
θrot ← Constant angle for obstacle corner clearance
Output:
R← Final result of the EDP polygonal approximation represented as a set of point lists

Begin Expanded-DP Procedure
1 for each rDP in RDP do
2 R← null
3 for each point p in rDP do
4 if p is convex vertex then
5 θ← half inner angle of p
6 dist← ε

7 l0 ← line segment connected from the previous point of p to p
8 l1 ← line segment connected from p to the next point of p
9 v0 ← perpendicular half-line to l1 started from p
10 v1 ← perpendicular half-line to l2 started from p
11 loop

12
insert points pcv on the arc with center point p and radius ε, which is consisted of the points

according to θrot angle from v0 to v1, to R
13 end loop
14 else
15 θ← half outer angle of p
16 dist← ε/sinθ

17 insert point pcc far from p with distance dist to the outer direction of the obstacle to R
18 end if
19 end for
20 end for
End Expanded-DP Procedure

Here, RDP is the set of point lists of the polygonal approximation of the obstacles by the DP
algorithm; ε is the threshold value for maximum dissimilarity tolerance; θrot is a constant angle for
obstacle corner clearance; R is the final result of the polygonal approximation of all obstacles by the
EDP algorithm, and rDP is a point list of the obstacle polygonal approximation by the DP algorithm,
which is arranged in counter-clockwise order.

Figure 4 illustrates the detailed version of the EDP algorithm (Algorithm 4).

Appl. Sci. 2019, 9, x 7 of 17

In addition, since 𝑄𝑖 (i = 1, 2, …, m-1) are on the arc with center point Pn and radius ε, rotating

𝑄𝑖 with angle 𝜃𝑟𝑜𝑡 in the counter-clockwise direction yields

𝑄𝑖 = (
cos 𝜃𝑟𝑜𝑡 − sin 𝜃𝑟𝑜𝑡

sin 𝜃𝑟𝑜𝑡 cos 𝜃𝑟𝑜𝑡
) (𝑄𝑖−1 − 𝑃𝑛) + 𝑃𝑛 (3)

Similarly, in the case of a concave corner,

𝑂𝑃𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 𝑃𝑛𝑄𝑠

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = (𝑥𝑛 , 𝑦𝑛)
𝑇 + (

cos(𝜋 − 𝜃) − sin(𝜋 − 𝜃)
sin(𝜋 − 𝜃) cos(𝜋 − 𝜃)

) (𝑥𝑛−1 − 𝑥𝑛 , 𝑦𝑛−1 − 𝑦𝑛)
𝑇 (4)

Around the convex vertex of DP polygon, the concept of θrot is used for the convex corner

clearance. When θrot ≥ ∠𝑄0𝑃𝑛𝑄𝑚, there is no additionally appending vertex, and Qm = Q1; when θrot <

∠Q0PnQm, there are additionally appending vertices Q1, Q2, …, which makes the effect of securing

additional free space near the obstacle corner relatively difficult to path following.

(a)

(b)

Figure 4. Detailed process of the EDP: (a) Convex; (b) Concave.

Algorithm 4 shows the detailed version of the pseudo code of the EDP algorithm.

Algorithm 4. Pseudo Code of EDP (Detailed version).

Input:

RDP ← Result of DP polygonal approximation of all obstacles represented as a set of point lists

ε ← Threshold value for maximum dissimilarity tolerance

θrot ← Constant angle for obstacle corner clearance

Output:

R ← Final result of the EDP polygonal approximation represented as a set of point lists

Begin Expanded-DP Procedure

1 for each rDP in RDP do

2 for each point Pn(xn, yn) in point list rDP do

3 if ∠Pn+1PnPn+1 < π then

4 θ ←
1

2
∠Pn+1PnPn+1

5 dist ← ε

6 𝑄0 ← (𝑥𝑛 , 𝑦𝑛)
𝑇 +

𝜀

√(𝑦𝑛−𝑦𝑛−1)2+(𝑥𝑛−𝑥𝑛−1)2
(𝑦𝑛 − 𝑦𝑛−1, −(𝑥𝑛 − 𝑥𝑛−1))

𝑇

7 𝑄𝑚 ← (𝑥𝑛+1, 𝑦𝑛+1)
𝑇 +

𝜀

√(𝑦𝑛+1−𝑦𝑛)2+(𝑥𝑛+1−𝑥𝑛)2
(𝑦𝑛+1 − 𝑦𝑛 , −(𝑥𝑛+1 − 𝑥𝑛))

𝑇

8 loop until i ≤ ⌈
𝜋−2𝜃

𝜃𝑟𝑜𝑡
⌉

9 𝑄𝑖 ← (
cos θrot - sin θrot

sin θrot cos θrot
) (Qi-1-Pn) + Pn

10 insert 𝑄𝑖 to R

11 i ← i + 1

12 end loop

13 else

Figure 4. Detailed process of the EDP: (a) Convex; (b) Concave.

Appl. Sci. 2019, 9, 638 7 of 17

Since
→

Pn−1Pn = (xn − xn−1, yn − yn−1) and
→

Pn−1Pn⊥
→

PnQ0,
unit vector of

→
PnQ0 =

1√
(yn − yn−1)

2 + (xn − xn−1)
2
(yn − yn−1, −(xn − xn−1))

T (1)

Therefore,

Q0 =
ε√

(yn − yn−1)
2 + (xn − xn−1)

2
(yn − yn−1, −(xn − xn−1))

T (2)

In addition, since Qi (i = 1, 2, . . . , m − 1) are on the arc with center point Pn and radius ε, rotating
Qi with angle θrot in the counter-clockwise direction yields

Qi =

(
cos θrot − sin θrot

sin θrot cos θrot

)
(Qi−1 − Pn) + Pn (3)

Similarly, in the case of a concave corner,

→
OPn +

→
PnQs = (xn, yn)

T +

(
cos(π − θ) − sin(π − θ)

sin(π − θ) cos(π − θ)

)
(xn−1 − xn, yn−1 − yn)

T (4)

Around the convex vertex of DP polygon, the concept of θrot is used for the convex corner
clearance. When θrot ≥ ∠Q0PnQm, there is no additionally appending vertex, and Qm = Q1; when θrot

< ∠Q0PnQm, there are additionally appending vertices Q1, Q2, . . . , which makes the effect of securing
additional free space near the obstacle corner relatively difficult to path following.

Algorithm 4 shows the detailed version of the pseudo code of the EDP algorithm.

Appl. Sci. 2019, 9, 638 8 of 17

Algorithm 4. Pseudo Code of EDP (Detailed version).

Input:
RDP ← Result of DP polygonal approximation of all obstacles represented as a set of point lists
ε← Threshold value for maximum dissimilarity tolerance
θrot ← Constant angle for obstacle corner clearance
Output:
R← Final result of the EDP polygonal approximation represented as a set of point lists

Begin Expanded-DP Procedure
1 for each rDP in RDP do
2 for each point Pn(xn, yn) in point list rDP do
3 if ∠Pn+1PnPn+1 < π then
4 θ← 1

2∠Pn+1PnPn+1

5 dist← ε

6 Q0 ← (xn, yn)
T + ε√

(yn−yn−1)
2+(xn−xn−1)

2
(yn − yn−1, −(xn − xn−1))

T

7 Qm ← (xn+1, yn+1)
T + ε√

(yn+1−yn)
2+(xn+1−xn)

2
(yn+1 − yn, −(xn+1 − xn))

T

8 loop until i ≤ π−2θ
θrot

9 Qi ←
(

cos θrot − sin θrot

sin θrot cos θrot

)
(Qi−1 − Pn) + Pn

10 insertQi to R
11 i← i + 1
12 end loop
13 else
14 θ← 1

2∠Pn+1PnPn+1

15 dist← ε/sinθ

16 Qs ←
→

OPn +
→

PnQs = (xn, yn)
T +

(
− cos(θ) − sin(θ)

sin(θ) − cos(θ)

)
(xn−1 − xn, yn−1 − yn)

T

18 insert Qs to R
19 end if
20 end for
21 end for
End Expanded-DP Procedure

2.3. Mathematical Validation on the Circumscription of the EDP Algorithm

[Theorem] The polygon that consists of the resulting points from the expanded DP (EDP) algorithm
on an obstacle includes all points of the original obstacle, i.e., no point of the obstacle region is outside
of the polygon that consists of the resulting points from EDP on that obstacle.

(Proof) Let Pn be the n-th point from the DP polygonal approximation of an obstacle. Then, the
following propositions are always true by the DP algorithm.

[P1] Pn−1, Pn, Pn+1 are points included in the boundary line of the obstacle.
[P2] Pn is the farthest point from the line segment Pn−1Pn+1 among the boundary points of the

obstacle in [Pn−1, Pn+1].
[P3] Every boundary point of the obstacle in [Pn−1, Pn] has a shorter distance than ε from the line

segment Pn−1Pn.
[P4] Every boundary point of the obstacle in [Pn, Pn+1] has a shorter distance than ε from the line

segment PnPn+1

If Pn is a convex point.
Let us assume that there is a boundary point c ∈ [Pn−1, Pn+1] of the obstacle such that c is located

outside the polygon Qm, Q’0, Q’1, . . . , Q’m, Q”0 such as Figure 5a, which consists of the resulting
points from the EDP algorithm on the obstacle. Since Pn−1, Pn, and Pn+1 are points on the boundary

Appl. Sci. 2019, 9, 638 9 of 17

line of the obstacle by proposition [P1], boundary point c should be identical to Pn or included in the
range of [Pn−1, Pn] or (Pn, Pn+1).

Appl. Sci. 2019, 9, x 8 of 17

Algorithm 4. Cont.

14 θ ←
1

2
∠Pn+1PnPn+1

15 dist ← ε / sinθ

17 𝑄𝑠 ← OPn
⃗⃗ ⃗⃗ ⃗⃗ ⃗ + PnQs

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = (xn, yn)
T + (

-cos θ - sin θ
sin θ - cos θ

) (xn-1-xn, yn-1-yn)
T

18 insert 𝑄𝑠 to R

19 end if

20 end for

21 end for

End Expanded-DP Procedure

2.3. Mathematical Validation on the Circumscription of the EDP Algorithm

[Theorem] The polygon that consists of the resulting points from the expanded DP (EDP)

algorithm on an obstacle includes all points of the original obstacle, i.e., no point of the obstacle region

is outside of the polygon that consists of the resulting points from EDP on that obstacle.

(Proof) Let Pn be the n-th point from the DP polygonal approximation of an obstacle. Then, the

following propositions are always true by the DP algorithm.

[P1] Pn-1, Pn, Pn+1 are points included in the boundary line of the obstacle.

[P2] Pn is the farthest point from the line segment Pn-1Pn+1 among the boundary points of the

obstacle in [Pn-1, Pn+1].

[P3] Every boundary point of the obstacle in [Pn-1, Pn] has a shorter distance than ε from the line

segment 𝑃𝑛−1𝑃𝑛.

[P4] Every boundary point of the obstacle in [Pn, Pn+1] has a shorter distance than ε from the line

segment PnPn+1.

(a)

(b)

Figure 5. Circumscription of EDP: (a) Convex; (b) Concave.

If Pn is a convex point,

Let us assume that there is a boundary point c ∈ [Pn-1, Pn+1] of the obstacle such that c is located

outside the polygon Qm, Q’0, Q’1, …, Q’m, Q’’0 such as Figure 5a, which consists of the resulting points

from the EDP algorithm on the obstacle. Since Pn-1, Pn, and Pn+1 are points on the boundary line of the

obstacle by proposition [P1], boundary point c should be identical to Pn or included in the range of

[Pn-1, Pn] or (Pn, Pn+1).

If point c is identical to Pn, it is trivial that c cannot be located outside of the polygon with vertices

Qm, Q’0, Q’1, …, Q’m, and Q’’0, since Pn is inside the polygon.

Figure 5. Circumscription of EDP: (a) Convex; (b) Concave.

If point c is identical to Pn, it is trivial that c cannot be located outside of the polygon with vertices
Qm, Q’0, Q’1, . . . , Q’m, and Q”0, since Pn is inside the polygon.

If point c is included in the range of [Pn−1, Pn), the distance from point c to the line segment
Pn−1Pn should be less than ε by proposition [P3]. Therefore, c cannot be located outside of the polygon
with vertices Qm ~ Q’0.

If point c is included in the range of (Pn, Pn+1], the distance from point c to the line segment
PnPn+1 should be less than ε by proposition [P4]. Therefore, c cannot be located outside of the polygon
with vertices Q’m ~ Q”0.

Therefore, no boundary point of the obstacle region is outside of the polygon with vertices Qm,
Q’0, Q’1, . . . , Q’m, and Q”0 in the case of convex Pn.

If Pn is a concave point,
Let us assume that there is a boundary point c ∈ [Pn−1, Pn+1] of the obstacle such that c is located

outside of the polygon Qm, Q’s, Q”0 such as Figure 5b, which consists of the resulting points from the
EDP algorithm on the obstacle. Since Pn−1, Pn, and Pn+1 are points on the boundary line of the obstacle
by proposition [P1], boundary point c should be identical to Pn or included in the range of [Pn−1, Pn]
or (Pn, Pn+1).

If point c is identical to Pn, it is trivial that c cannot be located outside of the polygon with vertices
Qm, Q’s, and Q”0, since Pn is inside the polygon.

If point c is included in the range of [Pn−1, Pn), the distance from point c to the line segment
Pn−1Pn should be less than ε by proposition [P3]. Therefore, c cannot be located outside of the polygon
with vertices Qm and Q’s.

If point c is included in the range of (Pn, Pn+1], the distance from point c to the line segment
PnPn+1 should be less than ε by proposition [P4]. Therefore, c cannot be located outside of the polygon
with vertices Q’s and Q”0.

Therefore, no boundary point of the obstacle region is outside the polygon with vertices Qm, Q’s,
and Q”0 in the case of concave Pn (Q.E.D.).

Once the polygonal approximation with the EDP algorithm is completed, it is possible to
solve the obstacle collision problem that may occur when DP algorithm is used for the polygonal
approximation of a curvilinear obstacle. Since the polygon created by the EDP algorithm can guarantee
the circumscription of obstacles, this result of EDP can be used to apply OAECD in path planning with
curvilinear obstacles.

Appl. Sci. 2019, 9, 638 10 of 17

3. Modified Opposite Angle-Based Exact Cell Decomposition (OAECD) Algorithm for Path
Planning with Curvilinear Obstacles

The basic concept of the modified OAECD algorithm is to reduce as possible as many cells after
the execution of the EDP algorithm and increase the calculation efficiency. Using the concept of
inclusion of an opposite angle, OAECD first tries to connect the closest neighboring cell in the opposite
angle region. OAECD does not randomly or sequentially process the points but processes in the order
from a close pair to a far pair through three consecutive steps, which are similar to the human method.
In addition, OAECD does not try to make an additional decomposition if the shape of the generating
cell is convex.

The detailed algorithm for the modified OAECD consists of three steps [18]. Figure 6 shows
how the decomposing lines are formed between the obstacles for each step of the modified OAECD
algorithm. In the first step, the modified OAECD finds the closest neighboring vertex in the set of all
vertices of other obstacles for every convex vertex (CV) of each obstacle. For every CV of each obstacle
and its closest neighboring vertex (NV) in other obstacles, a new decomposing line is drawn if there is
no existing decomposing line with the current CV, its closest NV is inside the region of the opposite
angle of the current CV, and no intersection is made with other obstacles or other decomposing lines.

Appl. Sci. 2019, 9, x 10 of 17

Finally, in the third step, for every CV of the remaining vertices, a new decomposing line is

drawn in the direction of the equiangular line of the opposite angle of the current CV until it intersects

with the boundary of the environment, obstacle, or another decomposing line, if no decomposing line

is connected with the current CV or more than one decomposing line is already connected from

another CV, and the created angle near the current CV is larger than 180°.

The OAECD can be properly applied in a static environment. Although a single-sensed map

may generate noise, it can sense multiple times for the same environment in a short period and

remove the noise on the map by the moving average method [20] or the median method [21]. Based

on these methods, one can plan the route. However, this process is only accurate in the static

environment. In the dynamic environment, it is difficult to resolve the sensor noise completely by the

moving average method or the median method for the same position because the obstacle moves.

Figure 6. Decomposition results of each step in the modified Opposite Angle-Based Exact Cell

Decomposition (OAECD) algorithm after the EDP algorithm: (a) Environment; (b) Result of step 1; (c)

Result of step 2; (d) Result of step 3.

Algorithms 5–7 show the pseudo code of the modified OAECD algorithm for each step in the

process. Here, vc1 is a convex vertex of an obstacle; Vc is the set of point lists, which is the result of the

EDP polygonal approximation of all obstacles; va1 is the closest neighboring vertex from vc1; V is the

set of all vertices of the obstacles; Vcheck is the point set to check for processing.

Figure 6. Decomposition results of each step in the modified Opposite Angle-Based Exact Cell
Decomposition (OAECD) algorithm after the EDP algorithm: (a) Environment; (b) Result of step
1; (c) Result of step 2; (d) Result of step 3.

Appl. Sci. 2019, 9, 638 11 of 17

In the second step, for every CV among the remaining vertices and a vertex (AV) in another
obstacle inside the region of the opposite angle of the current CV, a new decomposing line is drawn
if there is no decomposing line with the current CV, the AV in another obstacle is the shortest one
from the current CV among all available AVs, and there is no intersection with other obstacles or other
decomposing lines.

Finally, in the third step, for every CV of the remaining vertices, a new decomposing line is drawn
in the direction of the equiangular line of the opposite angle of the current CV until it intersects with
the boundary of the environment, obstacle, or another decomposing line, if no decomposing line is
connected with the current CV or more than one decomposing line is already connected from another
CV, and the created angle near the current CV is larger than 180◦.

The OAECD can be properly applied in a static environment. Although a single-sensed map may
generate noise, it can sense multiple times for the same environment in a short period and remove
the noise on the map by the moving average method [20] or the median method [21]. Based on these
methods, one can plan the route. However, this process is only accurate in the static environment.
In the dynamic environment, it is difficult to resolve the sensor noise completely by the moving average
method or the median method for the same position because the obstacle moves.

Algorithms 5–7 show the pseudo code of the modified OAECD algorithm for each step in the
process. Here, vc1 is a convex vertex of an obstacle; Vc is the set of point lists, which is the result of the
EDP polygonal approximation of all obstacles; va1 is the closest neighboring vertex from vc1; V is the
set of all vertices of the obstacles; Vcheck is the point set to check for processing.

Algorithm 5. Pseudo Code of the modified OAECD (Step 1).

Input:
Vc ← R // R: Result of the EDP polygonal approximation of all obstacles represented as a set of point lists
M← Environment map
Output:
Vchec ← Point set to check for processing
M← Environment map with decomposing lines of step 1

Begin OAECD-Algorithm Procedure
1 for every convex vertex of each obstacle in Vc do

2
find the closest vertex in the set of all vertices of other obstacles by comparing the distances between

the current vertex and other vertices
3 end for
4 for each vc1 in Vc do
5 if there is no decomposing line that is already connected with vc1 then

6
if va1 is included in the region of the opposite angle of vc1 and line(vc1, va1 in V) is not intersected

with other obstacles or other lines then
7 draw decomposing line from vc1 to va1 and insert vc1 to Vcheck
8 else if
9 else if all angles near vc1 are less than or equal to 180◦ then
10 insert vc1 to Vcheck
11 end if
12 end for
End OAECD-Algorithm Procedure

Generally, the cells created by the cell decomposition methods are shaped as a convex polygon to
avoid being penetrated by obstacles. Therefore, only the convex vertices of the obstacles are considered
in this step because the concave vertices of the obstacles obviously result in convex vertices of the
free cell. In other words, there is no need to make an additional decomposing line from some vertices
if they preserve the concaveness. In addition, the closest neighboring vertex is chosen to reduce the

Appl. Sci. 2019, 9, 638 12 of 17

number of possible cells and the possibility of crossing with other decomposing lines. Here, vc2 is a
convex vertex of an obstacle in Vc-Vcheck, va2 is a vertex in the region of the opposite angle of vc2, and
Vi is the set of all vertices inside the region of the opposite angle of vc2.

Algorithm 6. Pseudo Code of the modified OAECD (Step 2).

Input:
Vc ← R//R: Result of the EDP polygonal approximation of all obstacles represented as a set of point lists
M← Environment map
Vcheck ← Point set to check for processing (Result of previous step 1)
Output:
Vcheck ← Point set to check for processing (Result of this step)
M← Environment map with the decomposing lines of step 1 and 2

Begin OAECD-Algorithm Procedure
1 for each vc2 in Vc - Vcheck do
2 if there is no decomposing line that is already connected with vc2 then

3
if va2 has the shortest distance with vc2 compared with those in Vi - {va2} and line(vc2, va2 in Vi) is not

intersected with the obstacle and other lines then
4 draw decomposing line from vc2 to va2 and insert vc2 to Vcheck
5 end if
6 else if all angles near vc2 are less than or equal to 180◦ then
7 insert vc2 to Vcheck
8 end if
9 end for
End OAECD-Algorithm Procedure

From Step 2, the decomposing line from vc2 to va2 is drawn, and vc2 is inserted into Vcheck although
va2 is not the closest vertex in V. Here, vc3 is an unchecked convex vertex of each obstacle.

Algorithm 7. Pseudo Code of the modified OAECD (Step 3).

Input:
Vc ← R//R: Result of the EDP polygonal approximation of all obstacles represented as a set of point lists
M← Environment map
Vcheck ← Point set to check for processing (Result of previous step 2)
Output:
M← The final environment map with decomposing lines of steps 1, 2, and 3

Begin OAECD-Algorithm Procedure
1 for each vc3 in Vc - Vcheck do
2 if there is no decomposing line that is already connected with vc3 then

3
draw decomposing line from vc3 in the direction of half angle of the opposite angle of vc3 until it

intersects with the boundary of the environment, other obstacles, or other lines and insert vc3 to Vcheck
4 else if all angles near vc3 are less than or equal to 180◦ then
5 insert vc3 to Vcheck
6 end if
7 end for
End OAECD-Algorithm Procedure

The time complexity of the modified OAECD is O(n2) because the sub-time complexity is basically
all O(n2) for Step 1, Step 2, and Step 3. In addition, the time complexity for Step 3 can be reduced to
O(nlogn) approximately when the sweep-line method [22,23] is applied.

Appl. Sci. 2019, 9, 638 13 of 17

4. Experimental Results

Two types of experiments were conducted to find the performance of the proposed EDP and
modified OAECD algorithm. An additional simulation has been performed to verify the feasibility of
the modified OAECD algorithm for a map with curvilinear obstacles. The first experiment is conducted
to compare the approximation error and the number of vertices of the approximated polygon made
by EDP and DP. In each experiment, twenty maps were chosen in the pre-created one hundred fifty
random maps, each of which is assumed to be 20 × 20 m2 in size and randomly have the position of
the obstacle, position of the vertices of each obstacle, and area of the obstacle by using the random
function in the math library of the MS Visual C++ compiler. The number of obstacles and vertices of
each obstacle were fixed at fifteen. Bezier curve was used for the curvilinear obstacle representation by
interconnecting the vertices of each obstacle and creating naturally curved obstacles. Each map was
created by an image in bitmap format.

The second experiment was conducted to compare the performance of the OAECD algorithm and
the VCD algorithm. Similar to the first experiment, the size of the map was assumed as 20 × 20 m2,
and the position of the obstacle, positions of the vertices of each obstacle, number of vertices of each
obstacle, and number of obstacles in the map were random variables.

Table 1 shows the experimental results by averaging the results of each experiment. Here, IA is
the percentage area of the inner space of the approximated polygons outside the obstacle regions in
comparison with the area of the original obstacle region. OA is the percentage area of the outer space
of the approximated polygons inside the obstacle regions in comparison with the area of the original
obstacle region. SA is the sum of IA and OA. AVG is the average values for various ε.

Table 1. Performance comparison between Expanded Douglas–Peucker (EDP) algorithm and
Douglas–Peucker (DP) alogrithm for various ε values (The number of obstacles and vertices of each
obstacle were fixed as 15, and θrot for EDP was fixed as 30◦).

ε (m)
EDP (%) DP (%)

IA OA SA IA OA SA

0.05 19.05 0.00 19.05 2.45 0.70 3.15
0.08 28.46 0.00 28.46 4.89 1.17 6.06
0.11 37.95 0.00 37.95 7.19 1.54 8.73
0.14 47.63 0.00 47.63 9.26 1.83 11.08
0.17 57.34 0.00 57.34 11.50 2.08 13.58
0.20 67.17 0.00 67.17 13.38 2.48 15.86
0.23 77.11 0.00 77.11 15.52 2.76 18.28
0.26 87.01 0.00 87.01 17.23 3.20 20.43
0.29 96.91 0.00 96.91 19.55 3.56 23.10
0.32 106.7 0.00 106.7 22.00 3.86 25.85
0.35 116.7 0.00 116.7 23.90 4.40 28.30
0.38 127.3 0.00 127.3 26.91 4.83 31.74
0.41 137.9 0.00 137.9 27.99 5.27 33.26
0.44 148.0 0.00 148.0 30.57 5.62 36.19
0.47 158.8 0.00 158.8 32.13 5.86 37.99
0.50 169.5 0.00 169.5 33.11 6.60 39.72

AVG 92.72 0.00 92.72 15.53 2.99 18.52

From Table 1, the average approximation error of the result of the EDP algorithm is approximately
5 times larger than that of DP algorithm to cover the entire area of the original obstacle regions.

Table 2 shows the experimental results by averaging the results of ten experiments with 15 random
obstacles and 15 random vertices for each obstacle.

From Table 2, on average, the result of the EDP algorithm has 2.88 times more vertices than the
result of the DP algorithm when θrot for EDP is 30◦.

Figure 7 shows a graphical representation of Tables 1 and 2. The approximation performance of
EDP is worse than DP in the aspects of IA, SA, and average number of vertices. Nonetheless, OA of

Appl. Sci. 2019, 9, 638 14 of 17

EDP is completely zero and better than DP since the result of the EDP can cover the entire area of the
original obstacle regions.

Table 2. Average number of vertices created by EDP and DP (The numbers of obstacles and vertices of
each obstacle were fixed as 15, and θrot for EDP was fixed as 30◦).

ε (m)
Average Number of Vertices

EDP DP

0.05 31.08 15.92
0.08 27.87 11.92
0.11 25.89 10.19
0.14 24.68 9.18
0.17 23.67 8.33
0.20 22.85 7.66
0.23 22.13 7.32
0.26 21.55 6.83
0.29 20.97 6.56
0.32 20.15 6.20
0.35 19.32 5.91
0.38 18.97 5.58
0.41 18.63 5.40
0.44 18.06 5.06
0.47 17.65 5.00
0.50 17.16 4.78

AVG 21.91 7.65

Appl. Sci. 2019, 9, x 14 of 17

Table 2. Cont.

ε (m)
Average Number of Vertices

EDP DP

0.47 17.65 5.00

0.50 17.16 4.78

AVG 21.91 7.65

From Table 2, on average, the result of the EDP algorithm has 2.88 times more vertices than the

result of the DP algorithm when θrot for EDP is 30°.

Figure 7 shows a graphical representation of Tables 1 and 2. The approximation performance of

EDP is worse than DP in the aspects of IA, SA, and average number of vertices. Nonetheless, OA of

EDP is completely zero and better than DP since the result of the EDP can cover the entire area of the

original obstacle regions.

(a)

(b)

(c)

(d)

Figure 7. Performance comparison between EDP and DP for various ε values: (a) Ratio of the inner

space of the approximated polygons outside the obstacle region (IA); (b) Ratio of the outer space of

the approximated polygons inside the obstacle region (OA); (c) Sum of IA and OA (SA); (d) Average

number of vertices created by EDP and DP (The numbers of obstacles and vertices of each obstacle

were fixed as 15, and θrot for EDP was fixed as 30°).

Table 3 compares the performance of the modified OAECD algorithm and VCD algorithm. Here,

NV is the total number of vertices in the connectivity graph, VV is the number of vertices that

composes the generated path by the A* algorithm, and PL is the path length.

Figure 7. Performance comparison between EDP and DP for various ε values: (a) Ratio of the inner
space of the approximated polygons outside the obstacle region (IA); (b) Ratio of the outer space of
the approximated polygons inside the obstacle region (OA); (c) Sum of IA and OA (SA); (d) Average
number of vertices created by EDP and DP (The numbers of obstacles and vertices of each obstacle
were fixed as 15, and θrot for EDP was fixed as 30◦).

Appl. Sci. 2019, 9, 638 15 of 17

Table 3 compares the performance of the modified OAECD algorithm and VCD algorithm. Here,
NV is the total number of vertices in the connectivity graph, VV is the number of vertices that composes
the generated path by the A* algorithm, and PL is the path length.

Table 3. Performance comparison between modified Opposite Angle-Based Exact Cell Decomposition
(OAECD) and Vertical Cell Decomposition (VCD) (The numbers of obstacles and vertices of each
obstacle were fixed as 15).

(NO, NV)
OAECD VCD

NV (ea) VV (ea) PL (m) NV (ea) VV (ea) PL (m)

(1,10) 7.60 4.30 28.43 12.00 7.00 29.27
(3,10) 19.80 6.00 29.16 36.60 16.50 33.43
(5,10) 31.70 10.20 29.85 61.80 24.70 37.84
(7,10) 44.10 10.60 30.37 88.20 29.90 45.89
(9,10) 56.80 11.90 29.68 111.80 34.60 47.90
(11,10) 68.50 13.40 30.88 139.00 36.80 53.64
(13,10) 79.20 14.90 30.62 164.70 43.80 56.38
(15,10) 92.50 17.60 30.92 192.00 45.70 48.31
(15,3) 40.70 9.80 28.88 76.60 28.90 57.03
(15,5) 54.90 11.10 29.72 108.00 29.80 51.94
(15,7) 69.20 13.80 29.83 141.20 37.70 59.94
(15,9) 84.70 15.70 30.48 174.60 43.50 54.79
(15,11) 100.60 17.60 30.82 207.80 43.00 53.86
(15,13) 116.10 21.40 31.26 249.50 46.90 58.88
(15,15) 130.60 20.30 31.32 279.20 43.30 55.28

AVG 66.47 13.24 30.15 136.20 34.14 49.63

From Table 3, the path length by the modified OAECD algorithm is 60.7% shorter than the path
length by VCD algorithm on average.

Figure 8 shows the comparison of VCD with DP and OAECD with EDP to show the feasibility of
the modified OAECD algorithm for maps with static curvilinear obstacles.

Appl. Sci. 2019, 9, x 15 of 17

Table 3. Performance comparison between modified Opposite Angle-Based Exact Cell

Decomposition (OAECD) and Vertical Cell Decomposition (VCD) (The numbers of obstacles and

vertices of each obstacle were fixed as 15).

(NO, NV)
OAECD VCD

NV (ea) VV (ea) PL (m) NV (ea) VV (ea) PL (m)

(1,10) 7.60 4.30 28.43 12.00 7.00 29.27

(3,10) 19.80 6.00 29.16 36.60 16.50 33.43

(5,10) 31.70 10.20 29.85 61.80 24.70 37.84

(7,10) 44.10 10.60 30.37 88.20 29.90 45.89

(9,10) 56.80 11.90 29.68 111.80 34.60 47.90

(11,10) 68.50 13.40 30.88 139.00 36.80 53.64

(13,10) 79.20 14.90 30.62 164.70 43.80 56.38

(15,10) 92.50 17.60 30.92 192.00 45.70 48.31

(15,3) 40.70 9.80 28.88 76.60 28.90 57.03

(15,5) 54.90 11.10 29.72 108.00 29.80 51.94

(15,7) 69.20 13.80 29.83 141.20 37.70 59.94

(15,9) 84.70 15.70 30.48 174.60 43.50 54.79

(15,11) 100.60 17.60 30.82 207.80 43.00 53.86

(15,13) 116.10 21.40 31.26 249.50 46.90 58.88

(15,15) 130.60 20.30 31.32 279.20 43.30 55.28

AVG 66.47 13.24 30.15 136.20 34.14 49.63

From Table 3, the path length by the modified OAECD algorithm is 60.7% shorter than the path

length by VCD algorithm on average.

Figure 8 shows the comparison of VCD with DP and OAECD with EDP to show the feasibility

of the modified OAECD algorithm for maps with static curvilinear obstacles.

The EDP shows that the polygonal approximation completely covers each obstacle. In addition,

the OAECD shows a more natural-looking and efficient path than VCD in Figure 8a. The path from

VCD with the DP algorithm may also easily collide with the obstacle, such as Figure 8b.

(a)

(b)

Figure 8. Comparison between OAECD with EDP and VCD with DP (ε = 0.05 m): (a) Path planning

using EDP and OAECD; (b) Path planning using DP and VCD (The numbers of obstacles and vertices

of each obstacle were fixed as 15, and θrot for EDP was fixed as 30°).

Even though the path in Figure 8a is more natural looking than that in Figure 8b, there are still

some sharp corners which may occur generating an additional problem of motion control for real-

Figure 8. Comparison between OAECD with EDP and VCD with DP (ε = 0.05 m): (a) Path planning
using EDP and OAECD; (b) Path planning using DP and VCD (The numbers of obstacles and vertices
of each obstacle were fixed as 15, and θrot for EDP was fixed as 30◦).

Appl. Sci. 2019, 9, 638 16 of 17

The EDP shows that the polygonal approximation completely covers each obstacle. In addition,
the OAECD shows a more natural-looking and efficient path than VCD in Figure 8a. The path from
VCD with the DP algorithm may also easily collide with the obstacle, such as Figure 8b.

Even though the path in Figure 8a is more natural looking than that in Figure 8b, there are
still some sharp corners which may occur generating an additional problem of motion control for
real-world robots due to kinematic constraints. These corners can be smoothed by some additional
path smoothing techniques [5,24].

5. Conclusions

In this paper, the Expanded Douglas–Peucker (EDP) polygonal approximation algorithm and its
application method for the Opposite Angle-based Exact Cell Decomposition (OAECD) are proposed for
the mobile-robot path-planning problem with curvilinear obstacles. In addition, mathematical analysis
has been conducted to guarantee the circumscription of obstacle regions by the EDP approximation.
Since OAECD is basically focused on the static environment, OAECD is not robust enough to sensor
noises in the dynamic environment. Nonetheless, the proposed method is useful with both polygonal
and curvilinear obstacles, since the EDP approximation can guarantee the circumscription of obstacle
regions, and the modified OAECD algorithm can effectively reduce the number of decomposing cells.

The experimental results show that the path generated by the OAECD algorithm with the EDP
approximation looks much more natural and is collision-free. That path is also more efficient than
the path generated by the VCD algorithm with DP approximation, although on average, the EDP
approximation may induce a larger approximation error and more approximation vertices than
DP approximation.

Author Contributions: Idea and conceptualization: J.-W.J. and S.-B.C.; methodology: J.-W.J. and S.-B.C.; software:
S.-B.C. and Y.S.; experiment: S.-B.C., J.-.G.K. and D.-W.L.; validation: J.-W.J.; investigation: S.-B.C. and J.-G.K.;
resources: J.-W.J.; writing: J.-W.J., S.-B.C., J.-G.K., D.-W.L. and Y.S.; visualization: S.-B.C. and J.-G.K.; project
administration: J.-W.J.

Funding: This research was supported by the Ministry of Science and ICT, Korea, under the National Program for
Excellence in Software supervised by the Institute for Information & Communications Technology Promotion
(2016-0-00017), the KIAT (Korea Institute for Advancement of Technology) grant funded by the Korea Government
(MOTIE: Ministry of Trade Industry and Energy) (No. N0001884, HRD program for Embedded Software
R&D) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)
(No. 2018R1A5A7023490).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Latombe, J.-C. Robot Motion Planning; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991.
2. Choset, H.; Lynch, K.M.; Hutchinson, S.; Kantor, G.; Burgard, W.; Kavraki, L.E.; Thrun, S. Principles of Robot

Motion: Theory, Algorithms, and Implementations; MIT Press: Boston, MA, USA, 2005.
3. La Valle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006.
4. Yang, L.; Qi, J.; Song, D.; Xiao, J.; Han, J.; Xia, Y. Survey of robot 3D path planning algorithms. J. Control Sci.

Eng. 2016, 5, 22–44. [CrossRef]
5. Gonzalez, D.; Perez, J.; Milanes, V.; Nashashibi, F. A Review of Motion Planning Techniques for Automated

Vehicles. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1135–1145. [CrossRef]
6. Yang, H.; Jia, Q.; Zhang, W. An Environmental Potential Field Based RRT Algorithm for UAV Path Planning.

In Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018;
pp. 9922–9927.

7. Yanyi, Y.; Yingming, Z.; Xingchen, L. An improved artificial potential field algorithm based on
nonuniform cell decomposition. In Proceedings of the 2017 6th International Conference on Measurement,
Instrumentation and Automation (ICMIA 2017), Zhuhai, China, 29–30 June 2017.

http://dx.doi.org/10.1155/2016/7426913
http://dx.doi.org/10.1109/TITS.2015.2498841

Appl. Sci. 2019, 9, 638 17 of 17

8. Avnaim, F.; Boissonnat, J.D.; Faverjon, B. A practical exact motion planning algorithm for polygonal
objects amidst polygonal obstacles. In Proceedings of the IEEE International Conference on Robotics
and Automation, Philadelphia, PA, USA, 24–29 April 1988.

9. Brooks, R.A.; Lozano-Perez, T. A subdivision algorithm in configuration space for find path with rotation.
IEEE Trans. Syst. 1985, 15, 224–233.

10. Iswanto, I.; Oyas, W.; Imam, C.A. Quadrotor Path Planning Based on Modified Fuzzy Cell Decomposition
Algorithm. Telecommun. Comput. Electron. Control 2016, 14, 655–664. [CrossRef]

11. Nora, S.; Tschichold-Gurmann, N. Exact Cell Decomposition of Arrangements Used for Path Planning in Robotics;
Technical Report; ETH Zürich, Department of Computer Science: Zürich, Switzerland, 1999.

12. Zhang, L.; Kim, Y.J.; Manocha, D. A hybrid approach for complete motion planning. In Proceedings of the
International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007.

13. Kim, J.-T.; Kim, D.-J. New Path Planning Algorithm based on the Visibility Checking using a Quad-tree on a
Quantized Space, and its improvements. J. Inst. Control Robot. Syst. 2010, 16, 48. [CrossRef]

14. Arney, T. An efficient solution to autonomous path planning by Approximate Cell Decomposition.
In Proceedings of the 3rd International Conference on Information and Automation for Sustainability,
Melbourne, Australia, 4–6 December 2007.

15. Rosell, J.; Iniguez, P. Path planning using Harmonic Functions and Probabilistic Cell Decomposition.
In Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain,
18–22 April 2005.

16. Cowlagi, R.V.; Tsiotras, P. Beyond quadtrees: Cell decompositions for path planning using wavelet
transforms. In Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA,
USA, 12–14 December 2007.

17. Ghita, N.; Kloetzer, M. Cell Decomposition-Based Strategy for Planning and Controlling a Car-like Robot.
In Proceedings of the 14th International Conference on System Theory and Control, Sinaia, Romania,
17–19 October 2010.

18. So, B.-C.; Jung, J.-W. Mobile Robot Path Planning with Opposite Angle-Based Exact Cell Decomposition.
Adv. Sci. Lett. 2012, 15, 144–148. [CrossRef]

19. Ramer, U. An iterative procedure for the polygonal approximation of plane curves. Comput. Graph. Image
Process. 1972, 1, 244–256. [CrossRef]

20. Hwang, Y.-S.; Lee, J. Robust 3D map building for a mobile robot moving on the floor. In Proceedings
of the 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Busan, Korea,
7–11 July 2015; pp. 1388–1393.

21. Gao, H.; Hu, M.; Gao, T. Robust detection of median filtering based on combined features of difference
image. Signal Process. Image Commun. 2017, 72, 126–133. [CrossRef]

22. Douglas, D.; Peucker, T. Algorithms for the reduction of the number of points required to represent a
digitized line or its caricature. Can. Cartogr. 1973, 10, 112–122. [CrossRef]

23. Chazelle, B.; Edelsbrunner, H. An optimal algorithm for intersecting line segments in the plane.
In Proceedings of the 29th Annual Symposium on Foundations of Computer Science, White Plains, NY, USA,
24–26 October 1988.

24. Ravankar, A.; Ravankar, A.; Kobauashi, Y.; Hishino, Y.; Peng, C.-C. Path smoothing techniques in robot
navigation: State-of-the-art, current and future challenges. Sensors 2018, 18, 3170. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.12928/telkomnika.v14i2.2989
http://dx.doi.org/10.5302/J.ICROS.2010.16.1.048
http://dx.doi.org/10.1166/asl.2012.4061
http://dx.doi.org/10.1016/S0146-664X(72)80017-0
http://dx.doi.org/10.1016/j.image.2018.12.014
http://dx.doi.org/10.3138/FM57-6770-U75U-7727
http://dx.doi.org/10.3390/s18093170
http://www.ncbi.nlm.nih.gov/pubmed/30235894
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Polygonal Approximation Algorithm of Curvilinear Obstacle
	Douglas-Peucker Algorithm
	Proposed Expanded Douglas-Peucker (EDP) Algorithm
	Mathematical Validation on the Circumscription of the EDP Algorithm

	Modified Opposite Angle-Based Exact Cell Decomposition (OAECD) Algorithm for Path Planning with Curvilinear Obstacles
	Experimental Results
	Conclusions
	References

