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Abstract: Real-time prediction of remaining useful life (RUL) is one of the most essential works in
prognostics and health management (PHM) of the micro-switches. In this paper, a linear degradation
model based on an inverse Kalman filter to imitate the stochastic deterioration process is proposed.
First, Bayesian posterior estimation and expectation maximization (EM) algorithm are used to
estimate the stochastic parameters. Second, an inverse Kalman filter is delivered to solve the errors
in the initial parameters. In order to improve the accuracy of estimating nonlinear data, the strong
tracking filtering (STF) method is used on the basis of Bayesian updating Third, the effectiveness of the
proposed approach is validated on an experimental data relating to micro-switches for the rail vehicle.
Additionally, it proposes another two methods for comparison to illustrate the effectiveness of the
method with an inverse Kalman filter in this paper. In conclusion, a linear degradation model based
on an inverse Kalman filter shall deal with errors in RUL estimation of the micro-switches excellently.
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1. Introduction

Nowadays, micro electro mechanical systems (MEMS) devices are used in various fields, such as
automotive, biomedical, aerospace, and communication technologies [1]. They play an indispensable
role in functioning and protection of the entire system [2]. As one of the components, micro-switches are
affected by different working cycles and unavoidable external factors, such as changes in temperature
and humidity, resulting in different degrees of residual life [3].

However, micro-switches reliability has attracted little attention, whose failure may cause
significant downtime, as well as safety implications. Specifically, they are important parts of rail
vehicle systems, and whether they are damaged is related to the operation of the entire system or
even the safety of the passengers. Due to the significance of such aspect, several research works
dealing with the reliability of micro-switches and other electronic components have been published,
such as references [4–9]. Nevertheless, traditional approaches to estimate remaining useful life (RUL)
have failed because of the reliance on average accumulated historical field data [10]. Reliability is
estimated without taking into account the specific utilization of each component, such as working
environment and using frequency. However, in practice, the lifetime should be different from one to
another depending on how and where it is used. As a result, test duration and cost have become a
huge challenge for traditional approaches. Real-time monitoring of the RUL of micro-switches and
provide a convenient for timely maintenance decisions, is one of the important ways to improve its
reliability [11,12].
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The topic of the real-time prediction of RUL for electronic devices is one of the most active
areas in prognostics and health management (PHM) research today. Considered with the stochastic
characteristics of RUL in stochastic dynamic processes under actual working conditions, the
data-driven RUL prediction was studied in the early 1980s, Derman et al. [13] confirmed the importance
of life distribution in extending the life of equipment. This type of method is the most typical traditional
life prediction method. The statistical analysis of life data determines the probability distribution
of equipment life. However, the equipment such as micro-switches, owned high reliability and
long-life features and it failed to obtain sufficient time to failure data in the short term, which made
it difficult to obtain satisfactory prediction results for traditional life analysis methods based on life
data. In recent years, there has been an increasing interest in the establishment of the real-time life
prediction model by using monitoring data and calculating the probability distribution in the use of
statistical methods. A large amount of literature has been delivered, Wang et al. [14] summarized
the commonly used assumptions applying a random coefficient regression model and proposed a
method for determining the failure threshold by optimization. Furthermore, Gebraeel et al. [15]
proposed a logarithmic linearized exponential-like random coefficient regression model. The model
utilized historical degradation data from similar devices and incorporated real-time monitoring data
from historical data of service equipment through the Bayesian updating mechanism to update the
remaining life distribution. Si et al. [16] summarized the experience of predecessors and provided
an effective theory and method for establishing stochastic degradation models and studying RUL
prediction problems. Especially, the algorithm put forward by Wang et al. [17] is widely used but
there still exists some unsolved problems, such as, it is not sensitive to the initial real-time monitoring
degradation data due to the objects of micro-switches.

In this paper, a linear degradation model based on an inverse Kalman filter to imitate the stochastic
deterioration process was proposed. In addition, it referred to others about state monitoring methods,
such as the extended Kalman filter (EKF) applied in the estimation of the position of the intake valve of
the engine, and a theoretical basis, which was built up for the algorithm proposed in this paper [18,19].
Although Wang et al. [17] benefits were well proved, the algorithm was not sensitive to the initial
real-time monitoring degradation data in solving the RUL estimation. Based on the Kalman filter, it was
the important measure to the real-time condition monitoring of RUL, this paper proposed an inverse
Kalman filter. Furthermore, Bayesian updating method and expectation maximization (EM) algorithm
were used to estimate the RUL. Finally, the strong tracking filtering (STF) method was used to enhance
the robustness. In order to verify the validity of the method, the S826 rail vehicle micro-switches were
chosen as the research object. Thus, the real-time prediction of RUL for micro-switches were necessary.
The data-driven method to solve the prediction of this kind of system could provide a feasible way for
optimization of problems [20].

The remainder of this paper is organized as follows. Section 2 constructs a general stochastic
process-based degradation model and then presents a degradation path-dependent approach for
adaptive RUL estimation via real-time condition monitoring data. It discusses how to estimate initial
parameters by using an inverse Kalman filter and illustrates a Bayes technique improved by the STF
method, which can update the system parameters more accurately in real time. In Section 3, the test
rig is designed to obtain performance degradation data for micro-switches. Section 4 provides several
simulations and a case study to illustrate the application and usefulness of the developed approach.
Section 5 concludes the paper.

Notations used in this paper.
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Notations Explanations

X0:k The degradation detection data X0:k = {x0, x1, x2, . . . , xk}.
θ The drift parameter reflects the degradation rate of the equipment.
µθ,k, σ2

θ,k The updated hyper-parameters by the Bayesian posterior estimation.

Θ, Θ̂k
Θ stands for the unknown parameters set are not updated by Bayesian estimation,
Θ = [σ2, µ0, σ2

0 ], and Θ̂k denotes the updated results by the EM algorithm, Θ̂k = [σ̂2
k , µ̂0,k, σ̂2

0,k].
ν(tk) The fading factor.
Pk|k The updated estimation variance by the STF technique.
X′0:k X0:k is flipped as X′0:k =

{
x′0, x′1, x′2, . . . , x′k

}
, where x′0 = xk, x′1 = xk−1, · · · , x′k = x0.

2. Prognostic Approach

Under normal circumstances, most studies require multiple similar historical monitoring data to
estimate parameters when they estimate the remaining useful life [21,22]. However, the micro-switches
of the rail vehicle have high reliability and a long service life. For this type of component, even
the accelerated life test requires considerable time and cost. Therefore, it is not feasible to estimate
parameters with a large amount of historical data. Moreover, the running environment of each railway
vehicle is different, and it is inaccurate to estimate the residual life with fixed parameters.

In this section, considering individual differences in micro-switches, we use real-time monitoring
data to estimate individual systems. As the monitoring data is acquired, the system parameters will be
updated adaptively, and an accurate prediction result can be obtained without similar historical data.
The fundamental principle is that enough online monitoring data is used to complement the lack of
similar historical data. A linear stochastic degenerate system is described in Figure 1.
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Figure 1. The flow chart of a linear stochastic degenerate system. EM: expectation maximization; STF:
strong tracking filtering; PDF: probability density function; CDF: cumulative distribution function.

2.1. Modeling of Linear Stochastic Degenerate Systems

The linear degradation model is typically used for modelling degradation processes where the
degradation rate is approximately a constant [17,23]. Moreover, the linear model with adaptive
updating algorithm used in the literature [17] has a good estimate of the exponential type of data.
In this paper, we consider the same linear degradation model based on a Wiener process as follows:

X(t) = θt + σB(t) (1)
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where X(t) is the degradation detection data at time t. The initial state is shown as t = 0, X(0) = 0. To
be consistent with existing studies, the initial degradation was 0, which can be obtained by translation
transformation of the data. And θ was the drift parameter, which means the degradation rate of the
system, σ is the diffusion parameter. B(t) denotes the standard Brownian motion, which represents
the stochastic dynamics of the degradation process. The degradation detection data is described as
X0:k = {x0, x1, x2, . . . , xk}.

The reason for using linear system equations is not only its universality, but also it is the
convenience for calculation. Another important reason is that the life prediction problem can be
understood as predicting the future trend of a random curve. According to the Euler method, given
a starting point, if we can predict the tangent curve at any point, from the starting point, we can
calculate the predictive value step by step, the approximate curve can be obtained. In this paper, the
drift parameter θ denotes the tangent curve and we use a reasonable method to adjust θ in real time.
From the Equation (1), each step of the degradation data can be expressed as:

X(tk − tk−1) = θ(tk − tk−1) + σB(tk − tk−1) (2)

where X(tk − tk−1) ∼ N
(
θ(tk − tk−1), σ2(tk − tk−1)

)
.

It can also be described in a nonlinear model, which will greatly increase computation time
and not improve performance significantly. In addition, we apply Bayesian updating and the EM
algorithm to update the system parameters, and the STF is used to improve the robustness of the model
parameter mismatch. The above methods can guarantee the accuracy of parameters. The detailed
description will be given below.

Assumption: In the model of X(t) = θt+σB(t), θ is assumed to be a random parameter, indicating
individual differences. σ is assumed to be the deterministic parameter as a constant.

2.2. Bayesian Posterior Estimation of Stochastic Parameters

It is noticed that the key parameter for determining the degradation state is θ in Equation (1). θ is a
random parameter and will be updated with the data obtained at the current moment tk. θ is distributed
as θ ∼ N

(
µθ,k, σ2

θ,k

)
, such parameter distributions are consistent with existing methods [17,23].

In order to estimate hyper-parameters µθ,k, σ2
θ,k in the random parameter θ, the Bayesian posterior

estimation is used in this paper.
Firstly, it is assumed that the prior distribution of θ is N

(
µ0, σ2

0
)
. Then the chain recursion was

incorporated into the calculation. The posterior distribution of P(θ|X0:k ) can be expressed as [17]:

p(θ|X0:k ) =
1

σθ,k
√

2π
exp

{
− (θ − µθ,k)

2

2σ2
θ,k

}
(3)

Where

µθ,k =

(
µ0σ2 + xkσ2

0
)(

tkσ2
0 + σ2

) , σ2
θ,k =

σ2σ2
0(

tkσ2
0 + σ2

) (4)

It can be found in Equation (4) that the posterior estimate of the random parameter θ can be
updated after the new monitoring data.

2.3. Estimation of Unknown Parameters Based on EM Algorithm

As seen in the previous section, unknown parameters Θ = [σ2, µ0, σ2
0 ] are not updated by the

Bayesian estimation. The reason for using the EM algorithm instead of the maximum likelihood
estimation algorithm is that the unknown parameter Θ contains the hidden variable θ, which cannot
be directly estimated by the maximum likelihood estimation. We need to approximate the maximum
likelihood estimation of parameters by maximizing the joint likelihood function p(X0:k, θ|Θk ). In order
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to reflect the updated characteristics of Θ over time, we use the EM algorithm to estimate Θ through
monitoring data X0:k, its update results are expressed as Θ̂k = [σ̂2

k , µ̂0,k, σ̂2
0,k] [17].

First, complete logarithm likelihood function ln p(X0:k, θ|Θk ) is calculated as:

ln p(X0:k, θ|Θk ) = ln p(X0:k|θ, Θk ) + ln p(θ|Θk )

= − k+1
2 ln 2π − 1

2 ∑k
j=1 ln

(
tj − tj−1

)
− k

2 ln σ2
k−

∑k
j=1

(xj−xj−1−θ(tj−tj−1))
2

2σ2
k (tj−tj−1)

− 1
2 ln σ2

0,k −
(θ−µ0,k)

2

2σ2
0,k

(5)

E-step: Calculate the expected value `
(

Θk

∣∣∣Θ̂(i)
k

)
of ln p(X0:k, θ|Θk ) which is about p(θ|X0:k , Θ(i)

k )

`
(

Θk

∣∣∣Θ̂(i)
k

)
= E

θ|X0:k ,Θ̂(i)
k
{ln p(X0:k, θ|Θk )}

= − k+1
2 ln 2π − 1

2 ∑k
j=1 ln

(
tj − tj−1

)
− k

2 ln σ2
k

− ∑k
j=1

(xj−xj−1)
2−2µθ,k(tj−tj−1)(xj−xj−1)+(tj−tj−1)

2
(µ2

θ,k+σ2
θ,k)

2σ2
k (tj−tj−1)

− 1
2 ln σ2

0,k −
µ2

θ,k+σ2
θ,k−2µθ,kµ0,k+µ2

0,k
2σ2

0,k

(6)

M-step: Fixed parameter θ, and take the maximum value of Θ. ∂`
(

Θk

∣∣∣Θ̂(i)
k

)
/∂Θk = 0, Θ̂(i+1)

k
can be expressed as follows:

σ̂
2(i+1)
k = 1

k ∑k
j=1

(xj−xj−1)
2−2µθ,k(tj−tj−1)(xj−xj−1)+(tj−tj−1)

2
(µ2

θ,k+σ2
θ,k)

(tj−tj−1)
,

µ̂
(i+1)
0,k = µθ,k, σ̂

2 (i+1)
0,k = σ2

θ,k

(7)

Moreover, the updated results in Equation (7) required only one step to compute the maximum
value, which have been given proof by the literature [17]. One step to solve the maximum value greatly
reduces the computing time and has a strong practical value.

From the results of Equation (7), the main updated parameter of the EM is σ2. The other two
parameters µθ,k, σ2

θ,k are also updated. The initial parameters in the Bayesian estimation are improved
after Bayesian updating in the next step.

2.4. Adding Fading Factor Based on the STF to Enhance Robustness

In this section, we discuss how to adjust parameters in time and guarantee the accuracy of
estimation when the model parameters and real-time data are mismatched.

It can be proved from Equations (4) and (7):

σ2
θ,k−1 = σ2

0 ,

σ2
θ,k =

σ2σ2
θ,k−1

tkσ2
θ,k−1+σ2 = σ2

θ,k−1 ·
σ2

tkσ2
θ,k−1+σ2 < σ2

θ,k−1

(8)

This means that the value of the parameter σ2
θ,k will gradually decrease as the algorithm is

updated. That is, the uncertainty of the real value is decreasing. However, when enough data is
available, Equation (8) can be expressed as:

lim
k→∞

σ2
θ,k = lim

k→∞

σ2

tk +
σ2

σ2
θ,k−1

= lim
k→∞

1
tk
σ2 +

1
σ2

θ,k−1

= 0 (9)
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It is easy to prove that σ2
θ,k will approach to 0 when tk → ∞ . And because σ2

θ,k−1 in the Equation
(9) is also monotonically decreasing, hyper-parameter σ2

θ,k will decay faster. When σ2
θ,k → 0 , it can be

seen that:

lim
σ2

θ,k→0
µθ,k = lim

σ2
θ,k→0

(
µθ,k−1σ2 + xkσ2

θ,k

)
(

tkσ2
θ,k + σ2

) = µθ,k−1 (10)

µθ,k will not change as new data is acquired from Equation (10), that is, the stochastic degradation
parameter θ will not change with the acquisition of new data. Wang et al. [17] directly uses Bayesian
updating and EM algorithm to estimate unknown parameters Θ. When the degraded data is stationary,
it can be well estimated. However, when parameters are convergent, it will not obtain good estimation
results if the newly acquired data is different from the model parameter.

The reason for the parameter no longer being updated is σ2
θ,k → 0 . Considering that the Kalman

filter algorithm is obtained in the Bayesian framework, it has some similarities with the Bayesian
updating. The Kalman filter results in the fact that the K value tends to the minimum, thus that it is no
longer sensitive to the prediction error. The STF solves the problem of mutational degradation data
on the basis of the Kalman filter [24]. It is not practical that σ2

θ,k is rapidly approaching 0, inspired by
reference [24], we added the prediction error Q in each step update to ensure the update capability of
the algorithm, then we added a fading factor to adjust the prediction variance in real time, thus that
σ2

θ,k could be sensitive to the prediction error. The specific calculation steps are as follows:
Step 1: Establish system equation

µθ,k = µθ,k−1 + η , η ∼ N
(

0, σ2
θ,k−1

)
(11)

xk − xk−1 = µθ,k(tk − tk−1) + σkε′(tk),
ε′(tk) ∼ N

(
0, σ2

k (tk − tk−1)
) (12)

Step 2: Set initial parameters µ0, σ0, α, ρ

Step 3: Calculated fading factor v(tk)

γ(tk) = xk − xk−1 − µθ,k(tk − tk−1) (13)

V0(tk) =

{
γ2(t1), k = 1

ρV0(tk−1)+γ2(tk)
1+ρ , k > 1

(14)

B(tk) = V0(tk)− σ2
θ,k(tk − tk−1)

2 − ασ2
k (tk − tk−1) (15)

C(tk) = Pk−1|k−1(tk − tk−1)
2, ν0 =

B(tk)

C(tk)
(16)

ν(tk) =

{
ν0, ν0 ≥ 1
1, ν0 < 1

(17)

Step 4: Status updates
Pk−1|k = ν(tk)Pk−1|k−1 + σ2

θ,k (18)

Kk =
Pk|k−1(tk − tk−1)

(tk − tk−1)
2Pk|k−1 + σ2

k (tk − tk−1)
(19)

Model parameter updating:
µ̂θ,k = µθ,k + Kk · γ(tk) (20)

Estimation variance updating:

Pk|k = (1− Kk · tk)Pk|k−1 (21)
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Usually, the forget factor is set to ρ = 0.95, the softening coefficient is α = 1.1, and the prediction
error is Q = 0.5.

2.5. Estimating Initial Parameters by an Inverse Kalman Filter

Although the algorithm by Wang et al. [17] has self-adaption update capability, even if the initial
parameters are not set correctly, it will approach the accurate value as the new data is acquired.
However, a practical problem is that the initial parameters are difficult to determine without a large
amount of historical information, and it is also unknown where monitoring data starts from the whole
life cycle. A progressively updating algorithm of parameter θ is proposed by Wang et al. [17]. If the
initial parameter is set to be more inconsistent with the actual, such errors will affect the subsequent
estimation process, and its convergence rate will be slow, resulting in that a large amount of monitoring
data is needed to complete the parameter convergence. Even more, the algorithm has not completed
convergence, experimental object has been damaged and the inaccurate life prediction results are
obtained in its life cycle. To this end, this section will discuss an inverse Kalman filter to update
the initial parameters in real time. The initial parameters are updated at the source, thus that the
convergence speed of the estimation is accelerated.

The reason for this application of an inverse Kalman filter is that the drift parameter θ is
unobservable, where the nonlinear form adopted is an unknown problem. Because the degradation is
more stable in the early phase, when the sampling interval is not long, it is reasonable for µθ,k to obey
stochastic Gauss distribution around µθ,k−1 based on large sample statistical theory [25].

At the same time, nonlinear modeling methods (such as exponential models) can be used, and
model parameters can be updated with the Bayesian updating and EM. After model parameters are
determined, the initial parameters will be estimated by an inverse Kalman filter. In this way, the
algorithm will be very complex and computation time will be greatly increased. More importantly,
although the initial phase of degradation is relatively stable, it does not necessarily satisfy the overall
degradation model. For example, the initial degradation process data in this paper does not agree
with the overall degradation trend. That is, the model that conforms to the overall data may not
necessarily satisfy the initial degradation process, it is related to the time point of when the monitoring
begins. Therefore, it is difficult to estimate the exact initial parameters by using the determined
nonlinear model.

It is often the case with actual degradation data: The initial degradation phase is stable, and then
the volatility of data becomes more pronounced until the system fails, such as the data from this paper
and reference [26]. Therefore, it is more and more difficult to update the initial parameters by normal
methods. Initial parameters are difficult to converge, even if the initial parameters are convergent,
they are not the exact values. If the initial parameters are updated via recursively in reverse, it will be
found that degradation data will be smooth gradually, updating the true value of the initial parameters
µθ,k, σ2

θ,k that are expected to be improved, and converge to the exact value.
For the actual operation of the system, the monitoring data corresponding to the current time

tk is xk, and the observation data are X0:k = {x0, x1, x2, . . . , xk}. In order to show the Kalman
updated process is more intuitive, the order of the elements are flipped as X′0:k =

{
x′0, x′1, x′2, . . . , x′k

}
,

where x′0 = xk, x′1 = xk−1, · · · , x′k = x0. T0:k has been rewritten as T′0:k =
{

t′0, t′1, t′2, . . . , t′k
}

by the
same method.

According to the conventional Kalman filter [25,27], all monitoring data of the system is recursively
incorporated into parameter θ by an inverse Kalman filter technology. The specific calculation process
is as follows:

Step 1: Establish system equation
µk = µk−1 + η′ (22)

x′k − x′k−1 =
(
t′k − t′k−1

)
· µk + σεk (23)

where η ∼ N(0, Q), σεk ∼ N
(
0, σ2(t′k − t′k−1

))
, Q is the forecast variance.
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Step 2: Time updating
µ̂−k = µ̂k−1 (24)

Pk|k−1 = Pk−1|k−1 + Q (25)

where µ̂0 = −µ0, P0|0 = σ2
0 .

Step 3: Status updating

Kk =
Pk|k−1 ·

(
t′k − t′k−1

)(
t′k − t′k−1

)2
· Pk|k−1 + σ2

(
t′k − t′k−1

) (26)

µ̂k = µ̂−k + Kk
((

x′k − x′k−1
)
−
(
t′k − t′k−1

)
µ̂−k
)

(27)

Pk|k =
(
1− Kk ·

(
t′k − t′k−1

))
Pk|k−1 (28)

where R is the system error, R = σ2(t′1 − t′0
)
.

Step 4: Update results of the initial parameter

µθ,k = −µ̂k (29)

σ2
θ,k = Pk|k (30)

The parameters of an inverse Kalman filter are set as R = 0.025 Q = 0.50, which can make the
algorithm more dependent on system measurements.

Remark 1. For an inverse Kalman filter, the difference from the conventional Kalman filter [25,27] is that
the order of the elements X0:k are flipped as X′0:k =

{
x′0, x′1, x′2, . . . , x′k

}
,it is accounted for x′0 = xk, x′1 =

xk−1, · · · , x′k = x0, xk is the last monitoring data at the current time tk,x0 is the initial monitoring data at the
current time t0. The flipped data as X′0:k =

{
x′0, x′1, x′2, . . . , x′k

}
guarantees the iteratively updated forward of

the estimation from the last monitoring point when it starts to filter.

Remark 2. The consequence of applied an inverse Kalman filter reveals that it can be obtained by the optimal
estimation µθ,k.

Remark 3. It is obvious that the steps according to an inverse Kalman filter are similar with the conventional
Kalman filter. However, a practical problem is that the initial parameters are difficult to determine without a large
amount of historical information, thus they are indeterminate and often set with errors. If we take advantage
of the conventional Kalman filter to solve the errors belonging to the initial parameters, it will not be sensitive
to them. In contrast, the last parameters are fixed and reliable relatively accounts for a number of historical
information. The advantage of an inverse Kalman filter is that, when we start to filter from the last monitoring
data xk, the accuracy of the filtering is improved for the initial monitoring data especially.

2.6. Expression of Remaining Useful Life

Based on the concept of stochastic process lead time, when the failure threshold ω is reached
for the first time, the system life is considered to be terminated. Based on the observed data X0:k =

{x0, x1, x2, . . . , xk}, the RUL Lk of the system at the moment tk is defined as:

Lk = inf{lk : X(lk + tk) ≥ ω|X0:k } (31)
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After getting the new data and corresponding updated parameters Θ = [σ2, µθ,k, σ2
θ,k], According

to the literature [17], the remaining life of PDF (probability density function) and CDF (cumulative
distribution function) can be obtained respectively:

fLk |X0:k
(lk|X0:k ) =

ω− xk√
2πl3

k

(
σ2

θ,klk + σ2
) exp

− (ω− xk − µθ,klk)
2

2lk
(

σ2
θ,klk + σ2

)
 (32)

FLk |X0:k
(lk|X0:k ) = 1−Φ

(
ω−xk−µθ,k lk√

σ2
θ,k l2

k+σ2lk

)
+ exp

{
2µθ,k(ω−xk)

σ2 +
2σ2

θ,k(ω−xk)
2

σ4

}
×

− 2σ2
θ,k(ω−xk)lk+σ2(µθ,k lk+ω−xk)

σ2
√(

σ2
θ,k l2

k+σ2lk
)

 (33)

Here, the life prediction method under the linear stochastic deterioration model has been
completed. The following steps are concluded to estimate the RUL of the micro-switches, which
belongs to the S826 rail vehicle:

Step 1: A linear degradation model based on a Wiener process is proposed: X(t) = θt + σB(t),
the degradation detection data are described as X0:k = {x0, x1, x2, . . . , xk}.

Step 2: θ is a random parameter and will be updated with the data obtained at the current
moment tk. θ is distributed as θ ∼ N

(
µθ,k, σ2

θ,k

)
, in order to estimate the hyper-parameters µθ,k, σ2

θ,k in
the random parameter θ, the Bayesian posterior estimation is used in this paper. Finally, calculate the
expression of the hyper-parameters µθ,k, σ2

θ,k.
Step 3: Unfortunately, the unknown parameters Θ = [σ2, µ0, σ2

0 ] are not updated by Bayesian
estimation. In order to reflect the updated characteristics of Θ over time, we use the EM algorithm to
estimate Θ through the monitoring data X0:k, and its update results are expressed as Θ̂k = [σ̂2

k , µ̂0,k, σ̂2
0,k].

The main updated parameter of the EM is σ2, other two parameters µθ,k, σ2
θ,k are also updated. Initial

parameters-based Bayesian estimation are improved after Bayesian updating in the next step.
Step 4: When the parameters are convergent, it will not obtain good estimation results if the

newly acquired data is different from the model parameter. The STF method solves the problem of
mutational degradation data on the basis of the Kalman filter. We add prediction error Q in each step
update to ensure the update capability of the algorithm, then we add the fading factor to adjust the
prediction variance in real time, thus that σ2

θ,k can be sensitive to the prediction error.
Step 5: The drift parameter θ is unobservable, and the nonlinear form is adopted to an unknown

problem. The initial parameter is set to be more inconsistent with the actual parameter, and such errors
will affect the subsequent estimation process, and its convergence rate will be slower, resulting in a
large amount of monitoring data being needed to complete the parameter convergence. As considered
above, an inverse Kalman filter is proposed to update the initial parameters in real time, as well as
updating at source, thus that the convergence speed of the estimation is accelerated.

3. Experimental Setup and Tests

In order to verify the effectiveness of our method applied to micro-switches, a test rig should be
designed to record the real-time degradation data.

3.1. The Establishment of the Test Rig

Arcing is the main factor causing the micro-switches to fail [28]. Whenever the switch contacts
are separated, the arc will be generated, and the contact voltage will continue to rise until failure [29].

When it starts to work, there exists two phenomenon in the process. One is increasing in contact
voltage: For micro-switches, the arc generated on the contacts will be as high as 4000 K or more,
making the contact material partially melted and sputtered. In the meanwhile, it generates complex
physical and chemical processes. With the increase of the work cycle, there are thousands of these
repeated effects and superposition, and the contact resistance gradually increases until the conduction
capability is lost. The other is insulation performance reduction: When micro-switches are in operation,
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due to the repeated action of the arc, melting, vaporization, and splashing of the electric shock material,
the metal compound adheres to the surface of the insulating part near the contact. With the increase in
the number of work, the attached crop will grow thicker until it connects with the insulated conductors.
The working period of typical drive controller micro-switch is shown in Figure 2.Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 18 
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Figure 2. The working period of the typical drive controller micro-switch (S826).

Due to the actual working conditions of the micro-switches, some basic physical quantities were
selected. Rated voltage is chosen as 110V direct current (DC), the rated current was chosen as 1A DC,
the time constant was chosen as 15 ms and the operating frequency was chosen as 120r/min [30].

The test rig used in this experiment was identical with the one used by Zhang et.al. [30], designed
to test the life of micro-switches showing in Figure 3.
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Figure 3. The test rig of micro-switches.

3.2. The Collection of Experimental Data

In this experiment, which is similar with the paper [30], 160,800 contact voltage data were collected.
Then the micro-switches were failed, and the resistance remained constant in 5.34 MΩ, which is a
normally open state, thus the micro-switch was determined to fail. The failure threshold was set to
1.80 V. On the basis of not losing the monitoring information, we processed the degradeded data in
order to represent the degradation process of the whole data. The average value of the dynamic contact
voltage drop of each 600 cycles was recorded until the end of life (Figure 4).
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Figure 4. Dynamic contact voltage drop of S826.

From the degraded data, it can be seen that the initial phase of degradation was similar to the
linear stochastic degradation process. However, the last 20 points are growing rapidly.

Results

Our approach in this paper was used to simulate the degradation path of the dynamic contact
voltage drop, as shown in Figure 5. As seen from this approach, whether it is in the initial and final
monitoring phase, our approach fits very well. As considered less previously, for initial parameters,
we used an inverse Kalman filter for the initial data update. It can be seen that an inverse Kalman filter
is still sensitive to the drift parameter θ in the case of less initial parameters. Furthermore, in order to
enhance the robustness in the process of estimation, we added the fading factor based on the STF.

In order to show the superiority of this method, the initial parameters of the model were set as
Θ0 = [2, 0.001, 0.4], and the updated process of the parameter is shown in Figure 6. The results show
that the accumulation of model parameters can converge quickly and can adjust slightly with the
change of the degradation tendency.
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number of similar historical information and the accurate time to start data monitoring is unknown. 
In this paper, we selected a set of relatively inaccurate initial parameters in two methods 0Θ to 
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4. Comparative Studies

In this section, we used the test data of the S826 micro-switches to illustrate the practicability of
this research result, comparing it with the approaches, the Kalman filter instead of an inverse Kalman
filter, and the algorithm of Wang et al. [17] in order to verify the superiority of our method.

For the last 80 sampling points, the method with the Kalman filter instead of an inverse Kalman
filter was similar with our approach, thus Figure 7 compared the updated parameters obtained by
Wang et al. [17] with the method proposed in this paper. For these two approaches, the unknown
parameters were obtained by the combination of the Bayesian updating and the EM algorithm.
The difference is that the fading factor was added in this paper, thus that the drift coefficient was more
sensitive to the change of data. As can be seen from the diagram, the prediction error approaches
zero in the approach by Wang et al. [17], resulting in µ0 being not sensitive to new data, when the
micro-switch is about to fail, the degradation rate was obviously accelerated, and our approach could
be adjusted better.
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The literature [17] requires higher precision of initial parameter selection, and it is difficult to set
an accurate initial parameter in practical applications, because there does not exist a large number
of similar historical information and the accurate time to start data monitoring is unknown. In this
paper, we selected a set of relatively inaccurate initial parameters in two methods Θ0 to verify the
ability of our algorithm about updating the initial parameters. It can be seen from the comparison
chart (Figure 8) that when the parameters are improperly set, the convergence speed of Wang et al. [17]
is slow. Furthermore, the method proposed in this paper has faster convergence speed in the initial
few sampling points than the method with Kalman filter instead of an inverse Kalman filter merely.
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Figure 8. The comparison chart.

Figure 9 reflects the mean square error (MSE) values at different monitoring time points. In the
initial phase, degradation data are less, the fluctuation of the method proposed by Wang et al. [17] is the
largest and with the smallest fluctuation is our method. This means that the remaining life of the PDF
of another two predictive models are sensitive to small changes, and if it is applied for a maintenance
decision, it may result in two different monitoring points, which are completely different to the
maintenance decisions which increases protection and maintenance costs in turn. As a conclusion, our
approach has a higher prediction accuracy. Notice that Figure 9b shows an upward trend of MSE, it is
mainly because when the life is about to terminate, the data have fluctuated greatly, and the error has
been raised slightly.
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Figure 10 illustrates the approach proposed by Wang et al. [17], which compares with the one
proposed by us regarding the estimation RUL at the last four sampling points. PDF becomes gently
sharper and closer to the Z-axis by applying our approach. This means when more data are used to
estimate parameters, the uncertainty of the remaining life is decreasing, which agrees with the facts.
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In conclusion, our approach is more sensitive and adjustable to degradation data of micro-switches
than the one proposed by Zhang et al. [30].

Discussion

The most remarkable result that emerged from the data were our approach with an inverse Kalman
filter that fitted the real degradation path excellently. Our results shared a number of similarities with
findings according to the literature [17,25]. However, different from earlier findings, our approach
dealt better with errors in the initial degradation phase. We put forward another two methods to
compare and demonstrate our view. In addition, we also compared this with Zhang et al. [30] and
got a satisfied result. It is easily seen in the previous study; our approach is the most sensitive to the
actual sampling points. The results we have obtained will provide strong technical support for PHM,
including micro-switches and even other electronic components of the rail vehicles. And it will be a
solid basic study about nonlinear degradation path based on the electronic components in the future.

5. Conclusions

Proper fault prognostic methods of modeling the degradation path of micro-switches are urgent
for the RUL estimation and appropriate period maintenance decision in MEMS devices. This paper
proposes a novel effective method as a linear degradation model based on an inverse Kalman filter
for evaluating the approximately accurate RUL of the micro-switches. Firstly, Bayesian posterior
estimation and EM algorithm were used to estimate the stochastic parameters. Then, an inverse
Kalman filter was delivered to solve the errors of the initial parameters, and the STF method was
proposed on the basis of the Bayesian updating in order to improve the accuracy of estimating the
nonlinear data. Next, the effectiveness of the proposed approach was validated on experimental
data relating to micro-switches of the rail vehicles. Finally, a series of comprehensive and persuasive
comparison experiments proved to illustrate the effectiveness of the method with an inverse Kalman
filter. In future work, the proposed method in this paper may contribute to the analysis of prediction
methods of other MEMS devices. And it is inspired by the extended Kalman filter (EKF), which will
play a positive role in the RUL prediction of nonlinear stochastic processes.
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