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Abstract: In the current study, poly(imide-siloxane) copolymers (PIs) with different siloxane contents
were synthesized and used as a matrix material for PI/Al2O3 composites. The PIs were characterized
via their molecular weight, film quality, and thermal stability. Among the PI films, free-standing
and flexible PI films were selected and used to prepare PI/Al2O3 composite films, with different
Al2O3 loadings. The thermal conductivity, thermal stability, mechanical property, film flexibility,
and morphology of the PI/Al2O3 composite films were investigated for their application as
heat-dissipating material.
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1. Introduction

Recent electronic devices such as smart applications and laptops are becoming smaller and lighter
with developments in the electronics industry [1–3]. To ensure the proper operation of smaller devices,
unwanted heat that is generated in electronic devices must be removed. The dissipation of heat has
attracted increasing attention, and is an important issue that reqiuires resolution [4,5]. Currently,
polymer composite materials containing ceramic powder are widely used as heat dissipation materials
in electronic devices [6,7].

Among the polymer materials, polysiloxane has some advantages and is used as a heat-dissipating
polymer matrix [8–10]. It is composed of a linear Si-O-Si moiety with a bond-angle between 104◦

and 180◦, which introduces flexibility to the polymer [11,12]. In addition, polysiloxane can be used
permanently without any change at 150 ◦C, it is able to withstand 200 ◦C for 1000 h, and 350 ◦C for
shorter periods of time [13,14]. However, some studies on the long-term reliability of silicone rubber
suggest that commercial high-temperature silicones, which are being aged at 250 ◦C could suffer from
severe thermal decomposition [15–17].

Polyimides have widely been used in display, vehicle, aerospace, and microelectronic industries
as high-performance material owing to their good mechanical properties, excellent thermal stability,
flexibility, low dielectric permittivity, and good chemical resistance [4,18–21]. Polyimides are also
good candidates for use as thermal conductive composite materials that can be operated at high
temperatures, due to their high thermal stability [22–27]. By introducing siloxane chain segments to
the polyimide backbone structure, adhesion between the polyimide and inorganic materials can be
improved, including the adhesion of the metal materials and other substrates [28–31]. Previously,
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poly(imide-siloxane) copolymers (PIs) have been studied for applications in aerospace, separation, and
microelectronics [32–35]. On the other hand, alumina (Al2O3) fillers are used as thermally conductive
material embedded in the polymer matrix [36–40]. Alumina is commercially very inexpensive and
often employed to improve the dissipation of polymer materials’ heat properties due to its better
insulating qualities and higher thermal conductivity [40].

In this paper, we first report the preparation method and properties of PI composite films
containing Al2O3 particles, for their application as heat dissipating material. We report the
preparation and properties of PIs with varyingmolar ratio of two diamines (an aromatic diamine
and bis(3-aminopropyl)-terminated polydimethylsiloxane). Furthermore, PI/Al2O3composite films
were prepared by adding various Al2O3contents into the PI matrix. Then the thermal conductivity,
thermal stability, mechanical properties, film flexibility, and morphology of the composite films were
investigated according to the change in Al2O3loadings.

2. Materials and Methods

2.1. Materials

4,4′-(Hexafluoroisopropylidene) diphthalic anhydride (6FDA), 4,4′-methylenedianiline (MDA),
and bis(3-aminopropyl)-terminated polydimethylsiloxane (PDMS) (Mn~2500) were purchased from
Sigma-Aldrich Korea (Seoul, Korea), and were used as received. Tetrahydrofuran (THF) was purchased
from Samchun Chemicals (Seoul, Korea), distilled from N2/benzophenone, and stored under nitrogen
until use. 1-Methyl-2-pyrrolidinone (NMP) was purchased from Duksan Pure Chemical (Seoul, Korea),
distilled in reduced pressure, and kept under nitrogen until use. Polygonal alumina (Al2O3; average
particle size = 4 µm) was purchased from Denka Co. Ltd. (Seoul, Korea) and was dried at 120 ◦C in an
oven for 24 h to remove the adsorbed water before use. Tetrahydrofuran-d8 (THF-d8) was purchased
from Acros Organics BVBA (Geel, Belgium).

2.2. Characterization

Proton nuclear magnetic resonance (1H NMR) spectra of samples dissolved in THF-d8 were
acquired using a Bruker Avance II 400 MHz spectrometer (Bruker Corporation, Billerica, MA, USA).
Gel permeation chromatography (GPC; Waters Corporation, Milford, MA, USA) analysis was carried
out in refractive index mode using a doubly connected Showa Denko Shodex KF-806L column at 100 ◦C
and an eluent of 0.05 mol/L LiBr in NMP at a flow rate of 1.0 mL/min; the results were calibrated
with respect to polystyrene standards. Fourier Transform Infrared (FT-IR) spectroscopy was carried
out using a Spectrum One B FT-IR spectrometer (PerkinElmer, Inc., Waltham, MA, USA) using the KBr
pellet technique with the following scan parameters: scan range 500–4000 cm−1; number of scan 1;
resolution 4 cm−1. Thermal analyses were carried out under a nitrogen atmosphere with a balance flow
rate of 40 mL/min and a furnace flow rate of 60 mL/min using a Discovery TGA 55 (TA instrument,
Inc., New Castle, DE, USA) at a heating rate of 10 ◦C/min. The thickness of the polyimide films was
measured using a 293–348 IP65 digimatic outside micrometer (Mitutoyo Corporation, Kawasaki, Japan).
Thermal conductivities (in-plane) of the composite films were measured using a LFA 467 Nanoflash
(NETZSCH Korea Co., Ltd., Koyang, Korea). A universal testing machine (UTM) (QC-505M1, Daeha
Trading Co., Seoul, Korea) was used to determine tensile properties. A 3-cm gauge and a strain rate
of 2 cm/min were used. Film specimen measurements were performed at room temperature using
0.5 cm wide, 6 cm long, and ca. 0.3 mm thick films. An average of five individual determinations were
used for each sample. Field emission scanning electron microscopy (FE-SEM) was carried out using a
SU-70 (Hitachi, Ltd., Tokyo, Japan), with an acceleration voltage of 30 kV and a working distance in
the range of 10 to 11.6 mm. The samples were sputter-coated with platinum.
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2.3. Preparation of Poly(amic acid-siloxane)s (PAAs)

Scheme 1 shows the general method of copolyimide synthesis. A representative example for the
synthesis of poly(amic acid-siloxane)-4 (PAA-4) (molar feed ratio of 6FDA:MDA:PDMS was 1:0.5:0.5) is
described below. A dried 50-mL flask was charged with MDA (0.002 mol, 0.198 g) and PDMS (0.002 mol,
2.500 g) in THF (14.3 mL) under a nitrogen atmosphere. After 6FDA (0.004 mol, 0.888 g) was added,
the resulting solution was stirred at 0 ◦C for 1 h, and then further stirred at room temperature for 23 h
to yield a clear viscous PAA-4 solution. The other PAA solutions were prepared in a similar fashion
by varying the molar feed ratio of the diamines. As an exception, NMP was used in the synthesis of
PAA-1 with a molar feed ratio of 6FDA:MDA:PDMS of 1:1:0. The PAA solutions was used to prepare
PI films, powders, and composite films (see below).
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Scheme 1. Synthesis of PIs and their composites.

2.4. Preparation of PI Films

The PAA-4 solution obtained above was drop-cast onto slide glasses and the solution was
stepwisely heated (at 50, 100, and 150 ◦C). The solution was allowed to stand at each temperature
for 1 h. The resulting films were finally heated at 250 ◦C for 2 h, and PI-4 films were obtained.
The PI-4 films were cooled to room temperature and put in a water bath for 1 h to allow easy peel off.
The resultant films were dried in a vacuum oven at 100 ◦C for 1 h. The other PI films were prepared in
a similar manner by varying the molar feed ratio of the diamines.

2.5. Preparation of PI Powders

The PAA-4 solution obtained above was poured into distilled water, forming a precipitate that was
collected via filtration. The precipitate was washed with distilled water and then dried in a vacuum
oven, yielding a PAA-4 powder. The PAA-4 was thermally imidized by stepwise heating in a furnace
(50, 100, and 150 ◦C). The powder was kept for 1 h at each temperature and finally heated at 250 ◦C
for 2 h to obtain PI-4 powder. The other PAA and PI powders were prepared in a similar manner by
varying the molar feed ratio of the diamines. The prepared PAA and PI powders were used in FT-IR
spectroscopy and GPC.
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2.6. Preparation of PI Composite Films

Al2O3 powder (30, 60, 75, or 80 wt%) was added to the PAA-4 solution obtained above.
The mixture was ultrasonicated using an ultrasonic device (VCX750, Sonics & Materials, Newtown, CT,
USA), with an output power of 150 W and a frequency of 20 kHz for 1 h to yield a milky suspension.
The suspension was drop-cast onto slide glasses, and then heated in a stepwise manner (at 50, 100,
and 150 ◦C). The suspension was allowed to stand at each temperature for 1 h and finally heated at
250 ◦C for 2 h to obtain PI/Al2O3 composite films (PI-4-30, PI-4-60, PI-4-75, and PI-4-80). The obtained
films were cooled to room temperature and put in a water bath for 1 h to facilitate peeling it off.
The resultant composite films were dried in a vacuum oven at 100 ◦C for 1 h.

3. Results and Discussion

3.1. Preparation of PIs and Their Composite Films

The preparation of poly(imide-siloxane) copolymers (PIs) is illustrated in Scheme 1. The PIs were
synthesized according to a conventional two-step procedure. During typical conventional polyimide
synthesis, aprotic polar solvents such as NMP, dimethylacetamide (DMAc), or dimethylformamide
(DMF) are usually used. However, the siloxane group underwent microphase separation when aprotic
solvents were used during the copolymerization. To overcome this problem, the preparation of PIs
required the use of a co-solvent system or THF [41,42].

In this work, 6FDA, MDA, and PDMS were copolymerized using THF as a solvent (Table 1),
except for PAA-1 which was prepared without the PDMS moiety and used NMP as a solvent. 6FDA
and mixed diamines (MDA and PDMS) were first polymerized to prepare poly(amic acid-siloxane)s
(PAA-1–PAA-7). The diamine molar feed ratio was controlled as summarized in Table 1. The PDMS
content of PAA copolymers was determined by 1H NMR (Table 1 and Figure S1). The mole percent
of PDMS was calculated from the ratio of the integration values of the methyl groups in PDMS and
the methylene groups of MDA. It was found that the determined values agreed well with those
corresponding to PDMS contents in the feeds. The PAA solutions were drop-cast onto slide glasses
and then PAAs were converted to PI-1–PI-7 films by thermal imidization. The PAA and PI powders
were also prepared for characterization via FT-IR spectroscopy and GPC. Table 1 lists the molecular
weights and polydispersity indexes (PDIs) of the PAAs measured by GPC. In addition, PI/Al2O3

composites were prepared by adding various amount of Al2O3 powder to PAA solutions. The resulting
suspensions were drop-cast onto galss slides and subsequent thermal imidization was carried out to
obtain PI/Al2O3 composite films.

Table 1. Molar feed ratios and molecular weights of PAAs.

PAA Code a Molar Feed Ratio
(6FDA:MDA:PDMS)

PDMS Content
(mol%) b

Mn
(×104 g/mol)

Mw
(×104 g/mol)

PDI c

PAA-1 1:1:0 - 1.03 2.32 2.2
PAA-2 1:0.9:0.1 13 10.8 37.8 3.5
PAA-3 1:0.7:0.3 32 10.8 18.1 1.6
PAA-4 1:0.5:0.5 49 3.73 13.2 3.5
PAA-5 1:0.3:0.7 70 21.1 48.8 2.3
PAA-6 1:0.1:0.9 89 16.3 50.9 3.1
PAA-7 1:0:1 - 7.92 25.1 3.2

a PAA: poly(amic acid-siloxane); b Calculated from 1H NMR integrations of PAA copolymers; c Polydispersity
index (Mw/Mn).

3.2. Characterization of PAAs and PIs

The structures of PAAs and PIs were confirmed by FT-IR spectroscopy (Figure 1). FT-IR spectra of
PAA-4 and PI-4 showed absorption bands at 1021 and 1095 cm−1, respectively, due to Si-O-Si stretching
in the structure of PDMS. The absorption band at 1259 cm−1 was also attributed to the symmetric
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deformation of the –CH3 group in –Si(CH3)2-, and the absorption band at 803 cm−1 was assigned to
the Si-C vibration [11,41,43–45]. The FT-IR spectrum of PAA-4 showed bands at 1721 cm−1 (carboxyl)
and 1660 cm−1 (amide) owing to C=O stretching, and at 1545 cm−1 owing to C-N stretching (amide),
suggesting the formation of PAA (Figure 1a) [11,34,46]. PI-4 exhibited absorption bands at 1785 cm−1

owing to imide C=O asymmetric stretching, 1726 cm−1 owing to imide C=O symmetric stretching,
and 1375 cm−1 owing to imide C–N stretching (Figure 1b) [11,34,46–48]. FT-IR spectra of the other
PAAs and PIs are shown in Figures S2–S7.
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Figure 1. FT-IR spectra of (a) PAA-4, and (b) PI-4.

3.3. Properties of PI Films

Thermal stability of PIs was investigated by thermogravimetric analysis (TGA) (Table 2 and
Figure 2). TGA was conducted to study the effects of the molar ratio of diamines on decomposition
temperature (T5 and T10) and char yield of PIs. T5 and T10 values of the PIs ranged from 373 to 505 and
419 to 528◦C, respectively, and the decomposition temperature decreased with increasing PDMS molar
ratio. Nevertheless, PIs’ decomposition temperatures were much higher than those of silicone [17].
The char yield at 800 ◦C of PI-1 without siloxane moiety was the highest (62.4%) and the other char
yields were much lower.

Table 2. Film quality and thermal properties of PIs.

PI Code a Film Quality T5 (◦C) b T10 (◦C) c Char Yield (%) d

PI-1 Brittle 505 528 62.4
PI-2 Brittle 446 473 28.2
PI-3 Flexible 438 454 16.7
PI-4 Flexible 428 443 0.7
PI-5 Flexible 423 441 2.1
PI-6 Sticky 403 426 4.3
PI-7 Sticky 373 419 3.2

a PI-1–PI-7 were prepared from PAA-1–PAA-7, respectively; b The temperature at which a sample exhibits 5 wt%
decomposition in a nitrogen atmosphere; c The temperature at which a sample exhibits 10 wt% decomposition in a
nitrogen atmosphere; d Char yield at 800 ◦C in a nitrogen atmosphere.
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Figure 2. TGA curves of PIs.

Flexible and free-standing PI films (PI-3, PI-4, and PI-5) could be prepared from PAA-3, PAA-4,
and PAA-5, respectively (Table 2 and Figure 3). When the films were bent, twisted, rolled-up,
or wrapped on the 3-mm diameter bar numerous times, their appearance was almost unchanged (no
damage occurred). However, PI-1 and PI-2 films were brittle due to their rigid chemical structures.
On the other hand, PI-6 and PI-7 films were sticky due to the very high PDMS group contents.
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3.4. Properties of PI/Al2O3 Composite Films

Because the PI-3, PI-4, and PI-5 films were free-standing and flexible, they were used to prepare
PI/Al2O3 composite films. Figure 4 shows the thermal conducting properties of neat PI films and
PI/Al2O3 composite films, with different Al2O3 loadings along an in-plane direction (D⊥) at room
temperature (see Tables S1–S3). The films’ thermal diffusivity (α) was determined at room temperature
and under ambient pressure. From the equation K = α × $ × Cp, the thermal conductivity (K) value
can be calculated. In the equation, $ is the measured film density, and Cp is the specific heat capacity of
the film [5,49]. The thermal conductivities of neat PI-3, PI-4, and PI-5 were 0.11, 0.13, and 0.14 W/m·K,
respectively. It is known that thermal conductivities of polyimide and polydimethylsiloxane are 0.11
and 0.25 W/m·K at room temperature, respectively [22]. The incorporation of Al2O3 fillers increased
thermal diffusivity and thermal conductivity of PI/Al2O3 composite films (Figure 4a,b). When the
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Al2O3 loading was 80 wt%, PI-3 and PI-4 composites showed high thermal conductivity values, greater
than 1.3 W/m·K. The thermal diffusivity and conductivity data are quite reproducible as presented in
Tables S1–S3.
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In addition, thermal and mechanical properties of the PI/Al2O3 composite films were studied
(Table 3 and Figures S8 and S9). Among the flexible PI films, PI-3 was selected because it
exhibited the best thermal conducting properties. The T5 and T10 values of the neat PI-3 and
PI-3/Al2O3 composite films ranged from 437 to 454 ◦C and 456 to 474 ◦C, respectively. Generally the
decomposition temperatures of the PI/Al2O3 composite films were higher than those of the neat PI
film. The improvement in thermal stability can be attributed to restrained polymer chain mobility by
Al2O3 particles [17]. Furthermore, it should be noted that the PI/Al2O3 composites showed much
higher thermal stability compared to polysiloxane/Al2O3 composites [17,50]. From the char yield data,
each mass value retained around 800 ◦C and was almost identical to the corresponding Al2O3 content
in each composite.

Table 3. Thermal and mechanical properties of the PI-3/Al2O3 composite films.

PI/Al2O3 Composite Code a T5 (◦C) b T10 (◦C) c Char Yield
(%) d

Tensile Strength
(MPa)

Elongation at Break
(%)

PI-3 438 461 16.7 14.6 ± 2.7 210.4 ± 38.4
PI-3-30 440 456 30.7 7.3 ± 0.2 41.7 ± 2.8
PI-3-60 454 469 61.3 6.5 ± 0.4 10.4 ± 0.6
PI-3-75 450 474 75.2 5.7 ± 0.5 4.8 ± 0.6
PI-3-80 437 471 79.1 5.2 ± 0.5 3.7 ± 0.6

a PI-3, PI-3-30, PI-3-60, PI-3-75, and PI-3-80 films have Al2O3 loadings of 0, 30, 60, 75, and 80 wt%, respectively; b The
temperature at which a sample exhibits 5 wt% decomposition in a nitrogen atmosphere; c The temperature at which
a sample exhibits 10 wt% decomposition in a nitrogen atmosphere; d Char yield at 800 ◦C in a nitrogen atmosphere.

The neat PI-3 film showed a tensile strength of 14.6 ± 2.7 MPa, and a high elongation at a break
of 210.4 ± 38.4%. However, the PI/Al2O3 composite films exhibited decreased tensile strength and
elongation at break, and the mechanical properties decreased with increasing Al2O3 loadings. It is
well known that the incorporation of an inorganic filler to the polymer matrix reduces the polymer’s
flexibility. Furthermore, the polymer’s strength is reduced if there are no binding sites between the
polymer phase and inorganic material phase [51]. Nevertheless, the composite films with up to 75 wt%
Al2O3 are sufficiently flexible, as shown in Figure 5. They may be useful as a flexible heat-radiating
film in flexible electronic devices requiring a high operating temperature. Even though the composite
films with 80 wt% Al2O3 loading are not flexible, they could also be used in high-temperature
electronic devices.
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Scanning electron microscopy (SEM) was carried out to investigate the morphology of the
PI/Al2O3 composite films. Figure 6a shows the SEM image of micro-Al2O3 particles. The particles
are irregularly shaped with 4 µm average size. The neat PI-3 film before Al2O3 addition showed a
very smooth surface (Figure 6b). As shown in Figure 6c, Al2O3 particles were well dispersed in the
PI/Al2O3 composite film and no significant fractures were observed across the film’s surface.
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4. Conclusions

The PIs with different siloxane contents were prepared using 6FDA, MDA, and
PDMS.Free-standing, flexible films of PI-3, PI-4, and PI-5 were obtained, and the PIs were used
to prepare PI/Al2O3composite films. The thermal conductivities of the composite films increased with
increasing Al2O3 content. It was demonstrated that the composite films with up to 75 wt% Al2O3

were both free-standing and flexible. The composite films with 80 wt% Al2O3 loading showed a
relatively good thermal conductivity, higher than 1.3 W/m·K. Besides, PI/Al2O3 composite films
exhibited higher thermal stability compared to conventional polysiloxane/Al2O3 composites. The
PI/Al2O3 composite films could be used as a heat-radiating film in electronic devices requiring high
operating temperatures.
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