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Featured Application: The work of this paper is mainly applied for the inverse kinematics solving
of Da Vinci surgical robot and its similar robotic systems that do not satisfy the Pieper principle.

Abstract: A dialytic-elimination and Newton-iteration based quasi-analytic inverse kinematics
approach is proposed for the 6 degree of freedom (DOF) active slave manipulator in the Da Vinci
surgical robot and other similar systems. First, the transformation matrix-based inverse kinematics
model is derived; then, its high-dimensional nonlinear equations are transformed to a high-order
nonlinear equation with only one unknown variable by using the dialytic elimination with a unitary
matrix. Finally, the quasi-analytic solution is eventually obtained by the Newton iteration method.
Simulations are conducted, and the result show that the proposed quasi-analytic approach has
advantages in terms of accuracy (error < 0.00004 degree (or mm)), solution speed (<20 ms) and is
barely affected by the singularity during intermediate calculations, which proves that the approach
meets the real-time and high-accuracy requirements of master–slave mapping control for the Da
Vinci surgical robots and other similar systems. In addition, the proposed approach can also serve as
a design reference for other types of robotic arms that do not satisfy the Pieper principle.

Keywords: minimally invasive surgery robot; inverse kinematics; dialytic elimination;
Newton iteration

1. Introduction

In recent years, medical robots have increasingly been used as fundamental surgical
instrument/equipment [1], among which the Da Vinci system developed by Intuitive Surgical
Company is the most successful [2]. The Da Vinci robotic system consists of three components: the
surgeon console (master manipulators), the patient trolley (slave manipulators), and the imaging
system [3]. The surgeon manipulates two master handles at the master remote console, which
can acquire high-resolution, binocular, three-dimensional, magnified views of the operative field
as compared with open surgery [4]. However, this kind of master–slave operation mode poses a great
challenge to the real-time and accurate performance of the master–slave mapping control, among
which the inverse kinematics problem is the first obstacle. The Da Vinci system and similar surgical
robot systems satisfy the following two features:

(1) contain mechanical structures to generate Remote Center of Motion [5] (RCM, a fixed point on the
active arm, there are two methods to generate RCM based motion: (a) virtual RCM, (b) physically
constrained RCM [6]), and the structure can be simplified;

(2) do not satisfy the Pieper principle.
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At present, the main methods of robotic inverse kinematics include the analytic method and the
numerical method. The analytic approach uses vector, spinor or Lie algebra to obtain results [7–9],
which can only obtain satisfied solutions in limited robotic configurations that should satisfy the Pieper
principle [10,11], etc. However, to imitate the surgeon operation, the manipulators of most thoracic and
abdominal surgery robots, including the Da Vinci system, contain rotational/translational kinematic
pairs, tilt angle joints, and offset joints at the tip (artificial wrist part) that are designed for additional
flexibility, which is beyond the solution capability of the analytic approach.

One feasible strategy is to simplify the kinematic model to acquire analytical results. For example,
Ai et al. and Podsedkowski et al. [12,13] obtained an approximate solution by separating the position
and orientation of the slave manipulators, the solution deviation of which needs to be manually
eliminated by experienced surgeons via visual inspection. Zhang et al. [14] solved the inverse
kinematics of a 4-DOF surgical robot using the elimination method, and Mezouar et al. [15] used unit
dual quaternions to model the kinematics, however, outcomes of their studies benefited strongly from
the simplicity of the arm configuration. In addition, Fu et al. [16,17] obtained an approximate solution
based on the differential transformation that increases error feedbacks to compensate the cumulative
error, the final precision of which can reach 0.18 mm.

Another way to solve the inverse kinematics problem of the surgical robot that does not satisfy
the Pieper principle is the Jacobian matrix-based numerical method [18]. However, this method
involves a Jacobian matrix, which may lose versatility due to its singularity problem as well as the
low convergence speed of the iterative solutions. To improve the numerical solution performance, a
numerical method based on the position increment of robotic joints was proposed [18]. Specifically, to
make this method suitable for the inverse kinematics analysis of a robotic manipulator with an offset
wrist, Bu et al. [19] used the method of decoupling DOFs based on a cut-off point that is limited by the
manipulator configuration. In addition, modern methods such as the neural network method [20], the
genetic algorithm [21], the electromagnetism-like mechanism [22,23], the hybrid electromagnetism-like
mechanism [24], etc., have been gradually explored for possible solutions of the inverse kinematics
of surgical robots. However, these methods either require a large amount of sample data or suffer
from poor convergence speed; therefore, these methods are not suitable for the rapid development of a
master–slave manipulator in surgical robots.

To address the lack of efficient and accurate inverse kinematics solutions for the Da Vinci system,
we propose a quasi-analytic solution method that involves dialytic elimination and the Newton
iteration method. The dialytic elimination method [25] is used to transform the high-dimensional
equations into a nonlinear equation containing only one unknown variable, which is then solved
by the Newton iteration method. In applying this method to the inverse kinematics solution of
slave manipulator, we show dual superiorities: (a) barely affected by the singularity problem and (b)
maintain rapidity.

The steps of our proposed method as follows:

(1) simplify the structure of RCM, using an equivalent mechanism to take the place of the
RCM mechanism.

(2) establish the coordinate system, this step can be realized by the D–H (Denavit–Hartenberg)
method or combine the characteristics of the structure to make sure there are more origins of the
coordinate system can be set up at the same point.

(3) obtain the mathematical model of forward and inverse kinematics via the matrix transformation
method. Then, transform the high-dimensional equations into a nonlinear equation containing
only one unknown parameter using the dialytic elimination method, and solve it by the Newton
iteration method.

The rest of this paper is organized as follows: Section 2 presented the kinematics analysis of the
Da Vinci system; Section 3 solves the inverse kinematics by the Newton iteration method; Section 4



Appl. Sci. 2019, 9, 546 3 of 17

analyzes our solution and compared it with other methods via a simulation; Section 5 concludes
the paper.

2. Kinematics Analysis

2.1. Forward Kinematics Analysis

During surgery using the Da Vinci medical robot, dual articulated arms (slave manipulators)
work as the right and left hand of the surgeon, respectively. The coordinate frame of the master/slave
manipulator is set the same as the coordinate frame of human sight, i.e., the world coordinate frame.
Therefore, in Figure 1, the origin of the base coordinate frame of the slave manipulator is located at the
bottom of the robot frame. The Z0-axis is upward, along the robot frame.
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Figure 1. Structure schematic of the Da Vinci patient trolley. (a) Composition of the patient trolley,
including four arms (first arm, second arm, third arm and fourth arm) and a frame. (b) Structure
schematic of the first arm (slave manipulator), including the passive arm (dashed rectangle area)
and active arm (dashed ellipse area), and point H, which is the RCM. (c) Equivalent diagram of the
parallelogram mechanism (yellow part).

Before surgery, the angles of passive joints M, N, and P and the position of the M joint on the
frame are adjusted manually and then remain fixed during surgery. The joints that mainly assist the
surgeon are the active joints of the slave manipulator: Q, E, G, K, H, I, and J in Figure 1b.

The DOFs of the slave manipulator includes four DOFs: l0, θ1, θ2 and θ3. The parts 6, 7, and 8
in the active arm belong to the parallelogram mechanism (i.e., these three parts cannot move freely
but under the motion constraint of the parallelogram mechanism in Figure 1c. Then only parts 4, 5,
8 and 9 can move freely in the slave manipulator, i.e., part 5 rotates around part 4, there is rotation
between part 6 and part 5, and there is rotation between part 9 and part 8. Therefore, the entire slave
manipulator will have 6 DOFs when the additional 3 DOFs of the H joint are considered.

2.2. Mathematical Model of Forward Kinematics

According to the previous analysis, an active arm coordinate system is established in Figure 2.
The origin of the base coordinate x0y0z0 (0-coordinate frame) of the active arm is established at the
joint Q between the passive and active arms, the direction of which is the same as that of the frame
coordinate X0Y0Z0.
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frame fixed on part 10; 6-coordinate frame fixed on part 11. 
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where ijT means transform matrix from the i-coordinate frame to the j-coordinate frame; { }x, { }y and { 
}z represent the rotation angle around the x-axis, y-axis and z-axis, respectively; { }x, { }y and { }z denotes 
the translational movement along the x-axis, y-axis and z-axis, respectively. 

Then, the pose matrix of the active arm at the endpoint of the slave manipulator can be obtained 
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where R and P are the orientation and position of the slave manipulator endpoint, respectively. 
Substituting Equation (1) into Equation (2) yields Equation (3): 
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Figure 2. Structure diagram of the active arm of the slave manipulator. To more clearly, we draw H
and I as H, H1, H2 and I1, I2, I3 respectively. 1-coordinate frame fixed on part 5; 2-coordinate frame
fixed on part 8; 3-coordinate frame fixed on part 9; 4-coordinate frame fixed on part 9; 5-coordinate
frame fixed on part 10; 6-coordinate frame fixed on part 11.

Figure 2 shows the six DOFs of the active arm in the slave manipulator, namely five rotating joints:
q1, q2, q4, q5, q6, and a translational joint: q3.

Six transform matrixes frame from x1y1z1 (1-coordinate frame) to x6y6z6 (6-coordinate frame) can
be obtained as follows: 

T = {−(π − α)}x{q1}z
{

lQH
}z

1
2T =

{
−
(

β− π
2
)}

x

{
π
2
}

y{q2}z
2
3T = {q3}

y

3
4T =

{
−π

2
}

x{q4}z
4
5T =

{
π
2
}

x{q5}z
5
6T =

{
lI J
}y{π

2
}

y{q6}z

, (1)

where i
jT means transform matrix from the i-coordinate frame to the j-coordinate frame; { }x, { }y and

{ }z represent the rotation angle around the x-axis, y-axis and z-axis, respectively; { }x, { }y and { }z

denotes the translational movement along the x-axis, y-axis and z-axis, respectively.
Then, the pose matrix of the active arm at the endpoint of the slave manipulator can be obtained

as follows:

0
6T = 0

1T1
2T2

3T3
4T4

5T5
6T =


nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

 =

[
R P
0 1

]
, (2)

where R and P are the orientation and position of the slave manipulator endpoint, respectively.
Substituting Equation (1) into Equation (2) yields Equation (3):

0
6T = {−(π − α)}x{q1}z

{
lQH

}z{−(β− π
2
)}

x

{
π
2
}

y{q2}z{q3}
y{−π

2
}

x{q4}z
{

π
2
}

x{q5}z
{

lI J
}y{π

2
}

y{q6}z. (3)
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2.3. Mathematical Model of Inverse Kinematics

In the case of inverse kinematics, the known pose matrix is 0
6T in Equation (3), and the unknowns

are q1, q2, q3, q4, q5 and q6.

Left-multiplying the matrices T = {q3}
y−1
{q2}

−1
z
{

π
2
}−1

y

{
−
(

β− π
2
)}−1

x

{
lQH

}z−1
{q1}

−1
z {−(π − α)}−1

x
on both sides of Equation (3) yields Equation (4):

T0
6T =

{
−π

2

}
x
{q4}z

{π

2

}
x
{q5}z

{
lI J
}y
{π

2

}
y
{q6}z. (4)

To simplify the complexity of the formula, we construct a unitary matrix [26] U as follows. After
introducing the matrix U, the variables in the 0

6T can be replaced by the Euler formula.

U =


1√
2

i − 1√
2

i 0 0
1√
2

1√
2

0 0

0 0 1 0
0 0 0 1

 (5)

In addition, we know that E = U−1U. Left-multiply the inverse of unitary matrix U−1 and
right-multiply the matrix U on both sides of Equation (4). Then, multiply the E matrix between these
two matrices to transform Equation (4) into the following:

Y3X2C1X1C2C3 = C4X4C5X5C6X6. (6)

Here, C1 = U−1[{lQH}z{π/2 − β}z]−1U, C2 = U−1[{α − π}x]−1U, C3 = U−10
6TU, C4 =

U−1{−π/2}zU, C5 = U−1{π/2}zU, and C6 = U−1{lIJ}y{π/2}yU. Clearly, C1, C2, C3, C4, C5 and C6

are constant matrices or parameter matrices related to the structure of the robot. In addition, Xj (j = 1,
2, 4, 5, 6) is as follows:

Xj =

{
T−1

Xj j= 1, 2
TXj j= 4, 5, 6

, (7)

where TXj (j = 1, 2, 4, 5, 6) represents the results of the transform matrix of qj rotating around the z-axis,
which undergoes the left-multiplication of U−1 and right-multiplication of U. Let xj = cos(qj) + isin(qj),
xj
−1 = cos(qj) − isin(qj); thus, TXj can be expressed as follows:

TXj = U−1{qi}zU =


xj 0 0 0
0 x−1

j 0 0
0 0 1 0
0 0 0 1

. (8)

Let Y j represents the result of the transform matrix qj along the y-axis, which undergoes the
left-multiplication of U−1 and right-multiplication of U, and xj = qj; then, Y j can be expressed as follows:

Yj = U−1{qi}
yU =


1 0 0 −

√
2

2 xj

0 1 0 −
√

2
2 xj

0 0 1 0
0 0 0 1

. (9)

Take A = Y3X2C1X1C2C3, B = C4X4C5X5C6X6. Then the dimensions of matrix A and matrix B
are both 4 × 4. Each element in matrix A is a function containing x1, x2, and x3, while the elements in
matrix B are functions containing x4, x5, and x6. In addition, corresponding elements in matrix A and
matrix B are equal, i.e., Aij = Bij. The specific contents of the elements are detailed in Appendix A.
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To realize element elimination, we evaluated elements in matrix A and B that do not contain x6

and x6
−1: B13, B14, B23, B24, B33 and B34 to establish Equation (10):

A13 = B13

A14 = B14

A23 = B23

A24 = B24

A33 = B33

A34 = B34


. (10)

To further eliminate x4 and x5, the linear combination of x4 and x5, and their reciprocals are treated
as new variables, i.e., X = [x4x5, x4x5

−1, x4
−1x5, x4

−1x5
−1, x4

−1, x5
−1, x4, x5, x4

0x5
0]T, which contains

nine variables. Because there are only six equations in Equation (10), three more equations are required,
which are attainable by conducting nonlinear computations on the elements in Equation (10), as shown
in Equation (11).

AL1 = −A34A23 + A24A33 = −B34B23 + B24B33 = BL1

AL2 = −A24A13 + A14A23 = −B24B13 + B14B23 = BL2

AL3 = −A13A34 + A14A33 = −B13B34 + B14B33 = BL3

 (11)

Then, by combining Equations (10) and (11):

[D(x1, x2, x3)]9×9X = 0. (12)

The matrix [D(x1, x2, x3)]9×9 contains only the variables x1, x2, and x3 since X is nonzero. The
condition that Equation (12) has a solution is that the determinant of [D(x1, x2, x3)]9×9 equals zero. The
following equation, which contains x1, x2, and x3, can be obtained provided that |D(x1, x2, x3)| = 0:(

C′1x1 + C′2 + C′3x−1
1

)
x2 = −

(
C′4x1 + C′5 + C′6x−1

1

)
x−1

2 , (13)

where C’j is a constant related to the robot’s parameters. Considering that x1, x2, x4, x5, and x6 can be
defined as xj = cos(qj) + isin(qj) and xj

−1 = cos(qj) − isin(qj), then x1, x2, x4, x5, and x6 are all non-zero.
Therefore, x2 can be expressed by x1 according to Equation (13):

x2
2 =
−
(

X′1x1 + C′2 + C′3x−1
1

)
[(

C′4x1 + C′5 + C′6x−1
1

)] = f1(x1). (14)

To represent x3 by x1 and x2, we construct the equations AL4 = A23A14 + A13A24 + A33A34 and BL4

= B23B14 + B13B24 + B33B34. Let AL4 = BL4, then(
C′7x1 + C′9 + C′12x−1

1

)
x3x2 +

(
C′8x1 + C′11 + C′13x−1

1

)
x3x−1

2 + C′10 = 0. (15)

Equation (15) contains only three variables, x1, x2, and x3, therefore, x3 can be expressed by x1

and x2 as:
x3 = f2(x1, x2). (16)

Because both AL2 and AL3 are functions of x1, x2 and x3, by combining AL2 = BL2 with AL3 = BL3,
the following can be obtained: [

x4

x−1
4

]
=

 − i
lI J
−
√

2i
lI J

− i
lI J

√
2i

lI J

[ AL2

AL3

]
. (17)
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Therefore,

x4 = − i
lI J

AL2 −
√

2i
lI J

AL3 = f3(x1, x2, x3). (18)

Similarly, by combining A13 = B13 and A14 = B14 with Equation (16), the following can be obtained:

[
x5

x−1
5

]
=

 −
√

2
(AL2i−lI J)

−
√

2ilI J

(AL2i−lI J)

−
√

2i
(AL2−lI J i)

−
√

2lI J

(AL2−lI J i)

[ A14

A13

]
. (19)

Therefore, x5 can be represented by x1, x2, and x3:

x5 = −
√

2A14(
AL2i− lI J

) − √
2ilI JA13(

AL2i− lI J
) = f4(x1, x2, x3). (20)

Combined with Equations (16) to (20) and A11 = B11, x6 can finally be represented by x1:

x6 =
(b1i + b2)x1x−1

2 + (b3i + b4)x−1
2 + (b5i + b6)x−1

1 x−1
2

1
8 x5x4 +

i
4 x4 − 1

8 x−1
5 x4 +

1
4 x5 +

1
4 x−1

5 + 1
8 x5x−1

4 −
i
4 x−1

4 −
1
8 x−1

5 x−1
4

= f5(x1), (21)

where bj is a constant related to the robot’s parameters.
From Equations (16) to (21), the variables x2, x3, x4, x5, and x6 can be represented with the variable

x1. Let A24 and B24 be equal, then:
F(x1) = A24 − B24 = 0. (22)

By solving Equation (22), x1 can be solved, then x2, x3, x4, x5, and x6 can be subsequently solved
by Equation (16) to (21). Specifically, we know from Equation (14) that x2 = ±

√
f1(x1), therefore, F(x1)

will have two expressions:

F(ξ1) =

{
F1(x1)x2 =

√
f1(x1)

F2(x1)x2 = −
√

f1(x1)
. (23)

Equation (23) will be electively solved according to the minimum norm of the distance the
joint moved.

3. Inverse Kinematics Solution

From the derivation of the forward and inverse kinematics of the Da Vinci slave manipulator, it is
known that the key to solving inverse kinematics is to solve the nonlinear Equation (22).

3.1. Inverse Kinematics Solution Method

The Newton–Raphson method is an efficient numerical iterative approach to solve nonlinear
equations in real and complex domains. In this paper, we construct the following iterative formula:

xn+1 = xn −
F(xn)

F′(xn)
. (24)

3.2. Initial Value of the Inverse Kinematics Solution

The motion ranges of each joint in the Da Vinci slave manipulator are as follows: θ1 from −90◦

to 90◦, θ2 from −135◦ to 0◦, lIH from 0 to 315 mm, θ3 from −180◦ to 180◦, θ4 from −90◦ to 90◦, and θ5

from −90◦ to 90◦. In the previously defined x1 = cos(q1) + isin(q1), q1 is the rotation angle of the first
joint with a range of [−π/2, π/2]. A finite number of values are obtained by extracting values within
these available ranges at a certain angle interval (our subsequent calculation results show that a less
than 5

◦
angle interval is acceptable) to solve the forward kinematics, the results of which are stored

as the initial value database for the inverse kinematics solution. By selecting the data from the initial
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value database that is the least squares approximate to the required inverse kinematics as the initial
values, the Newton iteration method will successfully converge.

3.3. Inverse Kinematics Solution Process

According to the inverse kinematics of the Da Vinci slave manipulator and the derived solution
process, a detailed solution flow chart is constructed in Figure 3.Appl. Sci. 2019, 9, 546 9 of 19 
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Figure 3. Inverse kinematics solution process of the Da Vinci slave manipulator.
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In Figure 3, Tend is the pose matrix at the endpoint of the robot (i.e., 0
6T), ε is the precision of the

solution, θ0 is the initial value, h is the initial step value, and X_s represents the values of each joint at
previous positions. The value k is used to determine whether both forms of F(x1) have been solved.

4. Example Analysis and Discussion

4.1. Parameters of the Da Vinci Slave Manipulator

According to Figure 4, the size parameters of the Da Vinci slave manipulator are shown in Table 1.

Appl. Sci. 2019, 9, 546 10 of 19 

4. Example Analysis and Discussion 

4.1. Parameters of the Da Vinci Slave Manipulator 

According to Figure 4, the size parameters of the Da Vinci slave manipulator are shown in Table 1. 

 
Figure 4. Range of motion of the slave manipulator. 

Table 1. Structure parameters of the Da Vinci slave manipulator. 

β1 (°) β2 (°) lQH (mm) β3 (°) α (°) lIJ (mm) 
30.45 7 784.29 0 20 10 

4.2. Solution of Proposed Method 

As shown in Table 2 (the form is referenced by the book: An Introduction to Error Analysis [27]), 
the input values are a set of arbitrarily selected joint parameters within the effective range of joint 
space. The outputs in Table 2 are the calculated values by our proposed method. h represents the step 
size of the solution, and the error is calculated as follows: 

– Output ε  Input . (25)

In this paper, the solution precision of the Newton‒Raphson method is 1E–10 ε = 1E-7 for Tend, 
θ0 takes the minimum value of −90° within the feasible region, and the initial step size is h0 = 20°. The 
test carried on CodeBlocks 16.01 based on the hardware that a PC platform running with an Intel (R) 
Core (TM) i5-4460 CPU, clocked at 3.2 GHz (memory: 4 GB). 

Table 2. Inverse kinematics solution of the Da Vinci slave manipulator. 

 Step (°) 
 
Joint 

Output 

h = 20 
Error Input 

 Step (°) 
 
Joint 

Output 

h = 20 
Error Input 

θ1 (°) 10.00000000000004 

0.00000

0000000

04 

10 θ1 (°) 15.39999999999996 
0.0000000

0000003 
15.4 

θ2 (°) ‒124.999999995 
0.00000

0005 
‒125 θ2 (°) ‒116.499999995 

0.0000000

05 
‒116.5 

lIH (mm) 100.0000000000001 

0.00000

0000000

1 

100 lIH (mm) 101.3000000000001 
0.0000000

000001 
101.3 

θ3 (°) 99.999999995 
0.00000

0005 
100 θ3 (°) 86.3999999999996 

0.0000000

000004 
86.4 
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Table 1. Structure parameters of the Da Vinci slave manipulator.

β1 (◦) β2 (◦) lQH (mm) β3 (◦) α (◦) lIJ (mm)

30.45 7 784.29 0 20 10

4.2. Solution of Proposed Method

As shown in Table 2 (the form is referenced by the book: An Introduction to Error Analysis [27]),
the input values are a set of arbitrarily selected joint parameters within the effective range of joint
space. The outputs in Table 2 are the calculated values by our proposed method. h represents the step
size of the solution, and the error is calculated as follows:

ε = |Output− Input|. (25)

In this paper, the solution precision of the Newton–Raphson method is 1E–10 ε = 1E-7 for Tend, θ0

takes the minimum value of −90◦ within the feasible region, and the initial step size is h0 = 20◦. The
test carried on CodeBlocks 16.01 based on the hardware that a PC platform running with an Intel (R)
Core (TM) i5-4460 CPU, clocked at 3.2 GHz (memory: 4 GB).

We also use the same input to run the procedure on the “R12CCPU-V” MELSEC iQ-R series C
language controller from Mitsubishi Electric and VxWorks 6.9 operating system, the results are list in
Table 3.
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Table 2. Inverse kinematics solution of the Da Vinci slave manipulator.

Joint
Step (◦) Output

h = 20
Error Input

Joint
Step (◦) Output

h = 20
Error Input

θ1 (◦) 10.00000000000004 0.00000000000004 10 θ1 (◦) 15.39999999999996 0.00000000000003 15.4
θ2 (◦) −124.999999995 0.000000005 −125 θ2 (◦) −116.499999995 0.000000005 −116.5

lIH (mm) 100.0000000000001 0.0000000000001 100 lIH (mm) 101.3000000000001 0.0000000000001 101.3
θ3 (◦) 99.999999995 0.000000005 100 θ3 (◦) 86.3999999999996 0.0000000000004 86.4
θ4 (◦) −14.0000000000008 0.0000000000008 −14 θ4 (◦) 13.6999999999998 0.0000000000002 13.7
θ5 (◦) 18.000000002 0.000000002 18 θ5 (◦) −15.899999996 0.000000004 −15.9
t (s) 0.421 t (s) 0.406

Joint
Step (◦) Output

h = 10
Error Input

Joint
Step (◦) Output

h = 20
Error Input

θ1 (◦) −50.240000000000009 0.000000000000009 −50.24 θ1 (◦) 48.3689999999998 0.0000000000002 48.369
θ2 (◦) −60.759999999999998 0.000000000000002 −60.76 θ2 (◦) −80.59700000000002 0.00000000000002 −80.597

lIH (mm) 126.94000000000001 0.00000000000001 126.94 lIH (mm) 125.4680000000002 0.0000000000002 125.468
θ3 (◦) 101.379999995 0.000000005 101.38 θ3 (◦) −80.593999999998 0.000000000002 −80.594
θ4 (◦) −15.9400000000002 0.0000000000002 −15.94 θ4 (◦) −68.5920000000003 0.0000000000003 −68.592
θ5 (◦) 24.78999999 0.00000001 24.79 θ5 (◦) 15.237999998966513 15.238
t (s) 0.484 t (s) 0.390

Joint
Step (◦) Output

h = 20
Error Input

Joint
Step (◦) Output

h = 20
Error Input

θ1 (◦) −56.54835000000004 0.00000000000004 −56.54835 θ1 (◦) 43.36587495200008 0.00000000000008 43.365874952
θ2 (◦) −53.89575999999999 0.00000000000001 −53.89576 θ2 (◦) −125.687459795 0.000000005 −125.6874598

lIH (mm) 168.85324 0.00004 168.8532 lIH (mm) 136.8452159699998 0.0000000000002 136.84521597
θ3 (◦) −96.358469995 0.000000005 −96.35847 θ3 (◦) 75.312548960004 0.000000000004 75.31254896
θ4 (◦) −50.268430000001 0.000000000001 −50.26843 θ4 (◦) 25.984572680002 0.000000000002 25.98457268
θ5 (◦) 50.468509999 0.000000001 50.46851 θ5 (◦) −42.58794151 0.00000001 −42.587941523
t (s) 0.437 t (s) 0.437
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Table 3. Inverse kinematics solution of the Da Vinci slave manipulator (based on better hardware and software).

Joint
Step (◦) Output

h = 20
Error Input

Joint
Step (◦) Output

h = 20
Error Input

θ1 (◦) 9.999999999999998 0.000000000000002 10 θ1 (◦) 15.39999999999995 0.00000000000005 15.4
θ2 (◦) −124.999999995 0.000000005 −125 θ2 (◦) −116.499999995 0.000000005 −116.5

lIH (mm) 99.9999999999999 0.0000000000001 100 lIH (mm) 101.3000000000002 0.0000000000002 101.3
θ3 (◦) 99.999999995 0.000000005 100 θ3 (◦) 86.3999999999998 0.0000000000002 86.4
θ4 (◦) −13.9999999999995 0.0000000000005 −14 θ4 (◦) 13.69999999999991 0.00000000000009 13.7
θ5 (◦) 18.000000002 0.000000002 18 θ5 (◦) −15.899999996 0.000000004 −15.9
t (s) 0.016 t (s) 0.016

Joint
Step (◦) Output

h = 20
Error Input

Joint
Step (◦) Output

h = 20
Error Input

θ1 (◦) −50.240000000000002 0.000000000000002 −50.24 θ1 (◦) 48.3689999999998 0.0000000000002 48.369
θ2 (◦) −60.759999999999998 0.000000000000002 −60.76 θ2 (◦) −80.59699999999998 0.00000000000002 −80.597

lIH (mm) 126.9400000000001 0.0000000000001 126.94 lIH (mm) 125.4680000000002 0.0000000000002 125.468
θ3 (◦) 101.379999995 0.000000005 101.38 θ3 (◦) −80.593999999998 0.0000000000002 −80.594
θ4 (◦) −15.9400000000008 0.0000000000008 −15.94 θ4 (◦) −68.5920000000003 0.0000000000003 −68.592
θ5 (◦) 24.78999999 0.00000001 24.79 θ5 (◦) 15.237999999 0.000000001 15.238
t (s) 0.016 t (s) 0.016

Joint
Step (◦) Output

h = 20
Error Input

Joint
Step (◦) Output

h = 20
Error Input

θ1 (◦) −56.54835000000004 0.00000000000004 −56.54835 θ1 (◦) 43.36587495200008 0.00000000000008 43.365874952
θ2 (◦) −53.89575999999999 0.00000000000001 −53.89576 θ2 (◦) −125.687459795 0.000000005 −125.6874598

lIH (mm) 168.85320000000007 0.00000000000007 168.8532 lIH (mm) 136.8452159699999 0.0000000000001 136.84521597
θ3 (◦) −96.358469995 0.000000005 −96.35847 θ3 (◦) 75.3125489599998 0.0000000000002 75.31254896
θ4 (◦) −50.268430000001 0.000000000001 −50.26843 θ4 (◦) 25.9845726799996 0.0000000000004 25.98457268
θ5 (◦) 50.468509999 0.000000001 50.46851 θ5 (◦) −42.58794151 0.00000001 −42.587941523
t (s) 0.016 t (s) 0.016
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In order to verify the proposed method, we build a simulation model in Adams. Firstly, we gave
a random movement for the simulation model, then we obtained the matrix of the end pose from the
simulation result (Figure 5a), which included the position and the orientation. Secondly, the matrixes
were imported to the algorithm we proposed as input. Thirdly, we used our solution to drive the robot
model. In the final results, depicted in Figure 5b, we see that the curve obtained by our algorithm is
very close to the target curve. This means the proposed method is of high accuracy.
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4.3. Discussion of the Solution

As noted in the previous section, the main focus of the solution includes the solution accuracy,
real-time performance (solution speed) and the singularity problem (based on the joint position
solution or not).
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(1) Solution accuracy
Table 2 shows that for any input joint parameter, whether an integer or a decimal value accurate

to nine decimal places, the error between the calculated values (output) and the given values (input) of
six joint parameters of the slave manipulator is within 0.00004 degree (or mm), which demonstrates
that the proposed approach for the Da Vinci surgical robot inverse kinematics is capable of finding
effective solutions with high accuracy.

(2) Solution speed
The number of calculation steps of the algorithm/program is one of the influential factors that

affect the solution speed. As schematically shown in Figure 3, the number of steps of the inverse
kinematics approach proposed in this paper depends mainly on two factors:

1© The number of Newton iterations in the best-case scenario, the numerical solution can be
obtained by one iteration when the initial value is perfectly selected. In general, if the given initial
value ensures convergence, then the solution of F(x1) = 0 is expected to take approximate 20 iterations;
in cases where the convergence fails, the program is designed to iterate at most 50 times and then exit
to avoid a dead loop.

2© The step size. when the step size h is large, the iteration times are reduced, thereby shorten
the calculation time. However, the selection of initial values will be relatively imprecise, resulting in
higher possibility of solution failure due to unreasonable initial values. In cases where the step size is
small, the initial values tend to be more precise, resulting in a greater possibility of obtaining a solution.
However, the resulting shortcoming is the demand for more calculation steps and longer time.

An improved calculation process is proposed by taking both factors into account: first, start the
procedure by following the flow chart shown in Figure 3 with a relatively large step size; second,
reduce the step size gradually for more precise initial values if the equation has no solution. This
approach boosts the speed of calculation but also reduces the possibility of solution failure.

(3) Singularity influences
Our method abandons the use of Jacobian matrix inversion. Therefore, there will be barely no

singular solution in the condition of a good initial value from a mathematical perspective. On the other
hand, because our algorithm is based on the position increment of the manipulator’s joints, Then, the
motion joint position trajectory is generated by interpolation based on the initial joint position and the
end joint position. The joint position interpolation is not affected by the singularity.

4.4. Comparison with Other Methods

Table 4 compared our method with another two typical methods in applicability, complexity of
calculation, solution precision, solution speed and singularity influences.

Table 4. Comparison between the proposed method and others.

Method Applicability Complexity of
Calculation

Solution
Precision

Solution
Speed

Singularity
Influences

separates the position
and orientation [10,11]

especially for the
structure satisfied
Pieper principle

low high quick need to consider about

method based on the
Jacobian matrix [16,28] all high middle not quick need to consider about

The proposed method
especially for the

structure not satisfied
Pieper principle

middle high quick barely considering
about

Particularly, we choose separates the position and orientation method (name as “separate P&R
method” below) to applied on the Da Vinci slave manipulator, and the comparison with the proposed
method within the same simulation model is shown in Figure 6. The position curve of “separate P&R
method” is following the target with some fluctuation, while the orientation result is far away from the
correct solution, which means that the Separate P&R method is not suitable for the slave manipulator
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that dissatisfied the Pieper principle. Even though increasing the error feedback to compensate for the
results may increase the solution precision, the compensation operation will take a large amount of
time, which proves the superiority of our proposed method in terms of solution precision and speed.
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5. Conclusions

(1) In this paper, an inverse kinematics mathematical model of the 6-DOF active arm of the Da
Vinci surgical robot established by using a coordinate transformation matrix method according to
its mechanical motion diagram and working characteristics. By introducing a unitary matrix, the
mathematical model on the real plane is transformed to a complex plane, consequently avoiding the
relatively complex trigonometric calculations associated with the conventional solution procedure.
Following the steps proposed, this approach can apply to other similar robot kinematic problems.

(2) The dialytic elimination method serves to individually eliminate the joint variables and
ultimately obtains a high-order nonlinear equation with only one unknown variable of the first joint.
Subsequently, the Newton iteration method is introduced to solve the nonlinear equation on the basis
of selecting multiple initial values reasonably in the feasible region. The test shows that carefully
changing the step size and selecting initial values in the feasible region for the iteration solution of the
nonlinear equation will significantly reduce the possibility of solution failure.
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(3) In theory, the accuracy of the approach can reach an error of < 0.00004 degree (or mm) and
achieve a solution time of 0.5 s (Intel (R) Core i5-4460 CPU, clocked at 3.2 GHz (memory: 4 GB)).
Running the procedure on better hardware and software (based on the “R12CCPU-V” MELSEC iQ-R
series C language controller from Mitsubishi Electric and VxWorks 6.9 operating system) decreases the
solution time to 20 ms, which fully satisfies the real-time performance requirement of surgical robots.

(4) A method that combines dialytic elimination and the Newton iteration method is applied to
solve the inverse kinematics problem of the slave manipulators of the master–slave surgical robot. The
proposed approach achieves higher accuracy than other solutions based on position and orientation
separation while the real-time performance is satisfied. Moreover, in contrast to other numerical
solutions, the solution method is based on the position of the joint and is therefore barely not affected
by any singularity. Further, the application of our approach removes the restriction of the design of the
master manipulator configuration.
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5 x4 − i
√

2
4 x5 +

i
√

2
4 x−1

5 + i
√

2
8 x5x−1

4 + i
√

2
8 x−1

5 x−1
4 ;

B24 =
(
−
√

2
8 x5x4 +

√
2

8 x−1
5 x4 +

√
2

4 x5 +
√

2
4 x−1

5 −
√

2
8 x5x−1

4 +
√

2
8 x−1

5 x−1
4

)
lI J ;

B31 = −
√

2
8 x6x5x4 − i

√
2

4 x6x4 +
√

2
8 x6x−1

5 x4 +
√

2
8 x6x5x−1

4 −
i
√

2
4 x6x−1

4 −
√

2
8 x6x−1

5 x−1
4 ;

B32 = −
√

2
8 x−1

6 x5x4 +
i
√

2
4 x−1

6 x4 +
√

2
8 x−1

6 x−1
5 x4 +

√
2

8 x−1
6 x5x−1

4 + i
√

2
4 x−1

6 x−1
4 −

√
2

8 x−1
6 x−1

5 x−1
4 ;

B33 = i
4 x5x4 +

i
4 x−1

5 x4 − i
4 x5x−1

4 −
i
4 x−1

5 x−1
4 ;
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B34 =
(
− 1

4 x5x4 +
1
4 x−1

5 x4 +
1
4 x5x−1

4 −
1
4 x−1

5 x−1
4

)
lI J ,

where ci is a function related to the structural parameters of the robot, which is known and can be
regarded as a constant.
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