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Abstract: Recently, as renewable and distributed power sources boost, many such resources are
integrated into the smart grid as a clean energy input. However, since the generation of renewable
energy is intermittent and unstable, the smart grid needs to regulate the load to maintain stability
after integrating the renewable energy source. At the same time, with the development of cloud
computing, large-scale datacenters are becoming potentially controllable loads for the smart grid due
to their high energy consumption. In this paper, we propose an appropriate approach to dynamically
adjust the datacenter load to balance the unstable renewable energy input into the grid. This could
meet the demand response requirements by taking advantage of the variable power consumption of
datacenters. We have examined the scenarios of one or more datacenters being integrated into the grid
and adopted a stochastic algorithm to solve the problem we established. The experimental results
illustrated that the dynamic load management of multiple datacenters could help the smart grid to
reduce losses and thus save operational costs. Besides, we also analyzed the impact of the flexibility
and the delay of datacenter actions, which could be applied to more general scenarios in realistic
environments. Furthermore, considering the impact of the action delay, we employed a forecasting
method to predict renewable energy generation in advance to eliminate the extra losses brought by
the delay as much as possible. By predicting solar power generation, the improved results showed
that the proposed method was effective and feasible under both sunny and cloudy/rainy/snowy
weather conditions.
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1. Introduction

With the exploitation and usage of green energy, more and more attention has been paid to green
energy generation and management issues of the smart grid. It is predicted that the domestic total solar
power generation will reach 150 GW by the end of 2020 [1]. Although renewable energy generation
is of great importance to environmental sustainability in the future, there are still various problems
to widely penetrate renewable energy into the grid due to its instability and intermittency. With the
large-scale integration of renewable energy generation, the power flow distribution of the grid will
change and the power flow might be reversed. Meanwhile, problems such as voltage fluctuation or
over-limit violations will occur, which will affect the safe and reliable operation of the grid. In order to
maintain the reliability of the grid, traditional grids usually adopt a passive regulation mode where
the power supply changes with power demand. For example, large-scale batteries as an energy storage
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element, combined with corresponding control strategies, could help achieve the stability of the
grid [2,3]. An analysis of three potential future technical regulation systems has been presented [4] in
which wind power and small and medium-scale CHP (combined heat and power) units are involved in
balancing and grid stabilizing tasks. The results indicated that such systems could improve the ability
to integrate renewable energy. Compared to traditional batteries, this system could reduce carbon
dioxide emissions effectively. However, such passive methods might result in an increase in grid
operations. Moreover, the movement of electricity over distances results in losses, leading to a great
amount of economic expense, as reported in Reference [5]. According to statistics, the global electric
power transmission and distribution losses account for nearly 8.3% of the output [6], which shows that
the power transmission and distribution losses are worthy of consideration due to the possible capital
costs they might bring. In other words, the operational costs of the regional grid could be remarkably
reduced by a reduction in transmission losses. Hence, it is necessary to adopt a strategy to make full
use of loads to realize the demand response to balance the power supply and demand, to improve the
efficiency, and to maintain the reliability of the grid with renewable energy sources incorporated.

On the other hand, with the development and wide-spread usage of large-scale datacenters, the
power consumption of one datacenter could reach 50 MW or even more. In China, the total power
consumption of domestic datacenters has exceeded the annual power generation of the Three Gorges
Dam since 2015. Besides, the power of the datacenter is still growing up by 10–20% every year, which is
a similar rate to that of renewables [7]. Studies have shown that the power of the datacenters is flexible
to adjust, which implies that the datacenter is a potentially controllable load to achieve a demand
response. Meanwhile, as a large consumer of electricity, connecting the datacenters into the grid with
renewable sources can also reduce energy expenses effectively.

In this paper, we attempted to explore dynamic load adjustment approaches for multiple
datacenters, holistically in the smart grid, in order to balance the varying renewable energy input
into the grid. By our approach, the total power losses of the whole grid could be reduced, which
showed the value of datacenters participating in demand response programs for the balance of power
generation and consumption. Furthermore, although the power of the datacenters was flexible to
adjust, the actual adjustment actions would have to spend some time, which we called “the action
delay” hereafter. By our investigation, this kind of delay would result in extra losses for the grid. Thus,
we designed a forecasting method, based on the concept of a neural network, to predict renewable
energy generation in advance so as to adjust the power of the datacenters as soon as possible and
reduce the extra losses. Moreover, we also considered the impact of the possible adjustment range
in practical environments, which we called “the flexibility”. This paper is an extended version of
our prior work [8]. The extensions include the results of extended experimental scenarios upon three
datacenters, more experiments under both sunny and cloudy weather conditions, a suitable prediction
method adopted to forecast renewable energy generation in advance, the analysis and comparison
of different forecasting accuracy results on power losses, and discussion of the relationship between
forecasting time and accuracy.

The rest of this paper is organized as follows. In Section 2, we present the background of this
paper and some relevant work. In Section 3, we describe the system model and the establishment
of the problem to be solved later. Section 4 elaborates on the optimization method used to solve the
defined problem. Section 5 demonstrates the experimental results of our approach and the analysis of
practical details. Concluding remarks and a discussion about the future work are given in Section 6.

2. Background and Related Work

2.1. Datacenters Power Consumption and Renewable Energy Generation

With the rapid development of information technology and the coming of the Internet era,
especially the development of cloud computing around the world, the proportion of datacenters with
more than 100 racks is increasing year by year. Hence, the problems of high energy consumption, high
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cost and high pollution are increasingly prominent. For example, for a datacenter with a construction
scale of 2000 racks, the electricity consumption per hour will be around 6000 kWh and the annual
electricity consumption will be about 52,560 MWh. Then, its total annual cost could reach up to
$105 million including the electricity cost, the air conditioning, fresh air, lighting and other power
consumption of the datacenter, with a PUE (power usage effectiveness) of 2 [3]. In addition, the impact
of datacenters on the environment is attracting increasing attention from the public. According to the
current development trends, the average annual electricity consumption of datacenters will account for
1% of the total global value in 2020 as predicted in Reference [9]. The IT industry emits about 35 million
tons of carbon dioxide per year, accounting for 2% of global emissions. In order to reduce energy
consumption and carbon emissions of datacenters, it is important to maintain sustainable datacenters
and make full use of green energy [10,11]. Meanwhile, governments all over the world have also
published laws and policies to encourage energy conservation and the reduction of emissions. The cost
of deploying equipment to build new energy sources, such as photovoltaic panels and wind turbines,
has dropped as manufacturing costs have decreased, along with massive investment and government
incentives. More and more IT enterprises and organizations are gradually realizing full or partial new
energy-driven datacenters, such as the wind power datacenters that the Green House Data built in
Wyoming [12], and the solar datacenters that the Facebook built in Oregon [13]. Early in April 2012,
eBay decided to use 30 Bloom Energy fuel cells to power its datacenter in Utah [14]. Apple will utilize
60% power from photovoltaic generation and battery station to drive their datacenters in Southern
California [15]. On the other hand, datacenter energy efficiency is usually low, with huge energy
waste. According to statistics of the Ministry of Industry and Information Technology, the average
PUE value for datacenters in China is between 2.2 and 3.0, while the actual energy consumption may
be much higher. For enterprises, electricity for datacenters has become a big expense, greatly eroding
the operating profits of enterprises. According to data reported in Reference [3], the total electricity
consumption of datacenters all over China was more than 110.8 billion kWh in 2016, and in 2017
it was 120–130 billion kWh, which is more than the total generating capacity of the Three Gorges
dam in the whole year of 2017 (97.605 billion kWh) together with the Gezhouba dam power plant
(19.05 billion kWh in 2017).

At the same time, with the rapid development of the world’s economy, the demand for energy is
enhancing day by day, while traditional energy sources are drying up gradually. People have begun
to focus on new types of clean energy, hoping that it could change the current energy structure and
realize more sustainable development. In recent years, photovoltaic power generation and wind power
generation have developed quickly. By the end of 2015, the total installed capacity of solar cells had
reached 20,000 MW all over the world [16]. In 2017, the cumulative installed capacity of photovoltaic
generation in China reached 130 million kW with 69% year-on-year growth, accounting for 7.3% of the
total power generation capacity of the whole country. Among them, the cumulative installed capacity
of centralized photovoltaic is 100 million kW and the distributed photovoltaic is 29.66 million kW. The
installed wind power generation capacity in China increased by 53.06 million kW, an increase of 54%
year on year, accounting for 40% of the total installed power capacity in the whole country. At the same
time, by the end of 2017, the cumulative grid-integration capacity of wind power in China had reached
163.67 million kW, growing 10.1% year on year, among which the cumulative grid-connected capacity
of offshore wind power was 2.02 million kW, growing by 37% year on year [8]. On November 20th,
2018, Power Construction Corporation of China opened the tender for the centralized procurement
project of 1 GW photovoltaic modules and inverter frames in 2019 [17].

2.2. Power Consumption Adjustment of Datacenters

Recently, the participation of datacenters towards demand response requirements has become
increasingly important given their high and increasing energy consumption and their flexibility in
demand management compared to conventional industrial facilities. The huge yet flexible power
adjustments of datacenters make them promising resources for demand response, which requires
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a certain amount of power adjustment at a certain time. Datacenters could dynamically adjust
the power consumption themselves by leveraging the IT computing knobs such as geographical
load balancing [18,19], dynamic capacity provisioning [20], and workload shifting [21], as well
as non-IT knobs including batteries and cooling systems [22,23]. One of the most comprehensive
studies describing the potential of different hardware components in the datacenters and strategies
providing a demand response was released by Lawrence Berkeley National Laboratories [24]. Some
of the initial work in the area comes from Urgaonkar et al. [25], which proposed an approach for
adjusting the power consumption of datacenters by using energy storage to shift peak demand away
from high peak periods. While the design of workload planning algorithms for datacenters has
received considerable attention over the recent years [20,26–35], all of the proposed flexible datacenter
workload load planning methods could change the overall power consumption as needed. A more
complex approach was presented in Reference [36]. It took advantage of two datacenter flexibility
mechanisms—workload shifting and local generation (local diesel generators and local renewable
energy). Using these mechanisms, algorithms were developed in order to avoid the coincidental
peak and reduce the energy costs. They relied on the prediction of a coincident peak occurrence
based on historical data to optimize the workload allocation and local generation and to minimize
the expected cost. In Reference [37] a technique was proposed for balancing and keeping the peak
power consumption of the datacenter under a given threshold according to the electricity pricing but
at the same time allowing the datacenter to respond to the regulation control signals that may request
an increase in power consumption. Dan et al in Reference [38], on the basis of real-time electricity
price consideration, proposed to reduce the energy consumption cost of datacenters by dynamically
adjusting the server capacity and performing workload transfers in each time slot.

Besides, some researches have focused on dynamically controlling the number of active servers
based on the load and regard it as an effective means of power control [39–41]. In References [20,42,43],
dynamic speed/voltage scaling (DVS) could change processor power consumption, which could
also adjust the datacenter power consumption on demand by adjusting the frequency based on the
instantaneous power demand. Furthermore, our research team also conducted relevant studies to
dynamically adjust the power consumption amount according to the variation of the power supply.
Zhang et al. [44] designed adaptive scheduling algorithms and deployed renewable energy in the
datacenters, aiming at scheduling approximate applications, in order to meet the user demands as
well as maximizing the utilization of renewable energy. The main purpose was to appropriately
utilize the renewable energy and at the same time aimed at typical approximate applications based
on the trade-off of performance and accuracy to schedule and manage these tasks. By running such
applications, the power consumption of the computing nodes could follow a trend of changing energy
input as much as possible, which showed the effect of adjusting the datacenter power consumption.
Xiaoying et al. [45] also considered that the workloads of large-scale datacenters are variable, believing
that a coordinated resource management and power management approach could help datacenters to
use renewable energy more effectively and proposed a green-power-aware virtual machine migration
strategy to manage resources and power in green datacenters powered by mixed supply of both grid
and renewable energy. The results illustrated that the holistic power consumption of both IT devices
and cooling devices in the datacenter could be controlled towards the variation of the mixed power
supply. Based on the above relevant research and also our prior work, we regard datacenters as
adjustable and controllable loads in the smart grid, which might help the grid to keep its stability and
improve its efficiency.

2.3. Renewable Energy Generation Integrated in the Grid

As renewable energy power stations are being constructed all over the world, the problems
resulting from a grid penetrated with renewables have emerged. The photovoltaic power generation
will be greatly affected by the change of solar radiation, while the wind generation will be affected
by the wind speed variation. This makes renewable power generation intermittent and unstable.
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To improve the utilization efficiency of interconnected devices, improve the power quality of the
renewable energy interconnection grid system, maintain the normal operation of the grid and get
good economic profit, Ahamed et al. [46] proposed a hybrid power generation system that connected
the photovoltaic power station and batteries in parallel, which absorbed and supplied unbalanced
power from the battery and flattened grid-connected power. Zhijiang et al. and Shang et al. [47,48]
established a hybrid energy storage system composed of batteries and supercapacitors and optimized
the power distribution of the storage equipment through different filtering algorithm controls, which
improved the economy of the mixed energy storage equipment. Feng et al. [49] proposed the IP-IQ
current detection method of two kinds of control schemes of the photovoltaic grid inverter based on
the instantaneous reactive power theory in order to realize the dynamic reactive power compensation
and flexible combination of an active filter, while at the same time improving the power quality.
In Reference [50], a control strategy of the unified power quality conditioner was proposed to stabilize
the power system and increase the utilization ratio of the equipment. Although battery storage systems
can effectively increase grid stability after integrating renewable energy, electricity storage is not the
optimum solution to integrate the large inflows of fluctuating renewable energy since more efficient
and cheaper options can be found by integrating the electricity sector with other parts of the energy
system and by creating a smart energy system. Lund et al. in Reference [51] investigated the most
efficient and lowest cost storage options as a part of a smart energy systems approach, as defined
in Reference [52]. By using this approach, it was explained why the best storage solutions could be
found by integrating the individual sub-sectors of the energy system. One of the main reasons why
a cross-sector approach could identify more economically viable solutions was that the cheaper and
more efficient storage technologies that existed in the thermal and transport sectors, compared to the
electricity sector. Lund et al. [53] also made a state-of-the-art description of different single-sector
approaches for the transformation towards future sustainable energy solutions within the electricity,
gas, building and industrial sectors. They discussed the smart energy systems concept with regard to
the issues of the definition of the term, identification of renewable systems design, the integration of
holistic storage solutions and the modelling of national energy systems. In addition, some researchers
have also studied various kinds of controllable loads. Short et al. [54] put forward the dynamically
controllable load-refrigerators. The refrigerator could change its temperature automatically as the
grid frequency changed, which meant changing the power of the load. In the case of an increase
(or decrease) in power generation, the load power can be increased (or decreased) by effectively
controlling the controllable dynamic load. However, a controllable load changing with the frequency
of power grid is still relatively rare at present, so it will take some time for large-scale application.
Kondoh et al. [55] considered that each customer’s load and each generator’s active and reactive
power should be controlled in order to stabilize and optimize the grid, comparing independent and
cooperative control techniques as applied to load regulation using electric water heaters. However,
both refrigerators and electric water heaters are low-power household appliances and the power
control required a large number of such appliances. Besides, on account of the intermittent and
unstable power supply, the controllable load should be adjusted frequently, which would affect the
normal life of users and the service life of the electrical appliances. Although the strategies mentioned
in the above papers could achieve stability after renewable energy is integrated into the grid, they all
required some additional devices or even the devices of the user terminal, leading to additional costs.

In view of solving the instability and intermittency of the grid integrating with renewable energy,
this paper proposed to add datacenters as electric loads into the grid so as to consume surplus power
generated from renewable energy stations. This strategy could help achieve a win-win effect since on
the one hand it could help maintain the normal operation of the grid integrating renewable energy
through the adjustment of the datacenters and, on the other hand, the datacenter itself, as a big
consumer of electricity, could leverage the renewable energy more effectively to further reduce the
operational costs.
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3. System Model and Problem Statement

Since the power of a datacenter could be dynamically adjusted, it can meet the demand response
requirements in a smart grid integrated with renewable energy generation by adjusting the power
itself according to the power of renewable energy generation within one day. However, considering
the large-scale renewable energy generation integrated into the smart grid, the number, location and
the real-time power consumption of datacenters will influence the normal operation and the power
losses of the whole grid, which could comprehensively reflect the rationality and efficiency of the grid
planning and design, production operation, and management level. This paper studies the smart grid
operation with both renewable energy generation and multiple datacenters integrated proposes an
optimal load allocation strategy in several different cases and mainly focuses on the total power losses.
Meanwhile, considering the delay, an appropriate forecasting method has been adopted to predict
the renewable energy generation power, so as to reduce the extra losses caused by the action delay as
much as possible. At the same time, we also pay attention to the bus voltage and branch power flow in
case they exceed the limitation, which might lead to the instability of the smart grid.

3.1. Power Grid System

In this paper, we focus on the interaction of datacenters and renewable power plants in the
transmission network of the smart grid. Take the IEEE 30 Bus system [56] as an example of the
transmission network and the topology of case_ieee30 is shown in Figure 1. The case_ieee30 dataset
was converted from an IEEE common data format. The data of renewable energy generation is the
photovoltaic generation from the Green Power Network [57], which is a third-party monitoring data
management service platform for photovoltaic power stations. It realizes intelligent housekeeping
services of photovoltaic power stations with high-quality products and technologies.

1. Load model: To model the load of this system, we used constant power according to the
specifications in Reference [49]. Loads are connected to 21 buses respectively as shown by
the arrows in Figure 1.

2. Generator model: There are six generators, which are connected to buses 1, 2, 5, 8, 11 and 13
respectively. Specifically, Gen1 is a balancing bus node.

3. Branch model: There are 41 branches each connecting two buses in the system. Each branch has
its own line capacity limit and the voltage limitation of all branches is 0.95 pu to 1.1 pu. We will
check and try to avoid the possible violations based on these limits. Moreover, when power is
transmitted along the branches, there will be some losses on the line. We will use the summarized
losses as the main metric in the experiments in later sections.
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3.2. The Model of Renewable Energy Generation Station

The power generation of the solar station can be obtained as a function, which can be described
by Equation (1).

P = M · Ap · ϕ · ηp · ηDC (1)

where M is the number of solar photovoltaic panels; Ap is the superficial area of each PV panel; ϕ is
the solar radiant quantity; ηp denotes the efficiency of the PV panel; ηDC denotes the efficiency of the
maximum power tracker of the solar PV panel array. In these factors, ϕ is essentially random, which
will be impacted by seasons, solar radiation, temperature and pressure.

When it is decided to construct a renewable energy station at a certain location, we connect it to
the bus corresponding to the region.

3.3. The Datacenter Model

In this paper, we regard the datacenter as a large and non-neglectable load for the utility grid
system. The capacity of a datacenter is usually described by the power consumption amount when it
is running at peak load and thus fully utilized. When we place a datacenter at a certain location, it is
connected to the bus corresponding to that area where the datacenter is located. Then the load of this
bus should be added to the current load of the datacenter, as follows:{

Pi = Pi + LP
DC

Qi = Qi + LQ
DC

, i = 1, 2, . . . , N (2)

where Pi and Qi denote the active and the reactive power load at bus i respectively; N is the
number of buses in the grid and LP

DC and LQ
DC represents the active load and reactive load of the

datacenter respectively.

3.4. Problem Formulation

In the grid system described above, we assume that a large renewable energy generation station is
to be connected, which might incur oscillating power input to the grid. In order to consume the extra
power generated from renewable sources, multiple datacenters can be established at several different
locations and connected to the grid system as controllable loads. The problem here is to determine how
much power each datacenter should consume in the case of multiple datacenters and make adjustment
accordingly in a real-time manner.

Assume there are n datacenters deployed in the grid. Denote the solar power generated as PS, the
load of the i-th datacenter as Li. Then, the total power losses will be impacted by them, denoted as a
function Loss (PS, L1, L2, . . . , Ln). Then, the problem we need to address can be defined as:

minimize Loss (PS, L1, L2, . . . , Ln) (3)

PS =
n

∑
i=1

Li (4)

UM(1− ε1) ≤ Ui ≤ UM(1 + ε2), 1 ≤ i ≤ n (5)

|Pij| ≤ PMAX
ij , 1 ≤ i, j ≤ n (6)

wherein UM is the system nominal voltage; ε1 and ε2 are the allowable deviation rates specified
internationally; Pij is the branch power flowing from bus node i to bus node j, and PMAX

ij is the
maximum power allowed to pass through the branch (i.e., the branch capacity limit value). As shown,
Equations (5) and (6) are both constraints to ensure the stability of the grid by avoiding any over-limit
violations across all of the buses and branches. Especially, Equation (5) is the constraint for the bus
voltage of each node and Equation (6) gives the limitation of the power flow on each branch.
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4. Dynamic Load Management of Datacenters Based on Forecasting

4.1. Dynamic Load Adjustment of Datacenters

An imbalance between load and generation might lead to the failure of the normal operation of
the power grid. Therefore, facing the special situation of renewable energy integrated into the grid, we
selected datacenters as dynamic loads to maintain the basic stability of the smart grid. However, while
maintaining stability, we also need to focus on the efficiency of the grid, which can be reflected by the
power losses. In the scenario of multiple datacenters integrated into the smart grid, it will be difficult
to solve the problem defined in Section 3. Furthermore, the Loss, as described in Section 3.4, is not
an explicit function, which means that we cannot use linear or non-linear programming directly to
solve this problem. Thus, a stochastic algorithm is proposed to implement an optimal load allocation
strategy in order to obtain the minimum loss value.

In computer science and operations research, the genetic algorithm (GA) is a metaheuristic
inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms
(EA). Genetic algorithms are commonly used to generate high-quality solutions for optimization and
search problems by relying on bio-inspired operators such as mutation, crossover and selection [58].
As one of the stochastic algorithms, a genetic algorithm is good at solving global optimization problems
and is always used to solve practical problems. In this experiment, we adopt the main concept of the
genetic algorithm and use the toolbox ‘Deap’, a novel evolutionary computation framework for rapid
prototyping and testing of ideas to get an optimal load allocation strategy, to implement the entire
algorithm. The steps of the dynamic load management algorithm can be presented as follows:

1. randomly initialize the population
2. determine the fitness of the current population
3. repeat.

• Select parents from the current population.

In this paper, the tournament selection strategy is adopted, i.e., to select a certain number of
individuals from the population each time. In our experiment, we selected three individuals and then
choose the best one among the three to enter the child population each time.

• Perform crossover operations on parents creating the population.

In this paper, we adopted the two-point crossover strategy, which was helpful to create more new
individuals. Two-point crossover refers to the random setting of two crossover points in the individual
coding string and then the partial genes between the two crossover points will be exchanged. An
example of a two-point crossover operation is shown as Figure 2, wherein the dotted lines represent
the two crossover points.
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• Perform mutation operations of the current population.

Here we adopt the gauss mutation strategy, wherein the mean is 0, the standard deviation is 1,
and the independent probability for each attribute to be mutated is 0.1 to enter the child population.

• Determine the fitness of the population until the best individual is good enough.

4. output the best individual of the final population as the result.

When the iteration times of the evolution reach the maximum value, the individual with the
maximum fitness obtained in the evolutionary process will be the output as the optimal solution. In
this algorithm, we used vectors to represent the individual and the load capacity of each datacenter at
every time interval was denoted as a gene. Then, the load capacity values of all datacenters in the grid
at each time interval composed the individual (x1, x2 . . . ) and the dimension of the vector could be
determined according to the number of added datacenters. When an individual completes coding, a
population of a specified size will be created and then we can call the ‘power’ module to calculate the
fitness to assess the relative merits of each individual and determine their genetic opportunity.

4.2. Power Generation Forecasting

Renewable energy resource simulation and power prediction technology have always been a
hot research direction. In recent years, the influence on large-scale renewable energy integrated
into the grid appeared gradually. Renewable energy resource simulation and power prediction
technology are developing in the direction of detailed simulation and customized prediction of
resources, multi-space-time scale power prediction, probability prediction and event prediction [59].

Under the consideration of datacenter action delay, we adopted the neural network and called the
framework “Keras” to forecast renewable energy generation power in advance. Keras is a high-level
neural network API (application program interface), written in Python. It was developed with a
focus on enabling fast experimentation [60]. In this paper, we selected N-days of historical renewable
generation power data as a training set to forecast the renewable generation power of the next day.
In the training set, the power data of n time points were used as a group of historical data to obtain
the power data of the (n + 1)-th time point for training. We used a sequential model to stack the
network layers. Then, the compile () method was used to compile the model. After that, we trained
the network with the function fit () under a certain number of iterations, in which the optimization
and loss function used were “Adam” and “mean_squared_error” respectively. Adam is an algorithm
for the first-order gradient-based optimization of stochastic objective functions, based on adaptive
estimates of lower-order moments, which was straightforward to implement and computationally
efficient. It has little memory requirements, is invariant to the diagonal rescaling of the gradients, and
is well suited for problems that are large in terms of data and/or parameters [61].

5. Experiment Results and Analysis

5.1. Testbed Setup and Parameter Settings

Here, we used MATpower [60] to simulate the operation of the grid in the following experiments.
MATpower is a package of MATLAB M-files for solving power and optimizing power flow problems,
designed to give the best performance possible while keeping the code simple to understand and
modify, which is a simulation tool for researchers and educators.

In our experiments, we chose the monitoring power data from the photovoltaic station in Xuhui
district (which belongs to the city of Shanghai) government from two typical days on 14 July 2018, and
19 December 2018, corresponding to sunny and cloudy/snowy weather conditions respectively. The
monitoring time interval was 10 min and thus 144 data records were collected for one-day simulation.

Here, we simulated three different scenarios of MATpower in the following experiments:
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(1) only one datacenter deployed. The datacenter load varied along with the input solar
generation power;

(2) multiple datacenters deployed. Here we assume there are multiple distributed datacenters put
into the grid and the loads are evenly allocated to them;

(3) multiple datacenters deployed and running with dynamically allocated loads.

We selected bus 9, 15 and 25 to integrate the solar station and datacenters respectively in the
tested grid system. As parameter settings of GA, we define both the size of the population and the
times of iterations as 100 and the fitness function consists of two parts, as follows:

loss1 + α ∗ loss2 (7)

where loss1 is to guarantee the loss value is small enough, loss2 is to ensure the residual error between
the allocated load and the input solar is small enough, and α is used to control the two variables. Here,
we set α = 0.25. Figure 3 shows the input solar generation power on the two days, where Figure 3a,b
correspond to sunny and cloudy/snowy weather conditions respectively.
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Figure 3. Input solar generation power. (a) Sunny day; (b) cloudy/snowy day.

5.2. Results of Power Losses under Accurate Responses

The experimental results under three scenarios are shown in Figure 4 as a holistic view.
In Figure 4a, the upper curve illustrates the first scenario mentioned in Section 5.1, which means

only one datacenter was integrated into the case_ieee30 at bus 15. The power of the datacenter varied
along with the input solar generation. As shown in the figure, the peak loss is 25.6 MW. The curve in
the middle illustrates the second scenario, in which two datacenters were integrated into case_ieee30
at bus 15 and 25. In this case, the two datacenters consumed an equal amount of power and the
sum of the two datacenter’s power was consistent with the input solar generation. Besides, the solar
station was still at bus 9. We can find the peak loss value was smaller than in scenario 1, which was
25.25 MW. The lowest curve demonstrates the third scenario mentioned in Section 5.1. In this case,
two datacenters were integrated into to case_ieee30 at bus 15 and 25 respectively and the power of
the two datacenters was dynamically adjusted according to changes in solar power generation, while
the total power consumption of the two datacenters was kept constant. We found that the loss value
was smaller than in scenarios 1 and 2, which was 23.93MW at the peak. In Figure 4b, which illustrates
that for the results under cloudy/snowy weather conditions, the peak loss values in the same three
scenarios were 20.99 MW, 19.82 MW, 18.08 MW respectively and the average value in the third scenario
was still the lowest.
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Figure 4. Comparison of loss values over three scenarios. (a) sunny day; (b) cloudy/snowy day.

From Figure 4 we can see that the curve of the optimal load-allocation strategy was almost
always below the other two curves, which means that the dynamic load management methods can
help to reduce the power losses of the grid system and thus provide savings in the operational costs.
To examine the values more clearly, the corresponding statistical results are listed explicitly in Table 1.
We also examined the scenario of putting three datacenters into the grid and the results are shown in
Table 2. The datacenters were put at bus 15, 20, and 25 respectively. Here the two tables only give the
results on a sunny day since it can be seen from Figure 4 that the other condition exhibited the same
comparative trend.

Table 1. Statistical results with two datacenters.

Scenario (1) (2) (3)

Average Total loss (MW) 19.548 19.492 19.19
percentage of loss/generation 8.52% 8.39% 8%

Table 2. Statistical results with three datacenters.

Scenario (1) (2) (3)

Average Total loss (MW) 19.548 19.212 18.889
percentage of loss/generation 8.52% 8.02% 7.49%

5.3. Considering Practical Factors Including Flexibility and Action Delays

The above experiments are based on the ideal scenario that the datacenter can act as soon as
possible to adjust the power consumption of itself to the target value exactly. In a practical environment,
the power adjustment range of a datacenter will be constrained, which means that the datacenter cannot
vary the power consumption as much as possible to reach the target value. We defined “flexibility”
to describe such characteristics of the datacenter. Furthermore, the datacenter has to spend some
time (which we defined as “action delay”) to dynamically change its power consumption through the
combination of multiple methods, such as load shedding or cooling temperature adjustment. Hereafter,
we also conducted a series of experiments to study the impact of practical factors. Since the results of
sunny or cloudy scenarios are similar, we have only shown the results of data from the sunny day in
this subsection for clarity.

To examine the impact of the flexibility of the datacenter, the adjustable range of the datacenter
can be expressed as follows:

[(1− e)× p(t), (1 + e)× p(t)] (8)

wherein e represents the flexibility of the datacenter, and the p(t) means the power of the datacenter
in the last time interval. We specify that if the power of the datacenter in the next interval is out of



Appl. Sci. 2019, 9, 518 12 of 18

the allowed range, the upper or lower limits of the adjustable range will be taken as the power of
datacenter in the next interval. On the other hand, to evaluate the impact of the action delay, we
simulated different scenarios with a delay of 5, 10, 15 and 20 min respectively.

Figure 5 shows the impact of different flexibility values, where the abscissa represents different
flexibility values and the ordinate represents the mean power losses (MW). We focused on the average
loss under different flexibility values, where e = 0 means the datacenter kept a constant load, and
in such scenario, the loss value was remarkably large. This shows that the adjustments made to the
datacenter loads can help to effectively reduce the total power losses.Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 19 
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Figure 5. The impact of different flexibility values.

The impact of different action delay times on the total power losses of the grid can be seen in
Figure 6. As mentioned, we tested different delay time settings from 0 to 20 min and the average loss
values were recorded under each condition. From the figure, we can see that the loss value increases
proportionally with the delay, which has a great impact on the action delay on the power loss of the
entire grid. Besides, comparing the results with Figure 5, we can see that when the flexibility value
is equal to or greater than 0.3, the loss value does not change substantially anymore and the value is
close to the result in Figure 6 when there is no delay. This implies that even an adjustable range of
±30% of the datacenter power consumption can lead to fairly satisfactory results.
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Figure 6. The impact of datacenter action delays.

5.4. Improvement Based on Forecasting Methods

Since we found that the action delay had a great impact on the power losses, in order to eliminate
such impact as much as possible, we tried to adopt some forecasting method to help predict the future
data as accurately as possible.
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We used the neural network to forecast the solar generation power on July 14th and December
19th. Considering that July 14th was a sunny day, in order to improve the accuracy of the prediction,
we chose data obtained from June 1st, 14th, 15th, 26th 2018, which were four sunny days, as the
training set and the power data of 5 time points were used as a group of historical data to obtain
the power data of the next time point for training. Considering that December 19th was a cloudy
day, we chose data obtained from Dec 2th, 5th, 7th, 8th, 9th, 10th, 11th, 15th 2018 which were also
cloudy/rainy/snowy days as a group of historical data to obtain the power data for the next time
point for training. In addition, by adjusting the number of iterations, we obtained the forecasting
results of different errors and obtained the loss values of the grid according to different settings of
prediction accuracy.

In the following experiments, we adopted the framework “Keras” based on neural networks
to forecast the generation of power. Figure 7 shows that forecasting results under sunny weather
conditions, in which Figure 7a shows the comparison of the predicted values and the actual values, and
Figure 7b shows the average power losses under three different accuracy settings. It can be observed
that leveraging forecasting techniques are helpful to eliminate the negative impact of action delay time.
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Figure 7. Forecasting results under 5-min action delay on a sunny day. (a) Comparison of the actual
generation power and predicted values after 150 iteration times of one day; (b) comparison of the
average power losses under different forecasting accuracy.

Figure 8 shows the forecasting results under a 10-min action delay of the datacenters, in which
the forecasting average error in Figure 8a,c was 5% and 10% respectively. Figure 8b,d show the
average power losses under different accuracy settings, including 5%/10% forecasting error, accurate
forecasting and without forecasting. From the results in Figures 7 and 8, we can see that improving the
forecasting accuracy can effectively reduce the extra power losses.

In order to verify the effectiveness of our prediction method, we also carried out the same
experiments under cloudy/snowy weather conditions and the results are shown in Figure 9. The
forecasting average error in Figure 9a,c is 10% and 15% respectively. Figure 9b,d shows the average
power losses under different accuracy settings, including 10%/15% forecasting error, accurate
forecasting and without forecasting. Figure 9 also illustrates that although on cloudy/snowy days
the data fluctuations make the forecasting difficult and less accurate, we can still see the advantages
of leveraging the forecasting techniques to help reduce extra power losses. To sum up, a reasonable
forecasting method can eliminate extra losses from the action delay of the datacenters as much as
possible, so it is meaningful to adopt an appropriate forecasting method to improve the impact of
datacenter reaction on the grid.
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Figure 8. Forecasting results under a 10-min action delay on a sunny day. (a,c) show the forecasting
results by different iteration time, where the iteration time is 150 s in (a) and 125 s in (c). (b,d) show the
average power losses under different settings.
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Figure 9. Forecasting results under a 10-min action delay. (a,c) show the different iteration time
forecasting results, where the iteration time is 150 s in (a), and 120 s in (c). (b,d) show the average
power losses under different settings.

In addition, we also examined the relationship between forecasting accuracy and the computation
time. In general, in order to get more accurate prediction results, it has to spend more time
on the computation process. Figure 10 illustrates the evaluation results for both the sunny and
cloudy/rainy/snowy weather conditions under a 10-min action delay. From Figure 10a we can see
that nearly-accurate forecasting takes more than twice the time compared to achieving 95% accuracy,
while in contrast, to achieve 95% accuracy only takes 3 s more than to achieve 90% accuracy. Similarly,
from Figure 10b we can see that accurate forecasting takes more than twice the time compared to
achieving 85% accuracy, while to achieve 90% accuracy only takes 4 s more than to achieve 85%
accuracy. This implies it could be practical and helpful to spend a little more time to get better
forecasting results. Besides, comparing Figure 10a,b, it can be observed the forecasting time cost of the
cloudy/rainy/snowy day is much higher than the sunny day. For example, in Figure 10a it only takes
about 17 s to achieve 90% accuracy but in Figure 10b it takes nearly 26 s.
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Figure 10. The relationship between forecasting error and forecasting time. (a) sunny day; (b) cloudy/
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6. Conclusions and Future Work

In this paper, we proposed the idea that putting the datacenters into the grid integrated with
renewables as dynamic loads to maintain the normal operation of the grid. In addition, we designed an
optimal load allocation strategy based on stochastic searching ideas, which could achieve a reasonable
distribution of the load to get the minimum power losses when deploying multiple datacenters in the
grid. Our results show that multiple datacenters in the smart grid as dynamic loads can effectively
reduce the power losses and especially when adopting the optimal load-allocation scheme obtained by
the GA-based method to adjust the power usage of datacenters; the advantages would more obvious.
Stability issues of the grid were also considered in the problem we defined and the experiments we
conducted, including bus voltage variations and the overloading of transmission lines. Besides, we
also incorporated practical factors into the experiments such as the flexibility and action delay during
the demand response process of datacenters. Moreover, in order to eliminate the inescapable influence
of the action delay when adjusting the power of the datacenters as much as possible, we adopted
forecasting techniques to predict the renewable energy generation amount looking ahead, under both
sunny and cloudy/snowy weather conditions. Comparing the results under different action delay
settings, it can be seen that adopting the forecasting method could reduce the extra power losses
effectively. During our experiments, the relationship of computational time and the achieved accuracy
was also investigated, which illustrated the feasibility of the proposed method based on forecasting.

From the study about forecasting results and forecasting time, we also found that the time
cost of the forecasting method could further be optimized. As the next step, we will focus on the
combination of multiple kinds of demand response strategies and approaches in the datacenter towards
the requirements of the electricity providers. Besides, we will also pay more attention to the power
management and other kinds of reliability issues of the smart grid after integrating renewable energy
sources and take frequency and voltage excursion as the knobs to facilitate better demand response in
the future work.
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